Difference between revisions of "Signal Representation/Fourier Series"

From LNTwww
 
(39 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Periodische Signale
+
|Untermenü=Periodic Signals
 
|Vorherige Seite=Harmonic Oscillation
 
|Vorherige Seite=Harmonic Oscillation
|Nächste Seite=Fourier Transform and Its Inverse
+
|Nächste Seite=The Fourier Transform and its Inverse
 
}}
 
}}
  
  
==General Description==
+
==General description==
 
<br>
 
<br>
Every periodic function&nbsp; $x(t)$&nbsp; can be fragmented into a trigonometric series, which is called Fourier series, in all areas, where it is continuous or has only finite discontinuities.
+
Every periodic function&nbsp; $x(t)$&nbsp; can be developed into a trigonometric series&nbsp; called&nbsp; &raquo;Fourier series&laquo;&nbsp; in all areas,&nbsp; where it is continuous or has only finite discontinuities.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
The&nbsp; '''Fourier series''' &nbsp; of a periodic signal&nbsp; $x(t)$&nbsp; is defined as follows
+
The&nbsp; &raquo;'''Fourier series'''&laquo;&nbsp; of a periodic signal&nbsp; $x(t)$&nbsp; is defined as follows:
 
   
 
   
 
:$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t).$$
 
:$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t).$$
  
 
Here the symbols denote the following definitions:
 
Here the symbols denote the following definitions:
*$A_0$&nbsp; the&nbsp; '''constant component'''&nbsp; of&nbsp; $x(t)$,
+
*$A_0$&nbsp; the&nbsp; &raquo;'''constant component'''&laquo;&nbsp;&nbsp; of&nbsp; $x(t)$,
*$A_n$&nbsp; the&nbsp; '''cosine coefficients'''&nbsp; with&nbsp; $n \ge 1$,
 
*$B_n$&nbsp; the&nbsp; '''sine coefficients'''&nbsp;  mit&nbsp; $n \ge 1$,
 
*$\omega_0 = 2\pi/T_0$&nbsp;the&nbsp; '''angular frequency'''&nbsp; of the periodic signal&nbsp; $(T_0$ is the period duration$)$.}}
 
  
 +
*$A_n$&nbsp; the&nbsp; &raquo;'''cosine coefficients'''&laquo;&nbsp;&nbsp; with&nbsp; $n \ge 1$,
  
If the Fourier series is to exactly match the actual periodic signal&nbsp; $x(t)$&nbsp;, an infinite number of cosine and sine coefficients must generally be used for calculation.
+
*$B_n$&nbsp; the&nbsp; &raquo;'''sine coefficients'''&laquo;&nbsp;  with&nbsp; $n \ge 1$,
  
*If the Fourier series is interrupted and only&nbsp; $N$&nbsp; of&nbsp; $A_n$&nbsp; and&nbsp; $B_n$ coefficients is used, then a slightly different plot of the function results except for some special cases:
+
*$\omega_0 = 2\pi/T_0$&nbsp;the&nbsp; &raquo;'''basic circular frequency'''&laquo;&nbsp; of the periodic signal&nbsp; $(T_0$ is the period duration$)$.}}
 +
 
 +
 
 +
If the Fourier series should exactly match the actual periodic signal&nbsp; $x(t)$,&nbsp; an infinite number of cosine and sine coefficients must generally be used for calculation.
 +
 
 +
*If the Fourier series is interrupted and only&nbsp; $N$&nbsp; of&nbsp; $A_n$&nbsp; and&nbsp; $B_n$ coefficients are used,&nbsp; then a slightly different plot of the function results except for some special cases:
 
   
 
   
 
:$$x_ N(t) =A_0+\sum^N_{n=1}A_ n \cdot \cos(n \omega_0 t)+\sum^N_{n=1} B_{n} \cdot \sin(n \omega_0 t).$$
 
:$$x_ N(t) =A_0+\sum^N_{n=1}A_ n \cdot \cos(n \omega_0 t)+\sum^N_{n=1} B_{n} \cdot \sin(n \omega_0 t).$$
Line 39: Line 42:
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 1:}$&nbsp;
 
$\text{Example 1:}$&nbsp;
We consider two periodic square wave signals, each with the period duration&nbsp; $T_0$&nbsp; and the fundamental frequency&nbsp; $\omega_0 = 2\pi/T_0$.  
+
We consider two periodic rectangular signals&nbsp; $($"square waves"$)$,&nbsp; each with period duration&nbsp; $T_0$&nbsp; and basic circular frequency&nbsp; $\omega_0 = 2\pi/T_0$.  
[[File:P_ID525__Sig_T_2_4_S1_neu.png|right|frame|Even and Odd Rectangle Pulse]]
+
[[File:P_ID525__Sig_T_2_4_S1_neu.png|right|frame|Even and odd rectangular signal]]
*For the even time signal sketched above: &nbsp; $x_{\rm g}(-t) = x_{\rm g}(t)$.
+
*For the even&nbsp; $($German:&nbsp; "gerade" &nbsp; &rArr; &nbsp; $\rm g)$&nbsp; time signal sketched above: &nbsp;  
*The function shown below is odd: &nbsp;$x_{\rm u}(-t) = -x_{\rm u}(t)$.
+
:$$x_{\rm g}(-t) = x_{\rm g}(t).$$  
 
+
*The function shown below is odd&nbsp; $($German:&nbsp; "ungerade" &nbsp; &rArr; &nbsp; $\rm u)$: &nbsp;
 +
:$$x_{\rm u}(-t) = -x_{\rm u}(t).$$
  
One finds the&nbsp; ''fourier series representations''&nbsp; of both signals in formularies:
+
One finds the&nbsp; Fourier series representations&nbsp; of both signals in formularies:
 
   
 
   
 
:$$x_{\rm g}(t)=\frac{4}{\pi}\left [ \cos(\omega_0  t)-\frac{1}{3}\cdot \cos(3 \omega_0  t)+\frac{1}{5}\cdot\cos(5 \omega_0  t)- \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm}\right ],$$
 
:$$x_{\rm g}(t)=\frac{4}{\pi}\left [ \cos(\omega_0  t)-\frac{1}{3}\cdot \cos(3 \omega_0  t)+\frac{1}{5}\cdot\cos(5 \omega_0  t)- \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm}\right ],$$
Line 53: Line 57:
 
*Because of the generally valid relationship
 
*Because of the generally valid relationship
 
   
 
   
:$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\, {-}\, \hspace{0.05cm}\text{...}\hspace{0.05cm} \, {+} \hspace{0.05cm}\text{...}\hspace{0.05cm}=\frac{\pi}{4}$$
+
:$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\, {-}\, \hspace{0.05cm}\text{...}\hspace{0.05cm} \, {+} \hspace{0.05cm}\text{...}\hspace{0.05cm}=\frac{\pi}{4},$$
  
the amplitudes (maximum values) of the two rectangle pulses result to&nbsp; $1$.  
+
:the amplitudes&nbsp; $($maximum values$)$&nbsp; of the rectangular basic pulse result to&nbsp; $1$.  
*This can also be verified using the signal curves in the above graphic:
+
 
 +
*This can also be verified using the signal curves in the graphic:
  
 
:$$x_{\rm g}(t = 0) = x_{\rm u}(t = T_0/4)  = 1.$$}}
 
:$$x_{\rm g}(t = 0) = x_{\rm u}(t = T_0/4)  = 1.$$}}
  
  
==Calculation of the Fourier Coefficients==
+
==Calculation of the Fourier coefficients==
 
<br>
 
<br>
The Fourier coefficient&nbsp; $A_0$&nbsp; specifies the&nbsp; '''constant component'''&nbsp; which can be determined by averaging over the signal course&nbsp; $x(t)$&nbsp;. Due to the periodicity, averaging over one period is sufficient:
+
The Fourier coefficient&nbsp; $A_0$&nbsp; specifies the&nbsp; &raquo;direct current&nbsp; $\rm (DC)$&nbsp; signal component&laquo;&nbsp; which can be determined by averaging over the signal course&nbsp; $x(t)$.&nbsp; Due to the periodicity,&nbsp; averaging over one period is sufficient:
 
   
 
   
 
:$$A_0=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\,{\rm d}t.$$
 
:$$A_0=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\,{\rm d}t.$$
  
The integration limits can also be selected from&nbsp; $t = 0$&nbsp; to&nbsp; $t = T_0$&nbsp; (or over a differently defined period of equal length).
+
*The integration limits can also be selected from&nbsp; $t = 0$&nbsp; to&nbsp; $t = T_0$&nbsp; $($or over a differently defined period of equal length$)$.
  
The determination of the Fourier coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$&nbsp; $(n \ge 1)$&nbsp; is based on the property that the harmonic cosine functions and sine functions are so-called&nbsp;[https://en.wikipedia.org/wiki/Orthogonal_functions orthogonal functions]&nbsp;. For them the following applies:
+
*The determination of the Fourier coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$&nbsp; $(n \ge 1)$&nbsp; is based on the property that cosine and sine functions are so-called&nbsp;[https://en.wikipedia.org/wiki/Orthogonal_functions&nbsp; &raquo;orthogonal functions&laquo;].&nbsp;  
 +
 
 +
*For them the following applies:
 
   
 
   
:$$\int^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\cos(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad  if  \it \quad m=n,\atop \rm sonst}  \right.$$
+
:$$\int^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\cos(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad  if  \it \hspace{0.2cm} m=n,\atop \rm otherwise}  \right.$$
  
:$$\int ^{+T_0/2}_{-T_0/2}\sin(n\omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad  if \it \quad m=n,\atop \rm sonst}  \right.$$
+
:$$\int ^{+T_0/2}_{-T_0/2}\sin(n\omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad  if \it \hspace{0.2cm} m=n,\atop \rm otherwise}  \right.$$
  
:$$\int ^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=0 \quad \rm f\ddot{u}r\quad alle \ \it m, \ n.$$
+
:$$\int ^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=0 \hspace{1.2cm} \rm for\ all \hspace{0.2cm} \it m, \ n.$$
 
   
 
   
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Conclusion:}$&nbsp;Considering these equations, the cosine coefficients&nbsp; $A_n$&nbsp; and the sine coefficients&nbsp; $B_n$&nbsp; result as follows
+
$\text{Conclusion:}$&nbsp; Considering these equations,&nbsp; the cosine coefficients&nbsp; $A_n$&nbsp; and the sine coefficients&nbsp; $B_n$&nbsp; result as follows
  
 
:$$A_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\cos(n \omega_0 t)\,{\rm d}t,$$
 
:$$A_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\cos(n \omega_0 t)\,{\rm d}t,$$
Line 85: Line 92:
 
   
 
   
  
The german learning video&nbsp; [[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Calculating the Fourier Coefficients]]&nbsp; illustrates these equations.
+
The following&nbsp; $($German-language$)$&nbsp; learning video illustrates these equations:<br> &nbsp; &nbsp; &nbsp; &nbsp;[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|&raquo;Zur Berechnung der Fourierkoeffizienten&laquo;]] &nbsp; &rArr; &nbsp; "Calculating the Fourier coefficients".
 +
 
 +
 
 +
[[File:P_ID526__Sig_T_2_4_S2_neu.png|right|frame|On calculating the Fourier coefficients]]
  
[[File:P_ID526__Sig_T_2_4_S2_neu.png|right|frame|On Calculating the Fourier Coefficients]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 2:}$&nbsp;  
 
$\text{Example 2:}$&nbsp;  
Line 94: Line 103:
 
:$$x(t)=0.4+0.6\cdot \cos(\omega_0  t)-0.3\cdot\sin(3 \omega_0 t).$$  
 
:$$x(t)=0.4+0.6\cdot \cos(\omega_0  t)-0.3\cdot\sin(3 \omega_0 t).$$  
  
Since the integral of the cosine and sine functions is identical to zero over one period in each case, one obtains for the DC signal coefficient&nbsp; $A_0 = 0.4$.
+
*Since the integral of the cosine and sine functions over one period are identical to zero, the DC signal coefficient is&nbsp;  
 +
:$$A_0 = 0.4.$$
  
One determines the cosine coefficient&nbsp; $A_1$&nbsp; with the following equations $($Integration limits from&nbsp; $t = 0$&nbsp; to $t = T_0)$:
+
*One determines the cosine coefficient&nbsp; $A_1$&nbsp; with following equation&nbsp; $($Integration limits from&nbsp; $t = 0$&nbsp; to&nbsp; $t = T_0)$:
 
   
 
   
 
:$$ \begin{align*} A_{1}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4\cdot\cos(\omega_0  t)\,{\rm d}t  +  \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot\cos^2(\omega_0  t)\,{\rm d}t  -  \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot\sin(3  \omega_0  t)\cdot \cos(\omega_0 t)\,{\rm d}t.\end{align*} $$
 
:$$ \begin{align*} A_{1}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4\cdot\cos(\omega_0  t)\,{\rm d}t  +  \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot\cos^2(\omega_0  t)\,{\rm d}t  -  \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot\sin(3  \omega_0  t)\cdot \cos(\omega_0 t)\,{\rm d}t.\end{align*} $$
  
The last integral is equal to zero due to orthogonality; the first one is zero too (integral over one period).  
+
#The last integral is equal to zero due to orthogonality;&nbsp; the first one is zero too&nbsp; $($integral over one period$)$.  
*Only the middle term contributes here to&nbsp; $A_1$, namely&nbsp; $2 - 0.6 - 0.5 = 0.6. $
+
#Only the middle term contributes here to&nbsp; $A_1$,&nbsp; namely&nbsp; $2 - 0.6 - 0.5 = 0.6. $
*For all further&nbsp; ($n \ge 2$)&nbsp; cosine coefficients all three integrals return the value zero, and thus&nbsp; $A_{n \hspace{0.05cm}\neq \hspace{0.05cm}1}=0$.
 
  
 +
*For all further&nbsp; $(n \ge 2)$&nbsp; cosine coefficients all three integrals return the value zero,&nbsp; and thus&nbsp; $A_{n \hspace{0.05cm}\neq \hspace{0.05cm}1}=0$.
  
To determine the sine coefficients &nbsp; $B_n$&nbsp; with the determining equation:
+
*To determine the sine coefficients &nbsp; $B_n$&nbsp; using following equation:
 
   
 
   
 
:$$ \begin{align*} B_{\it n}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4 \cdot \sin(n \ \omega_0  t)\,{\rm d}t  + \frac{2}{T_0} \cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot \cos(\omega_0  t) \sin(n \omega_0  t)\,{\rm d}t  -  \frac{2}{T_0}\cdot  \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot \sin(3 \omega_0  t) \sin(n  \omega_0 t )\,{\rm d}t. \end{align*} $$
 
:$$ \begin{align*} B_{\it n}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4 \cdot \sin(n \ \omega_0  t)\,{\rm d}t  + \frac{2}{T_0} \cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot \cos(\omega_0  t) \sin(n \omega_0  t)\,{\rm d}t  -  \frac{2}{T_0}\cdot  \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot \sin(3 \omega_0  t) \sin(n  \omega_0 t )\,{\rm d}t. \end{align*} $$
  
*For&nbsp; $n \hspace{0.05cm}\neq \hspace{0.05cm}3$&nbsp; all three integral values are zero and therefore&nbsp; $B_{n \hspace{0.05cm}\neq \hspace{0.05cm}3} = 0.$  
+
#For&nbsp; $n \hspace{0.05cm}\neq \hspace{0.05cm}3$&nbsp; all three integral values are zero and therefore&nbsp; $B_{n \hspace{0.05cm}\neq \hspace{0.05cm}3} = 0.$  
*On the other hand, for&nbsp; $n=3$&nbsp; the last integral provides a contribution, and one gets for the sine coefficient&nbsp; $B_3 = -0.3.$}}
+
#On the other hand,&nbsp; for&nbsp; $n=3$&nbsp; the last integral provides a contribution,&nbsp; and one gets for the sine coefficient&nbsp;
 +
::$$B_3 = -0.3.$$}}
  
  
==Exploitation of Symmetries==
+
==Exploitation of symmetries==
 
<br>
 
<br>
Some insights into the Fourier coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$&nbsp; can already be read from the&nbsp; ''Symmetry properties''&nbsp; of the time function&nbsp; $x(t)$&nbsp;.
+
Some insights into the Fourier coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$&nbsp; can already be read from the&nbsp; &raquo;symmetry properties&laquo;&nbsp; of the time function&nbsp; $x(t)$.&nbsp;
  
*If the time signal &nbsp; $x(t)$&nbsp; is an even function &nbsp; ⇒ &nbsp; axis-symmetrical around the ordinate&nbsp; $(t = 0)$, all sine coefficients&nbsp; $B_n$ disappear, since the sine function itself is an odd function &nbsp; ⇒ &nbsp; $\sin(-\alpha) = -\sin(\alpha)$:
+
*If the time signal&nbsp; $x(t)$&nbsp; is an even function &nbsp; ⇒ &nbsp; axis-symmetrical around the ordinate&nbsp; $(t = 0)$,&nbsp; all sine coefficients&nbsp; $B_n$ disappear,&nbsp; since the sine function itself is an odd function &nbsp; ⇒ &nbsp; $\sin(-\alpha) = -\sin(\alpha)$:
  
 
:$$B_n = 0 \hspace{0.4cm}(n = 1, \ 2, \ 3, \text{...}).$$  
 
:$$B_n = 0 \hspace{0.4cm}(n = 1, \ 2, \ 3, \text{...}).$$  
  
*An odd function&nbsp; $x(t)$&nbsp; is point symmetric around the coordinate origin&nbsp; $(t= 0; \ x =0)$. Therefore, all cosine coefficients&nbsp; $(A_n = 0)$ disappear here, since the cosine function itself is even. In this case, the constant component&nbsp; $A_0$&nbsp; is also always zero.
+
*An odd function&nbsp; $x(t)$&nbsp; is point-symmetric around the coordinate origin&nbsp; $(t= 0; \ x =0)$.&nbsp; Therefore,&nbsp; all cosine coefficients disappear here&nbsp; $(A_n = 0)$,&nbsp; since the cosine function itself is even.&nbsp; In this case,&nbsp; the DC coefficient is always&nbsp; $A_0=0$.
 
   
 
   
 
:$$A_n = 0 \hspace{0.4cm}(n = 0, \ 1, \ 2, \ 3, \text{...}).$$
 
:$$A_n = 0 \hspace{0.4cm}(n = 0, \ 1, \ 2, \ 3, \text{...}).$$
  
*If a function without a constant component is present&nbsp; $(A_0 = 0)$&nbsp; and if this function is odd within a period &nbsp; ⇒ &nbsp; it is&nbsp; $x(t) = -x(t - T_0/2)$, then only odd multiples of the fundamental frequency are present in the Fourier series representation. For the coefficients with an even index, however, the following always applies:
+
*If a function without a DC signal component is present&nbsp; $(A_0 = 0)$&nbsp; and if this function is odd within a period &nbsp; ⇒ &nbsp; $x(t) = -x(t - T_0/2)$,&nbsp; then only odd multiples of the basic frequency are present in the Fourier series representation.&nbsp; For the coefficients with an even index,&nbsp; however,&nbsp; the following always applies:
 
   
 
   
 
:$$A_n = B_n = 0 \hspace{0.4cm}(n = 2, \ 4, \ 6,  \text{...}).$$
 
:$$A_n = B_n = 0 \hspace{0.4cm}(n = 2, \ 4, \ 6,  \text{...}).$$
  
*If all coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$&nbsp; with even-numbered index&nbsp; $(n = 2, \ 4, \ 6, \text{...})$&nbsp; equals zero and the coefficient&nbsp; $A_0 \neq 0$, then the symmetry property mentioned in the last point refers to the DC component and applies:
+
*If all coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$&nbsp; with even-numbered index&nbsp; $(n = 2, \ 4, \ 6, \text{...})$&nbsp; equals zero and the coefficient&nbsp; $A_0 \neq 0$,&nbsp; then the symmetry property mentioned in the last point refers to the DC component and applies:
 
   
 
   
 
:$$x(t) = 2 \cdot A_0 - x (t - T_0/2).$$
 
:$$x(t) = 2 \cdot A_0 - x (t - T_0/2).$$
  
''Remark'': &nbsp; Several of the named symmetry properties can be fulfilled at the same time.
+
<u>Remark:</u> &nbsp; Several of the named symmetry properties can be fulfilled at the same time.
  
The symmetry properties of the Fourier coefficients are explained in the first part of the german learning video&nbsp;
 
[[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Properties and Accuracy of the fourier series]]&nbsp;.
 
  
[[File:EN_Sig_T_2_4_S3.png|right|frame|Symmetry Properties of the Fourier Coefficients]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT= 
+
[[File:EN_Sig_T_2_4_S3.png|right|frame|Symmetry properties of the Fourier coefficients]]
 +
 
 
$\text{Example 3:}$&nbsp;  
 
$\text{Example 3:}$&nbsp;  
The above mentioned properties are now illustrated by three signal characteristics.
+
The mentioned properties are now illustrated by three signal waveforms:
*$x_1(t)$&nbsp; is an averaged function &nbsp; &rArr; &nbsp; $A_0 \ne 0$ and is also even, which is accordingly exclusively determined by cosine coefficients&nbsp; $A_n$&nbsp;&nbsp; $(B_n = 0)$.
+
*$x_1(t)$&nbsp; is an averaging function &nbsp; &rArr; &nbsp; $A_0 \ne 0$&nbsp; and it is also even,&nbsp; which is accordingly exclusively determined by cosine coefficients&nbsp; $A_n$&nbsp; &rArr; &nbsp; $B_n = 0$.
  
  
*In contrast, the odd function&nbsp; $x_2(t)$&nbsp; all&nbsp; $A_n, \ ( n \ge 0)$&nbsp; are identical to zero.  
+
*In contrast,&nbsp; with the odd function&nbsp; $x_2(t)$&nbsp; all&nbsp; $A_n \ ( n \ge 0)$&nbsp; are identical to zero.  
  
  
*Also the odd function&nbsp; $x_3(t)$&nbsp; contains only sine coefficients, but because of&nbsp; $x_3(t) = -x_3(t - T_0/2)$&nbsp; exclusively for odd values of&nbsp; $n$.}}
+
*Also the odd function&nbsp; $x_3(t)$&nbsp; contains only sine coefficients,&nbsp; but because of&nbsp; $x_3(t) = -x_3(t - T_0/2)$&nbsp; exclusively for odd&nbsp; $n$&ndash;values.
  
  
==Complex Fourier Series==
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
The first part of the following&nbsp; $($German-language$)$ learning video explained the symmetry properties of the Fourier coefficients:
 +
 
 +
:[[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|&raquo;Eigenschaften der Fourierreihe&laquo;]] &nbsp; &rArr; &nbsp; "Properties and accuracy of Fourier series".}}
 +
 
 +
==Complex Fourier series==
 
<br>
 
<br>
As shown on the page&nbsp; [[ Signal_Representation/Harmonic_Oscillation#Darstellung_mit_Cosinus-_und_Sinusanteil|3 Representation with Cosine and Sine Components]]&nbsp; in case of a harmonic oscillation any periodic signal
+
As shown in the section&nbsp; [[Signal_Representation/Harmonic_Oscillation#Representation_with_cosine_and_sine_components|&raquo;Representation with cosine and sine components&laquo;]]&nbsp; in case of a harmonic oscillation any periodic signal
 
 
  
 
:$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t)$$
 
:$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t)$$
Line 163: Line 183:
  
 
These modified Fourier coefficients have the following properties:
 
These modified Fourier coefficients have the following properties:
*The&nbsp; '''DC coefficient'''&nbsp; $C_0$&nbsp; is identical with&nbsp; $A_0$.
+
*The&nbsp; &raquo;'''DC coefficient'''&laquo;&nbsp;&nbsp; $C_0$&nbsp; is identical with&nbsp; $A_0$.
*The&nbsp; '''magnitude coefficient'''&nbsp; read with &nbsp; $n\ge 1$: &nbsp; $C_n = \sqrt{A_n^2 + B_n^2}$.
 
*For the&nbsp; '''phase coefficien'''&nbsp; applies: &nbsp; $\varphi_n = \arctan \hspace{0.05cm}(B_n/A_n$).
 
  
 +
*The&nbsp; &raquo;'''magnitude coefficient'''&laquo;&nbsp;&nbsp; read with &nbsp; $n\ge 1$: &nbsp; $C_n = \sqrt{A_n^2 + B_n^2}$.
  
With the &bdquo;Eulerian relationship&rdquo;&nbsp; $\cos(x) + {\rm j} \cdot \sin(x) = {\rm e}^{{\rm j} \hspace{0.05cm}x}$&nbsp; we get a second representation variant of the Fourier series evolution, which starts from the complex exponential function.
+
*For the&nbsp; &raquo;'''phase coefficient'''&laquo;&nbsp;&nbsp; applies: &nbsp; $\varphi_n = \arctan \hspace{0.05cm}(B_n/A_n$).
 +
 
 +
 
 +
With the&nbsp;  &raquo;Eulerian relationship&laquo;&nbsp; $\cos(x) + {\rm j} \cdot \sin(x) = {\rm e}^{{\rm j} \hspace{0.05cm}x}$&nbsp; we get a second representation variant of Fourier series, which starts from the complex exponential function.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
The&nbsp; '''complex Fourier series''' &nbsp; of a periodic signal&nbsp; x(t)&nbsp; is as follows
+
The&nbsp; &raquo;'''complex Fourier series'''&laquo;&nbsp; of a periodic signal&nbsp; $x(t)$&nbsp; is as follows:
 
   
 
   
 
:$$x(t)=\sum^{+\infty}_{ n=- \infty}D_n\cdot {\rm e}^{ {\rm j}  \hspace{0.05cm} n  \hspace{0.05cm}\omega_0\hspace{0.05cm} t}.$$
 
:$$x(t)=\sum^{+\infty}_{ n=- \infty}D_n\cdot {\rm e}^{ {\rm j}  \hspace{0.05cm} n  \hspace{0.05cm}\omega_0\hspace{0.05cm} t}.$$
  
Here&nbsp; $D_n$&nbsp; denote the&nbsp; '''complex Fourier coefficients''', which  
+
Here&nbsp; $D_n$&nbsp; denote the&nbsp; &raquo;'''complex Fourier coefficients'''&laquo;,&nbsp; which can be calculated as follows&nbsp; $($valid for&nbsp; $n \neq 0)$:
*from the cosine coefficients&nbsp; $A_n$&nbsp; and the sine coefficients&nbsp; $B_n$, or
+
*from the cosine coefficients&nbsp; $A_n$&nbsp; and the sine coefficients&nbsp; $B_n$:
*from the magnitude coefficients&nbsp; $C_n$&nbsp; and the phase coefficients&nbsp; $\varphi_n$
+
:$$D_n = 1/2\cdot (A_n - {\rm j}\cdot B_n),$$
 
+
*from the magnitude coefficients&nbsp; $C_n$&nbsp; and the phase coefficients&nbsp; $\varphi_n$:  
 
+
:$$D_n = 1/2\cdot C_n\cdot {\rm e}^{- {\rm j} \hspace{0.05cm} \varphi_n }$$}}
can be calculated as follows $($valid for&nbsp; $n \neq 0)$:
 
 
:$$D_n = 1/2\cdot (A_n - {\rm j}\cdot B_n) =1/2\cdot C_n\cdot {\rm e}^{- {\rm j} \hspace{0.05cm} \varphi_n }$$}}
 
  
  
Line 190: Line 209:
 
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t) \cdot{\rm e}^{-\rm j \hspace{0.05cm}\it  n \hspace{0.1cm}\omega_{\rm 0} \hspace{0.05cm}t}\, {\rm d}t.$$
 
:$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t) \cdot{\rm e}^{-\rm j \hspace{0.05cm}\it  n \hspace{0.1cm}\omega_{\rm 0} \hspace{0.05cm}t}\, {\rm d}t.$$
 
   
 
   
As long as the integration interval&nbsp; $T_0$&nbsp; is preserved, it can be shifted randomly as with the coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$&nbsp; for example from&nbsp; $t = 0$&nbsp; to&nbsp; $t = T_0$.
+
As long as the integration interval&nbsp; $T_0$&nbsp; is preserved,&nbsp; it can be shifted randomly as with the coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$,&nbsp; e.g. from&nbsp; $t = 0$&nbsp; to&nbsp; $t = T_0$.
 
   
 
   
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Conclusion:}$&nbsp; The coefficient&nbsp; $D_0 = A_0$&nbsp; is always real. For the complex coefficients with negative iterating index&nbsp; $(n < 0)$&nbsp; applies:
+
$\text{Conclusion:}$&nbsp; The coefficient&nbsp; $D_0 = A_0$&nbsp; is always real.&nbsp; For the complex coefficients with negative index&nbsp; $(n < 0)$&nbsp; applies:
 
   
 
   
 
:$$D_{- n}=D_n^{\hspace{0.05cm}\star} =1/2 \cdot  (A_n+ {\rm j}\cdot B_n).$$}}
 
:$$D_{- n}=D_n^{\hspace{0.05cm}\star} =1/2 \cdot  (A_n+ {\rm j}\cdot B_n).$$}}
  
  
==Periodic Signal Spectrum==
+
==Periodic signal spectrum==
 
<br>
 
<br>
Starting from the complex Fourier series just derived
+
Starting from the complex Fourier series  
 
   
 
   
 
:$$x(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j \it n  \omega_{\rm 0} t}$$
 
:$$x(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j \it n  \omega_{\rm 0} t}$$
  
and the &nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Displacement Theorem]]&nbsp;  (for the frequency domain) one gets the following spectrum for the periodic signal&nbsp; $x(t)$:
+
and the &nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|&raquo;shifting theorem&laquo;]]&nbsp;  $($for the frequency domain$)$&nbsp; one gets the following spectrum for the periodic signal&nbsp; $x(t)$:
 
   
 
   
 
:$$X(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
 
:$$X(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$
  
 
This means:
 
This means:
*Das Spektrum eines mit&nbsp; $T_0$&nbsp; periodischen Signals ist ein&nbsp; '''Linienspektrum'''&nbsp; bei ganzzahligen Vielfachen der Grundfrequenz&nbsp; $f_0 = 1/T_0$.
+
*The&nbsp; $($amplitude$)$&nbsp; spectrum of a periodic signal with period duration&nbsp; $T_0$&nbsp; is a&nbsp; &raquo;'''line spectrum'''&laquo;&nbsp; for integer multiples of the basic frequency&nbsp; $f_0 = 1/T_0$.
*Der&nbsp; '''Gleichanteil'''&nbsp; liefert eine Diracfunktion bei&nbsp; $f=0$&nbsp; mit dem Impulsgewicht&nbsp; $A_0$.
+
 
*Daneben gibt es&nbsp; '''Diracfunktionen'''&nbsp; $\delta(f \pm n \cdot f_0)$&nbsp; bei Vielfachen von&nbsp;  $f_0$, wobei&nbsp; $\delta(f - n \cdot f_0)$&nbsp; eine Diracfunktion bei&nbsp; $f= n \cdot f_0$&nbsp; (also im positiven Frequenzbereich) und&nbsp; $\delta(f + n \cdot f_0)$&nbsp; eine solche bei der Frequenz&nbsp;  $f= -n \cdot  f_0$&nbsp; (im negativen Frequenzbereich) kennzeichnet.
+
*The&nbsp; &raquo;'''DC signal component'''&laquo;&nbsp; returns a&nbsp; &raquo;Dirac delta function&laquo;&nbsp; at&nbsp; $f=0$&nbsp; with the impulse weight&nbsp; $A_0$.
*Die&nbsp; '''Impulsgewichte'''&nbsp; sind im allgemeinen komplex.
+
 
 +
*There are also Dirac delta functions&nbsp; $\delta(f \pm n \cdot f_0)$&nbsp; at the multiples of&nbsp;  $f_0$,
 +
 +
:*where&nbsp; $\delta(f - n \cdot f_0)$&nbsp; denotes a Dirac delta function at &nbsp; $f= n \cdot f_0$&nbsp; $($namely in the positive frequency domain)  
 +
:*and&nbsp; $\delta(f + n \cdot f_0)$&nbsp; denotes a Dirac at the frequency&nbsp;  $f= -n \cdot  f_0$&nbsp; $($in the negative frequency domain$)$.
  
 +
*The&nbsp; impulse weights&nbsp; for&nbsp; $n \ne 0$&nbsp; are generally complex.
  
Diese Aussagen werden nun anhand zweier Beispiele verdeutlicht.
+
 
 +
These statements will now be illustrated by two examples.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 4:}$&nbsp;  
 
$\text{Example 4:}$&nbsp;  
Wir betrachten – wie im&nbsp; [[Signal_Representation/Fourier_Series#Allgemeine_Beschreibung|$\text{Beispiel 1}$]]&nbsp; zu Beginn dieses Abschnitts - zwei periodische Rechtecksignale, jeweils mit Periodendauer&nbsp; $T_0$&nbsp; und Grundfrequenz&nbsp; $f_0=1/T_0$.  
+
We consider as in&nbsp; [[Signal_Representation/Harmonic_Oscillation#Time_domain_representation|$\text{Example 1}$]]&nbsp; two periodic  rectangular signals,&nbsp; each with period duration&nbsp; $T_0$&nbsp; and basic frequency&nbsp; $f_0=1/T_0$.&nbsp;
Das obere Signal
+
The upper signal
+
 
 
:$$x_{\rm g}(t)={4}/{\pi} \cdot \big[\cos(\omega_0 t) - {1}/{3} \cdot \cos(3\omega_0 t)+{1}/{5}\cdot \cos(5\omega_0 t) - \, \text{...} \, + \, \text{...} \big]$$
 
:$$x_{\rm g}(t)={4}/{\pi} \cdot \big[\cos(\omega_0 t) - {1}/{3} \cdot \cos(3\omega_0 t)+{1}/{5}\cdot \cos(5\omega_0 t) - \, \text{...} \, + \, \text{...} \big]$$
 +
[[File:P_ID528__Sig_T_2_4_S6_neu.png|right|frame|Spectrum of a periodic rectangular signal]]
  
ist eine gerade, aus verschiedenen Cosinusanteilen zusammengesetzte Funktion. Die zugehörige Spektralfunktion&nbsp; $X_{\rm g}(f)$&nbsp; ist damit rein reell.
+
is an even&nbsp; $($German:&nbsp; "gerade" &nbsp; &rArr; &nbsp; "$\rm g$"$)$&nbsp; function,&nbsp; composed of different cosine parts.&nbsp;
  
''Begründung:''&nbsp; Wie auf der Seite&nbsp; [[ Signal_Representation/Harmonic_Oscillation#Spektraldarstellung_eines_Cosinussignals|Spektraldarstellung eines Cosinussignals]]&nbsp; bereits beschrieben wurde, liefert die Grundwelle zwei Diracfunktionen bei&nbsp; $\pm f_0$, jeweils gewichtet mit&nbsp; $2/\pi$.
+
Therefore:  
*Dieses Gewicht entspricht den (im Allgemeinen komplexen) Fourierkoeffizienten&nbsp; $D_1 = D_{ - 1}^\ast$, die nur im Sonderfall einer geraden Funktion reell sind.
+
*The corresponding spectral function&nbsp; $X_{\rm g}(f)$&nbsp; is thus purely real.
*Weitere Diracfunktionen gibt es bei&nbsp; $\pm 3f_0$ (negativ),&nbsp; $\pm 5f_0$ (positiv),&nbsp; $\pm 7f_0$ (negativ) usw.
+
::<u>Reason:</u>&nbsp; As described in the section&nbsp; [[Signal_Representation/Harmonic_Oscillation#Representation_with_cosine_and_sine_components|&raquo;Spectral Representation of a cosine signal&laquo;]]&nbsp; the basic wave returns two Dirac  delta functions at&nbsp; $\pm f_0$, each weighted with&nbsp; $2/\pi$.  
*Alle Phasenwerte&nbsp; $\varphi_n$&nbsp; sind aufgrund der alternierenden Vorzeichen entweder Null oder&nbsp; $\pi$.
 
  
 +
*This weighting corresponds to the&nbsp; $($generally complex$)$&nbsp; Fourier coefficients&nbsp; $D_1 = D_{ - 1}^\ast$,&nbsp; which are only real in the special case of an even function.
  
[[File:P_ID528__Sig_T_2_4_S6_neu.png|center|frame|Spectrum of a periodic rectangle pulse]]
+
*Other Dirac delta functions are available in&nbsp;
 +
:*$\pm 3f_0$&nbsp; $($negative$)$,&nbsp;
 +
 +
:*$\pm 5f_0$&nbsp; $($positive$)$,&nbsp;
 +
 +
:*$\pm 7f_0$&nbsp; $($negative$)$, etc.
 +
 +
*All phase values&nbsp; $\varphi_n$&nbsp; are either zero or&nbsp; $\pi$&nbsp; due to the alternating signs.
 +
<br clear=all>
 +
&rArr; &nbsp; The function&nbsp; $x_{\rm u}(t)$&nbsp; shown below is odd&nbsp; $($German:&nbsp; "ungerade" &nbsp; &rArr; &nbsp; "$\rm u$"$)$:
 +
 +
:$$x_{\rm u}(t)={4}/{\pi} \cdot  \big[\sin(\omega_0 t)+{1}/{3} \cdot \sin(3\omega_0 t)+{1}/{5} \cdot \sin(5\omega_0 t)+ \, \text{...}\big].$$
  
The function&nbsp; $x_{\rm u}(t)$&nbsp; shown below is odd:
+
*As described in the section&nbsp; [[Signal_Representation/Harmonic_Oscillation#General_spectral_representation|&raquo;General Spectral Representation&laquo;]]&nbsp;  the basic wave provides two Dirac  delta functions
 +
:*at&nbsp; $+f_0$&nbsp; $($weighted with&nbsp; $-\text{j}\cdot 2/\pi)$&nbsp; resp.
 
   
 
   
:$$x_{\rm u}(t)={4}/{\pi} \cdot \big[\sin(\omega_0 t)+{1}/{3} \cdot \sin(3\omega_0 t)+{1}/{5} \cdot \sin(5\omega_0 t)+ \, \text{...}\big].$$
+
:*at&nbsp; $-f_0$&nbsp; $($weighted with &nbsp; $+\text{j}\cdot 2/\pi)$.
  
''Begründung:''&nbsp; Wie im&nbsp; $\text{Beispiel 4}$&nbsp; auf der Seite&nbsp; [[ Signal_Representation/Harmonic_Oscillation#Allgemeine_Spektraldarstellung|Allgemeine Spektraldarstellung]]&nbsp; bereits beschrieben wurde, liefert hier die Grundwelle zwei Diracfunktionen bei&nbsp; $+f_0$&nbsp; $($gewichtet mit&nbsp; $-\text{j}\cdot 2/\pi)$&nbsp; bzw. bei&nbsp; $-f_0$&nbsp; $($gewichtet mit&nbsp; $+\text{j}\cdot 2/\pi)$.
+
*All other Dirac delta functions at&nbsp; $\pm 3f_0$,&nbsp; $\pm 5f_0$, ...&nbsp; are also purely imaginary and located in the same direction as the Dirac delta functions at&nbsp; $\pm f_0$.
*Auch alle weiteren Diracfunktionen bei&nbsp; $\pm 3f_0$,&nbsp; $\pm 5f_0$, usw. sind rein imaginär und liegen in gleicher Richtung  wie die Diracs bei&nbsp; $\pm f_0$.  
 
*Die beiden Betragsspektren sind gleich: &nbsp; $\vert X_{\rm u}(f)\vert = \vert X_{\rm g}(f) \vert$.}}
 
  
 +
*The two magnitude spectra are equal: &nbsp; $\vert X_{\rm u}(f)\vert = \vert X_{\rm g}(f) \vert$.}}
  
  
  
==The Gibbs Phenomenon==
+
==The Gibbs phenomenon==
 
<br>
 
<br>
Nicht jedes Signal eignet sich für die Fourierreihendarstellung. Hier einige Einschränkungen:
+
Not every periodic signal is suitable for the Fourier series.&nbsp; Some restrictions below:
*Eine wichtige Voraussetzung für die Konvergenz der Fourierreihe ist, dass das Signal nur endlich viele Unstetigkeitsstellen je Periode besitzen darf.
+
*An important condition for the convergence of the Fourier series is that the signal may only have a finite number of discontinuities per period.
*An denjenigen Stellen&nbsp; $t=t_i$, an denen&nbsp; $x(t)$&nbsp; Sprünge aufweist, konvergiert die Reihe gegen den aus dem jeweiligen links– und rechtsseitigen Grenzwert gebildeten arithmetischen Mittelwert.
+
 
*In der Umgebung solcher Sprungstellen kommt es in der Reihendarstellung meist zu hochfrequenten Oszillationen. Dieser Fehler ist von prinzipieller Art, das heißt, er ließe sich auch nicht vermeiden, wenn man unendlich viele Summanden berücksichtigen würde. Man spricht vom&nbsp; ''Gibbschen Phänomen'', benannt nach dem Physiker&nbsp; [https://de.wikipedia.org/wiki/Josiah_Willard_Gibbs Josiah Willard Gibbs].
+
*At those places&nbsp; $t=t_i$,&nbsp; where&nbsp; $x(t)$&nbsp; has jumps,&nbsp; the series converges to the arithmetic mean value formed by the respective left and right boundary value.
*Durch eine Erhöhung von&nbsp; $N$&nbsp; wird zwar der fehlerhafte Bereich kleiner, nicht jedoch die maximale Abweichung zwischen&nbsp; $x(t)$&nbsp; und der Fourierreihendarstellung&nbsp; $x_N(t)$. Der maximale Fehler beträgt ca.&nbsp; $9\%$&nbsp; der Sprungamplitude – und zwar unabhängig von&nbsp; $N$.
+
 
 +
*In the surrounding area of such discontinuities,&nbsp; high-frequency oscillations usually occur in the series representation.&nbsp; This error is of principle kind, i.e. it could not be avoided too, if infinite summands would be considered.&nbsp; One speaks of the&nbsp; "Gibbs phenomenon", named after the physicist&nbsp; [https://en.wikipedia.org/wiki/Josiah_Willard_Gibbs $\text{Josiah Willard Gibbs}$].
 +
 
 +
*An increase of&nbsp; $N$&nbsp; reduces the erroneous range but not the maximum deviation between&nbsp; $x(t)$&nbsp; and the Fourier series representation&nbsp; $x_N(t)$.&nbsp; The maximum error is independent of&nbsp; $N$&nbsp; about&nbsp; $9\%$&nbsp; of the jumping amplitude.
  
  
Das Gibbsche Phänomen und weitere interessante Aspekte zu vergleichbaren Effekten werden im Lernvideo&nbsp;  
+
The Gibbs phenomenon and other interesting aspects of comparable effects are presented in the&nbsp; $($German-language$)$&nbsp; learning video<br> &nbsp; &nbsp; &nbsp;&raquo;[[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]]&laquo; &nbsp; &rArr; &nbsp; "Properties and accuracy of the Fourier series".
[[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]]&nbsp; behandelt.
 
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 5:}$&nbsp;  
 
$\text{Example 5:}$&nbsp;  
In der linken Grafik sehen Sie gepunktet einen Ausschnitt eines periodischen&nbsp; $\pm 1$–Rechtecksignals und die dazugehörige Fourierreihendarstellung mit&nbsp; $N = 1$&nbsp; (blau),&nbsp; $N = 3$&nbsp; (rot) und&nbsp; $N = 5$&nbsp; (grün) Summanden.
+
The left graphic shows a dotted section of a periodic&nbsp; $\pm 1$ rectangular signal and the corresponding Fourier series representation with&nbsp; $N = 1$&nbsp; $($blue$)$,&nbsp; $N = 3$&nbsp; $($red$)$&nbsp; and&nbsp; $N = 5$&nbsp; $($green$)$&nbsp; summands.
*Die Grundwelle hat hier den Amplitudenwert&nbsp; $4/\pi \approx 1.27$.
 
*Auch mit&nbsp; $N = 5$&nbsp; (das bedeutet wegen&nbsp; $A_2 = A_4 = 0$&nbsp; drei &bdquo;relevante&rdquo; Summanden) unterscheidet sich die Fourierreihe vom anzunähernden Rechtecksignal noch deutlich, vor allem im Bereich der Flanke.
 
  
 +
[[File:P_ID2720__Sig_T_2_4_S7_neu.png|right|frame|On the Gibbs phenomenon]]
 +
 +
*The basic wave here has the amplitude value&nbsp; $4/\pi \approx 1.27$.
 +
 +
*Even with&nbsp; $N = 5$&nbsp; $($this means because of&nbsp; $A_2 = A_4 = 0$&nbsp; three "relevant" summands$)$ the Fourier series still differs significantly from the approximated rectangular signal,&nbsp; especially in the area of the edge.
  
[[File:P_ID2720__Sig_T_2_4_S7_neu.png|center|frame|On the Gibbs Phenomenon]]
 
  
From the right graphic you can see that the flank and the inner area are marked with&nbsp;
+
 
 +
&rArr; &nbsp; From the right graphic you can see that the flank and the inner area are well reproduced with&nbsp;
 
$N = 100$&nbsp; but due to the Gibbs phenomenon there are still oscillations around&nbsp; $9\%$&nbsp; at the jumping point.  
 
$N = 100$&nbsp; but due to the Gibbs phenomenon there are still oscillations around&nbsp; $9\%$&nbsp; at the jumping point.  
*Since the jump amplitudes here are equal to&nbsp; $2$&nbsp; the maximum values are approximately&nbsp; $1.18$.  
+
*Since the jump amplitudes here are equal to&nbsp; $2$&nbsp; the maximum values are approximately&nbsp; $\pm1.18$.
*With&nbsp; $N = 1000$&nbsp; the oscillations would be exactly the same size, but limited to a narrower space and possibly not recognizable with time-discrete representation.}}
+
 +
*With&nbsp; $N = 1000$&nbsp; the oscillations would be exactly the same size, but limited to a narrower space and possibly not recognizable with discrete-time representation.}}
  
  
==Exercises for the Chapter==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_2.4:_Gleichgerichteter_Cosinus|Aufgabe 2.4: Gleichgerichteter Cosinus]]
+
[[Aufgaben:Exercise_2.4:_Rectified_Cosine|Exercise 2.4: Rectified Cosine]]
  
[[Aufgaben:Aufgabe_2.4Z:_Dreiecksignal|Aufgabe 2.4Z: Dreiecksignal]]
+
[[Aufgaben:Exercise_2.4Z:_Triangular_Function|Exercise 2.4Z: Triangular Function]]
  
[[Aufgaben:Aufgabe_2.5:_Einweggleichrichtung|Aufgabe 2.5: Einweggleichrichtung]]
+
[[Aufgaben:Exercise_2.5:_Half-Wave_Rectification|Exercise 2.5: Half-Wave Rectification]]
  
[[Aufgaben:Aufgabe_2.5Z:_Rechtecksignale|Aufgabe 2.5Z: Rechtecksignale]]
+
[[Aufgaben:Exercise_2.5Z:_Square_Wave|Exercise 2.5Z: Square Wave]]
  
[[Aufgaben:Aufgabe_2.6:_Komplexe Fourierreihe|Aufgabe 2.6: Komplexe Fourierreihe]]
+
[[Aufgaben:Exercise_2.6:_Complex_Fourier_Series|Exercise 2.6: Complex Fourier Series]]
  
[[Aufgaben:Aufgabe_2.6Z:_Betrag_und_Phase|Aufgabe 2.6Z: &nbsp; Betrag und Phase]]
+
[[Aufgaben:Exercise_2.6Z:_Magnitude_and_Phase|Exercise 2.6Z: &nbsp; Magnitude and Phase]]
  
  

Latest revision as of 17:21, 15 November 2023


General description


Every periodic function  $x(t)$  can be developed into a trigonometric series  called  »Fourier series«  in all areas,  where it is continuous or has only finite discontinuities.

$\text{Definition:}$  The  »Fourier series«  of a periodic signal  $x(t)$  is defined as follows:

$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t).$$

Here the symbols denote the following definitions:

  • $A_0$  the  »constant component«   of  $x(t)$,
  • $A_n$  the  »cosine coefficients«   with  $n \ge 1$,
  • $B_n$  the  »sine coefficients«  with  $n \ge 1$,
  • $\omega_0 = 2\pi/T_0$ the  »basic circular frequency«  of the periodic signal  $(T_0$ is the period duration$)$.


If the Fourier series should exactly match the actual periodic signal  $x(t)$,  an infinite number of cosine and sine coefficients must generally be used for calculation.

  • If the Fourier series is interrupted and only  $N$  of  $A_n$  and  $B_n$ coefficients are used,  then a slightly different plot of the function results except for some special cases:
$$x_ N(t) =A_0+\sum^N_{n=1}A_ n \cdot \cos(n \omega_0 t)+\sum^N_{n=1} B_{n} \cdot \sin(n \omega_0 t).$$
  • The relation between the periodic signal  $x(t)$  and the Fourier series approximation  $x_N(t)$  holds:
$$x(t)=\lim_{N\to \infty} x_{N}(t).$$
  • If   $N \cdot f_0$  is the highest frequency occurring in the signal  $x(t)$  then of course  $x_N(t) = x(t)$.


$\text{Example 1:}$  We consider two periodic rectangular signals  $($"square waves"$)$,  each with period duration  $T_0$  and basic circular frequency  $\omega_0 = 2\pi/T_0$.

Even and odd rectangular signal
  • For the even  $($German:  "gerade"   ⇒   $\rm g)$  time signal sketched above:  
$$x_{\rm g}(-t) = x_{\rm g}(t).$$
  • The function shown below is odd  $($German:  "ungerade"   ⇒   $\rm u)$:  
$$x_{\rm u}(-t) = -x_{\rm u}(t).$$

One finds the  Fourier series representations  of both signals in formularies:

$$x_{\rm g}(t)=\frac{4}{\pi}\left [ \cos(\omega_0 t)-\frac{1}{3}\cdot \cos(3 \omega_0 t)+\frac{1}{5}\cdot\cos(5 \omega_0 t)- \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm}\right ],$$
$$x_{\rm u}(t)=\frac{4}{\pi}\left [ \sin(\omega_0 t)+\frac{1}{3}\cdot\sin(3 \omega_0 t)+\frac{1}{5}\cdot\sin(5 \omega_0 t)+ \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm} \right ].$$
  • Because of the generally valid relationship
$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\, {-}\, \hspace{0.05cm}\text{...}\hspace{0.05cm} \, {+} \hspace{0.05cm}\text{...}\hspace{0.05cm}=\frac{\pi}{4},$$
the amplitudes  $($maximum values$)$  of the rectangular basic pulse result to  $1$.
  • This can also be verified using the signal curves in the graphic:
$$x_{\rm g}(t = 0) = x_{\rm u}(t = T_0/4) = 1.$$


Calculation of the Fourier coefficients


The Fourier coefficient  $A_0$  specifies the  »direct current  $\rm (DC)$  signal component«  which can be determined by averaging over the signal course  $x(t)$.  Due to the periodicity,  averaging over one period is sufficient:

$$A_0=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\,{\rm d}t.$$
  • The integration limits can also be selected from  $t = 0$  to  $t = T_0$  $($or over a differently defined period of equal length$)$.
  • The determination of the Fourier coefficients  $A_n$  and  $B_n$  $(n \ge 1)$  is based on the property that cosine and sine functions are so-called »orthogonal functions«
  • For them the following applies:
$$\int^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\cos(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad if \it \hspace{0.2cm} m=n,\atop \rm otherwise} \right.$$
$$\int ^{+T_0/2}_{-T_0/2}\sin(n\omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad if \it \hspace{0.2cm} m=n,\atop \rm otherwise} \right.$$
$$\int ^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=0 \hspace{1.2cm} \rm for\ all \hspace{0.2cm} \it m, \ n.$$

$\text{Conclusion:}$  Considering these equations,  the cosine coefficients  $A_n$  and the sine coefficients  $B_n$  result as follows

$$A_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\cos(n \omega_0 t)\,{\rm d}t,$$
$$B_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\sin(n \omega_0 t)\,{\rm d}t.$$


The following  $($German-language$)$  learning video illustrates these equations:
       »Zur Berechnung der Fourierkoeffizienten«   ⇒   "Calculating the Fourier coefficients".


On calculating the Fourier coefficients

$\text{Example 2:}$  We consider the drawn periodic time function

$$x(t)=0.4+0.6\cdot \cos(\omega_0 t)-0.3\cdot\sin(3 \omega_0 t).$$
  • Since the integral of the cosine and sine functions over one period are identical to zero, the DC signal coefficient is 
$$A_0 = 0.4.$$
  • One determines the cosine coefficient  $A_1$  with following equation  $($Integration limits from  $t = 0$  to  $t = T_0)$:
$$ \begin{align*} A_{1}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4\cdot\cos(\omega_0 t)\,{\rm d}t + \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot\cos^2(\omega_0 t)\,{\rm d}t - \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot\sin(3 \omega_0 t)\cdot \cos(\omega_0 t)\,{\rm d}t.\end{align*} $$
  1. The last integral is equal to zero due to orthogonality;  the first one is zero too  $($integral over one period$)$.
  2. Only the middle term contributes here to  $A_1$,  namely  $2 - 0.6 - 0.5 = 0.6. $
  • For all further  $(n \ge 2)$  cosine coefficients all three integrals return the value zero,  and thus  $A_{n \hspace{0.05cm}\neq \hspace{0.05cm}1}=0$.
  • To determine the sine coefficients   $B_n$  using following equation:
$$ \begin{align*} B_{\it n}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4 \cdot \sin(n \ \omega_0 t)\,{\rm d}t + \frac{2}{T_0} \cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot \cos(\omega_0 t) \sin(n \omega_0 t)\,{\rm d}t - \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot \sin(3 \omega_0 t) \sin(n \omega_0 t )\,{\rm d}t. \end{align*} $$
  1. For  $n \hspace{0.05cm}\neq \hspace{0.05cm}3$  all three integral values are zero and therefore  $B_{n \hspace{0.05cm}\neq \hspace{0.05cm}3} = 0.$
  2. On the other hand,  for  $n=3$  the last integral provides a contribution,  and one gets for the sine coefficient 
$$B_3 = -0.3.$$


Exploitation of symmetries


Some insights into the Fourier coefficients  $A_n$  and  $B_n$  can already be read from the  »symmetry properties«  of the time function  $x(t)$. 

  • If the time signal  $x(t)$  is an even function   ⇒   axis-symmetrical around the ordinate  $(t = 0)$,  all sine coefficients  $B_n$ disappear,  since the sine function itself is an odd function   ⇒   $\sin(-\alpha) = -\sin(\alpha)$:
$$B_n = 0 \hspace{0.4cm}(n = 1, \ 2, \ 3, \text{...}).$$
  • An odd function  $x(t)$  is point-symmetric around the coordinate origin  $(t= 0; \ x =0)$.  Therefore,  all cosine coefficients disappear here  $(A_n = 0)$,  since the cosine function itself is even.  In this case,  the DC coefficient is always  $A_0=0$.
$$A_n = 0 \hspace{0.4cm}(n = 0, \ 1, \ 2, \ 3, \text{...}).$$
  • If a function without a DC signal component is present  $(A_0 = 0)$  and if this function is odd within a period   ⇒   $x(t) = -x(t - T_0/2)$,  then only odd multiples of the basic frequency are present in the Fourier series representation.  For the coefficients with an even index,  however,  the following always applies:
$$A_n = B_n = 0 \hspace{0.4cm}(n = 2, \ 4, \ 6, \text{...}).$$
  • If all coefficients  $A_n$  and  $B_n$  with even-numbered index  $(n = 2, \ 4, \ 6, \text{...})$  equals zero and the coefficient  $A_0 \neq 0$,  then the symmetry property mentioned in the last point refers to the DC component and applies:
$$x(t) = 2 \cdot A_0 - x (t - T_0/2).$$

Remark:   Several of the named symmetry properties can be fulfilled at the same time.


Symmetry properties of the Fourier coefficients

$\text{Example 3:}$  The mentioned properties are now illustrated by three signal waveforms:

  • $x_1(t)$  is an averaging function   ⇒   $A_0 \ne 0$  and it is also even,  which is accordingly exclusively determined by cosine coefficients  $A_n$  ⇒   $B_n = 0$.


  • In contrast,  with the odd function  $x_2(t)$  all  $A_n \ ( n \ge 0)$  are identical to zero.


  • Also the odd function  $x_3(t)$  contains only sine coefficients,  but because of  $x_3(t) = -x_3(t - T_0/2)$  exclusively for odd  $n$–values.





The first part of the following  $($German-language$)$ learning video explained the symmetry properties of the Fourier coefficients:

»Eigenschaften der Fourierreihe«   ⇒   "Properties and accuracy of Fourier series".

Complex Fourier series


As shown in the section  »Representation with cosine and sine components«  in case of a harmonic oscillation any periodic signal

$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t)$$

can also be displayed using the magnitude and phase coefficients:

$$x(t) =C_0+\sum^{\infty}_{n=1}C_{\it n} \cdot\cos(n \omega_0 t-\varphi_n).$$

These modified Fourier coefficients have the following properties:

  • The  »DC coefficient«   $C_0$  is identical with  $A_0$.
  • The  »magnitude coefficient«   read with   $n\ge 1$:   $C_n = \sqrt{A_n^2 + B_n^2}$.
  • For the  »phase coefficient«   applies:   $\varphi_n = \arctan \hspace{0.05cm}(B_n/A_n$).


With the  »Eulerian relationship«  $\cos(x) + {\rm j} \cdot \sin(x) = {\rm e}^{{\rm j} \hspace{0.05cm}x}$  we get a second representation variant of Fourier series, which starts from the complex exponential function.

$\text{Definition:}$  The  »complex Fourier series«  of a periodic signal  $x(t)$  is as follows:

$$x(t)=\sum^{+\infty}_{ n=- \infty}D_n\cdot {\rm e}^{ {\rm j} \hspace{0.05cm} n \hspace{0.05cm}\omega_0\hspace{0.05cm} t}.$$

Here  $D_n$  denote the  »complex Fourier coefficients«,  which can be calculated as follows  $($valid for  $n \neq 0)$:

  • from the cosine coefficients  $A_n$  and the sine coefficients  $B_n$:
$$D_n = 1/2\cdot (A_n - {\rm j}\cdot B_n),$$
  • from the magnitude coefficients  $C_n$  and the phase coefficients  $\varphi_n$:
$$D_n = 1/2\cdot C_n\cdot {\rm e}^{- {\rm j} \hspace{0.05cm} \varphi_n }$$


The complex Fourier coefficients can also be calculated directly using the following equation

$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t) \cdot{\rm e}^{-\rm j \hspace{0.05cm}\it n \hspace{0.1cm}\omega_{\rm 0} \hspace{0.05cm}t}\, {\rm d}t.$$

As long as the integration interval  $T_0$  is preserved,  it can be shifted randomly as with the coefficients  $A_n$  and  $B_n$,  e.g. from  $t = 0$  to  $t = T_0$.

$\text{Conclusion:}$  The coefficient  $D_0 = A_0$  is always real.  For the complex coefficients with negative index  $(n < 0)$  applies:

$$D_{- n}=D_n^{\hspace{0.05cm}\star} =1/2 \cdot (A_n+ {\rm j}\cdot B_n).$$


Periodic signal spectrum


Starting from the complex Fourier series

$$x(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j \it n \omega_{\rm 0} t}$$

and the   »shifting theorem«  $($for the frequency domain$)$  one gets the following spectrum for the periodic signal  $x(t)$:

$$X(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$

This means:

  • The  $($amplitude$)$  spectrum of a periodic signal with period duration  $T_0$  is a  »line spectrum«  for integer multiples of the basic frequency  $f_0 = 1/T_0$.
  • The  »DC signal component«  returns a  »Dirac delta function«  at  $f=0$  with the impulse weight  $A_0$.
  • There are also Dirac delta functions  $\delta(f \pm n \cdot f_0)$  at the multiples of  $f_0$,
  • where  $\delta(f - n \cdot f_0)$  denotes a Dirac delta function at   $f= n \cdot f_0$  $($namely in the positive frequency domain)
  • and  $\delta(f + n \cdot f_0)$  denotes a Dirac at the frequency  $f= -n \cdot f_0$  $($in the negative frequency domain$)$.
  • The  impulse weights  for  $n \ne 0$  are generally complex.


These statements will now be illustrated by two examples.

$\text{Example 4:}$  We consider as in  $\text{Example 1}$  two periodic rectangular signals,  each with period duration  $T_0$  and basic frequency  $f_0=1/T_0$.  The upper signal

$$x_{\rm g}(t)={4}/{\pi} \cdot \big[\cos(\omega_0 t) - {1}/{3} \cdot \cos(3\omega_0 t)+{1}/{5}\cdot \cos(5\omega_0 t) - \, \text{...} \, + \, \text{...} \big]$$
Spectrum of a periodic rectangular signal

is an even  $($German:  "gerade"   ⇒   "$\rm g$"$)$  function,  composed of different cosine parts. 

Therefore:

  • The corresponding spectral function  $X_{\rm g}(f)$  is thus purely real.
Reason:  As described in the section  »Spectral Representation of a cosine signal«  the basic wave returns two Dirac delta functions at  $\pm f_0$, each weighted with  $2/\pi$.
  • This weighting corresponds to the  $($generally complex$)$  Fourier coefficients  $D_1 = D_{ - 1}^\ast$,  which are only real in the special case of an even function.
  • Other Dirac delta functions are available in 
  • $\pm 3f_0$  $($negative$)$, 
  • $\pm 5f_0$  $($positive$)$, 
  • $\pm 7f_0$  $($negative$)$, etc.
  • All phase values  $\varphi_n$  are either zero or  $\pi$  due to the alternating signs.


⇒   The function  $x_{\rm u}(t)$  shown below is odd  $($German:  "ungerade"   ⇒   "$\rm u$"$)$:

$$x_{\rm u}(t)={4}/{\pi} \cdot \big[\sin(\omega_0 t)+{1}/{3} \cdot \sin(3\omega_0 t)+{1}/{5} \cdot \sin(5\omega_0 t)+ \, \text{...}\big].$$
  • at  $+f_0$  $($weighted with  $-\text{j}\cdot 2/\pi)$  resp.
  • at  $-f_0$  $($weighted with   $+\text{j}\cdot 2/\pi)$.
  • All other Dirac delta functions at  $\pm 3f_0$,  $\pm 5f_0$, ...  are also purely imaginary and located in the same direction as the Dirac delta functions at  $\pm f_0$.
  • The two magnitude spectra are equal:   $\vert X_{\rm u}(f)\vert = \vert X_{\rm g}(f) \vert$.


The Gibbs phenomenon


Not every periodic signal is suitable for the Fourier series.  Some restrictions below:

  • An important condition for the convergence of the Fourier series is that the signal may only have a finite number of discontinuities per period.
  • At those places  $t=t_i$,  where  $x(t)$  has jumps,  the series converges to the arithmetic mean value formed by the respective left and right boundary value.
  • In the surrounding area of such discontinuities,  high-frequency oscillations usually occur in the series representation.  This error is of principle kind, i.e. it could not be avoided too, if infinite summands would be considered.  One speaks of the  "Gibbs phenomenon", named after the physicist  $\text{Josiah Willard Gibbs}$.
  • An increase of  $N$  reduces the erroneous range but not the maximum deviation between  $x(t)$  and the Fourier series representation  $x_N(t)$.  The maximum error is independent of  $N$  about  $9\%$  of the jumping amplitude.


The Gibbs phenomenon and other interesting aspects of comparable effects are presented in the  $($German-language$)$  learning video
     »Eigenschaften der Fourierreihendarstellung«   ⇒   "Properties and accuracy of the Fourier series".


$\text{Example 5:}$  The left graphic shows a dotted section of a periodic  $\pm 1$ rectangular signal and the corresponding Fourier series representation with  $N = 1$  $($blue$)$,  $N = 3$  $($red$)$  and  $N = 5$  $($green$)$  summands.

On the Gibbs phenomenon
  • The basic wave here has the amplitude value  $4/\pi \approx 1.27$.
  • Even with  $N = 5$  $($this means because of  $A_2 = A_4 = 0$  three "relevant" summands$)$ the Fourier series still differs significantly from the approximated rectangular signal,  especially in the area of the edge.


⇒   From the right graphic you can see that the flank and the inner area are well reproduced with  $N = 100$  but due to the Gibbs phenomenon there are still oscillations around  $9\%$  at the jumping point.

  • Since the jump amplitudes here are equal to  $2$  the maximum values are approximately  $\pm1.18$.
  • With  $N = 1000$  the oscillations would be exactly the same size, but limited to a narrower space and possibly not recognizable with discrete-time representation.


Exercises for the chapter


Exercise 2.4: Rectified Cosine

Exercise 2.4Z: Triangular Function

Exercise 2.5: Half-Wave Rectification

Exercise 2.5Z: Square Wave

Exercise 2.6: Complex Fourier Series

Exercise 2.6Z:   Magnitude and Phase