Difference between revisions of "Information Theory/Discrete Memoryless Sources"

From LNTwww
 
(32 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
{{FirstPage}}
 
{{FirstPage}}
 
{{Header
 
{{Header
|Untermenü=Entropie wertdiskreter Nachrichtenquellen
+
|Untermenü=Entropy of Discrete Sources
 
|Vorherige Seite=
 
|Vorherige Seite=
|Nächste Seite=Nachrichtenquellen mit Gedächtnis
+
|Nächste Seite=Discrete Sources with Memory
 
}}
 
}}
  
 
== # OVERVIEW OF THE FIRST MAIN CHAPTER # ==
 
== # OVERVIEW OF THE FIRST MAIN CHAPTER # ==
 
<br>
 
<br>
This first chapter describes the calculation and the meaning of entropy.&nbsp; According to the Shannonian information definition, entropy is a measure of the mean uncertainty about the outcome of a statistical event or the uncertainty in the measurement of a stochastic quantity.&nbsp; Somewhat casually expressed, the entropy of a random quantity quantifies its "randomness".  
+
This first chapter describes the calculation and the meaning of entropy.&nbsp; According to the Shannonian information definition,&nbsp; entropy is a measure of the mean uncertainty about the outcome of a statistical event or the uncertainty in the measurement of a stochastic quantity.&nbsp; Somewhat casually expressed,&nbsp; the entropy of a random quantity quantifies its&nbsp; &raquo;randomness&laquo;.  
  
 
In detail are discussed:
 
In detail are discussed:
  
*the ''decision content''&nbsp; and the ''entropy''&nbsp; of a memoryless news source,
+
#The &nbsp;&raquo;information content&laquo;&nbsp; of a symbol and the &nbsp;&raquo;entropy&laquo;&nbsp; of a discrete memoryless source,
*the ''binary entropy function''&nbsp; and its application to ''non-binary sources'',
+
#the &nbsp;&raquo;binary entropy function&laquo;&nbsp; and its application to non-binary sources,
*the entropy calculation for ''memory sources''&nbsp; and suitable approximations,
+
#the entropy calculation for&nbsp; &raquo;sources with memory&laquo;&nbsp; and suitable approximations,
*the peculiarities of ''Markov sources''&nbsp; regarding the entropy calculation,
+
#the special features of&nbsp; &raquo;Markov sources&laquo;&nbsp; regarding the entropy calculation,
*the procedure for sources with a large number of symbols, for example ''natural texts'',
+
#the procedure for sources with a large number of symbols, for example&nbsp; &raquo;natural texts&laquo;,
*the ''entropy estimates''&nbsp; according to Shannon and Küpfmüller.
+
#the&nbsp; &raquo;entropy estimates&laquo;&nbsp; according to Shannon and Küpfmüller.
  
 
 
Further information on the topic as well as Exercises, simulations and programming exercises can be found in the experiment "Value Discrete Information Theory" of the practical course "Simulation Digitaler Übertragungssysteme" (english: Simulation of Digital Transmission Systems).&nbsp; This (former) LNT course at the TU Munich is based on
 
 
*the Windows program&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/WDIT.zip WDIT] &nbsp; &rArr; &nbsp; the link points to the ZIP version of the program and
 
*the associated&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Wertdiskrete_Informationstheorie.pdf Internship guide]  &nbsp; &rArr; &nbsp; the link refers to the PDF version.
 
  
  
 
== Model and requirements ==  
 
== Model and requirements ==  
 
<br>
 
<br>
We consider a value discrete message source&nbsp; $\rm Q$, which gives a sequence&nbsp; $ \langle q_ν \rangle$&nbsp; of symbols.  
+
We consider a discrete message source&nbsp; $\rm Q$, which gives a sequence&nbsp; $ \langle q_ν \rangle$&nbsp; of symbols.  
*For the run variable &nbsp;$ν = 1$, ... , $N$, where&nbsp; $N$&nbsp; should be "sufficiently large".  
+
*For the variable &nbsp;$ν = 1$, ... , $N$, where&nbsp; $N$&nbsp; should be sufficiently large.
*Each individual source symbol &nbsp;$q_ν$&nbsp; comes from a symbol set&nbsp; $\{q_μ \}$&nbsp; where&nbsp; $μ = 1$, ... , $M$, where&nbsp; $M$&nbsp; denotes the symbol range:
+
 +
*Each individual source symbol &nbsp;$q_ν$&nbsp; comes from a symbol set&nbsp; $\{q_μ \}$&nbsp; where&nbsp; $μ = 1$, ... , $M$.&nbsp; $M$&nbsp; denotes the symbol set size:
 
   
 
   
 
:$$q_{\nu} \in \left \{ q_{\mu}  \right \}, \hspace{0.25cm}{\rm with}\hspace{0.25cm} \nu = 1, \hspace{0.05cm} \text{ ...}\hspace{0.05cm} , N\hspace{0.25cm}{\rm and}\hspace{0.25cm}\mu = 1,\hspace{0.05cm} \text{ ...}\hspace{0.05cm} , M \hspace{0.05cm}.$$
 
:$$q_{\nu} \in \left \{ q_{\mu}  \right \}, \hspace{0.25cm}{\rm with}\hspace{0.25cm} \nu = 1, \hspace{0.05cm} \text{ ...}\hspace{0.05cm} , N\hspace{0.25cm}{\rm and}\hspace{0.25cm}\mu = 1,\hspace{0.05cm} \text{ ...}\hspace{0.05cm} , M \hspace{0.05cm}.$$
  
The figure shows a quaternary message source&nbsp; $(M = 4)$&nbsp; with the alphabet&nbsp; $\rm \{A, \ B, \ C, \ D\}$&nbsp; and an exemplary sequence of length&nbsp; $N = 100$.
+
The figure shows a quaternary message source&nbsp; $(M = 4)$&nbsp; with alphabet&nbsp; $\rm \{A, \ B, \ C, \ D\}$&nbsp; and an exemplary sequence of length&nbsp; $N = 100$.
  
[[File:P_ID2227_Inf_T_1_1_S1a_neu.png|frame|Memoryless Quaternary Message Source]]
+
[[File:EN_Inf_T_1_1_S1a.png|frame|Quaternary source]]
  
 
The following requirements apply:
 
The following requirements apply:
*The quaternary news source is fully described by&nbsp; $M = 4$&nbsp; symbol probabilities&nbsp; $p_μ$.&nbsp; In general it applies:
+
*The quaternary source is fully described by&nbsp; $M = 4$&nbsp; symbol probabilities&nbsp; $p_μ$.&nbsp; In general it applies:
 
:$$\sum_{\mu = 1}^M \hspace{0.1cm}p_{\mu} = 1 \hspace{0.05cm}.$$
 
:$$\sum_{\mu = 1}^M \hspace{0.1cm}p_{\mu} = 1 \hspace{0.05cm}.$$
*The message source is memoryless, i.e., the individual sequence elements are&nbsp; [[Theory_of_Stochastic_Signals/Statistical Dependence and Independence#General_definition_of_statistical_dependence|statistically independent of each other]]:
+
*The message source is memoryless, i.e., the individual sequence elements are&nbsp; [[Theory_of_Stochastic_Signals/Statistical Dependence and Independence#General_definition_of_statistical_dependence|&raquo;statistically independent of each other&laquo;]]:
 
:$${\rm Pr} \left (q_{\nu} = q_{\mu} \right ) = {\rm Pr} \left (q_{\nu} = q_{\mu} \hspace{0.03cm} | \hspace{0.03cm} q_{\nu -1}, q_{\nu -2}, \hspace{0.05cm} \text{ ...}\hspace{0.05cm}\right ) \hspace{0.05cm}.$$
 
:$${\rm Pr} \left (q_{\nu} = q_{\mu} \right ) = {\rm Pr} \left (q_{\nu} = q_{\mu} \hspace{0.03cm} | \hspace{0.03cm} q_{\nu -1}, q_{\nu -2}, \hspace{0.05cm} \text{ ...}\hspace{0.05cm}\right ) \hspace{0.05cm}.$$
*Since the alphabet consists of symbols&nbsp; (and not of random variables)&nbsp;, the specification of&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|expected values]]&nbsp; (linear mean, quadratic mean, dispersion, etc.) is not possible here, but also not necessary from an information-theoretical point of view.
+
*Since the alphabet consists of symbols&nbsp; $($and not of random variables$)$,&nbsp; the specification of&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|&raquo;expected values&laquo;]]&nbsp; $($linear mean, second moment, standard deviation, etc.$)$&nbsp; is not possible here,&nbsp; but also not necessary from an information-theoretical point of view.
  
  
 
These properties will now be illustrated with an example.
 
These properties will now be illustrated with an example.
  
[[File:Inf_T_1_1_S1b_vers2.png|right|frame|Relative frequencies as a function of&nbsp; $N$]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT=  
+
[[File:Inf_T_1_1_S1b_vers2.png|right|frame|Relative frequencies as a function of&nbsp; $N$]]   
 
$\text{Example 1:}$&nbsp;
 
$\text{Example 1:}$&nbsp;
 
For the symbol probabilities of a quaternary source applies:  
 
For the symbol probabilities of a quaternary source applies:  
Line 56: Line 51:
 
p_{\rm D} = 0.1\hspace{0.05cm}.$$
 
p_{\rm D} = 0.1\hspace{0.05cm}.$$
 
For an infinitely long sequence&nbsp; $(N \to \infty)$  
 
For an infinitely long sequence&nbsp; $(N \to \infty)$  
*the&nbsp; [[Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable#Bernoulli's_Law_of_Large_Numbers|relative frequencies]]&nbsp; $h_{\rm A}$,&nbsp; $h_{\rm B}$,&nbsp; $h_{\rm C}$,&nbsp; $h_{\rm D}$ &nbsp; &rArr; &nbsp; a-posteriori parameters  
+
*the&nbsp; [[Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable#Bernoulli.27s_law_of_large_numbers|&raquo;relative frequencies&laquo;]]&nbsp; $h_{\rm A}$,&nbsp; $h_{\rm B}$,&nbsp; $h_{\rm C}$,&nbsp; $h_{\rm D}$ &nbsp; &rArr; &nbsp; a-posteriori parameters
*were identical to the&nbsp; [[Theory_of_Stochastic_Signals/Some_Basic_Definitions#Event_and_Event_set|probabilities]]&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$,&nbsp; $p_{\rm C}$,&nbsp; $p_{\rm D}$ &nbsp; &rArr; &nbsp; a-priori parameters.  
+
 +
*were identical to the&nbsp; [[Theory_of_Stochastic_Signals/Some_Basic_Definitions#Event_and_event_probability|&raquo;probabilities&laquo;]]&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$,&nbsp; $p_{\rm C}$,&nbsp; $p_{\rm D}$ &nbsp; &rArr; &nbsp; a-priori parameters.  
  
  
With smaller&nbsp; $N$&nbsp; deviations may occur, as the adjacent table (result of a simulation) shows.  
+
With smaller&nbsp; $N$&nbsp; deviations may occur, as the adjacent table&nbsp; $($result of a simulation$)$&nbsp; shows.  
  
*In the graphic above an exemplary sequence is shown with&nbsp; $N = 100$&nbsp; symbols.  
+
*In the graphic above an exemplary sequence is shown with&nbsp; $N = 100$&nbsp; symbols.
 +
 
*Due to the set elements&nbsp; $\rm A$,&nbsp; $\rm B$,&nbsp; $\rm C$&nbsp; and&nbsp; $\rm D$&nbsp; no mean values can be given.  
 
*Due to the set elements&nbsp; $\rm A$,&nbsp; $\rm B$,&nbsp; $\rm C$&nbsp; and&nbsp; $\rm D$&nbsp; no mean values can be given.  
  
  
However, if you replace the symbols with numerical values, for example&nbsp; $\rm A \Rightarrow 1$, &nbsp; $\rm B \Rightarrow 2$, &nbsp; $\rm C \Rightarrow 3$, &nbsp; $\rm D \Rightarrow 4$, then you will get <br> &nbsp; &nbsp; time averaging &nbsp; &rArr; &nbsp; crossing line &nbsp; &nbsp; or &nbsp; &nbsp; ensemble averaging &nbsp; &rArr; &nbsp; expected value formation
+
However,&nbsp; if you replace the symbols with numerical values,&nbsp; for example&nbsp; $\rm A \Rightarrow 1$, &nbsp; $\rm B \Rightarrow 2$, &nbsp; $\rm C \Rightarrow 3$, &nbsp; $\rm D \Rightarrow 4$, then you will get after <br> &nbsp; &nbsp; &raquo;time averaging&laquo; &nbsp; &rArr; &nbsp; crossing line &nbsp; &nbsp; or &nbsp; &nbsp; &raquo;ensemble averaging&laquo; &nbsp; &rArr; &nbsp; expected value formation
*for the [[Theory_of_Stochastic_Signals/Moments of a Discrete Random Variable#Linear_Average_-_Direct_Component|linear average]] :
+
*for the&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#First_order_moment_.E2.80.93_linear_mean_.E2.80.93_DC_component|&raquo;linear mean&laquo;]] &nbsp; &rArr; &nbsp; &raquo;first order moment&laquo;:
 
:$$m_1 = \overline { q_{\nu} } = {\rm E} \big [ q_{\mu} \big ] = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4
 
:$$m_1 = \overline { q_{\nu} } = {\rm E} \big [ q_{\mu} \big ] = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4
 
= 2 \hspace{0.05cm},$$  
 
= 2 \hspace{0.05cm},$$  
*for the [[Theory_of_Stochastic_Signals/Moments of a Discrete Random Variable#Square_mean_.E2.80.93_Variance_.E2.80.93_Scattering |square mean]]:
+
*for the&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#Second_order_moment_.E2.80.93_power_.E2.80.93_variance_.E2.80.93_standard_deviation |&raquo;second order moment&laquo;]]:
 
:$$m_2 = \overline { q_{\nu}^{\hspace{0.05cm}2}  } = {\rm E} \big [ q_{\mu}^{\hspace{0.05cm}2} \big ] = 0.4 \cdot 1^2 + 0.3 \cdot 2^2 + 0.2 \cdot 3^2 + 0.1 \cdot 4^2
 
:$$m_2 = \overline { q_{\nu}^{\hspace{0.05cm}2}  } = {\rm E} \big [ q_{\mu}^{\hspace{0.05cm}2} \big ] = 0.4 \cdot 1^2 + 0.3 \cdot 2^2 + 0.2 \cdot 3^2 + 0.1 \cdot 4^2
 
= 5 \hspace{0.05cm},$$
 
= 5 \hspace{0.05cm},$$
*for the [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_often_used_Central_Moments|standard deviation]] (scattering) according to the "Theorem of Steiner":
+
*for the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|&raquo;standard deviation&laquo;]]&nbsp;  according to the&nbsp; &raquo;Theorem of Steiner&laquo;:
 
:$$\sigma = \sqrt {m_2 - m_1^2} = \sqrt {5 - 2^2} = 1 \hspace{0.05cm}.$$}}
 
:$$\sigma = \sqrt {m_2 - m_1^2} = \sqrt {5 - 2^2} = 1 \hspace{0.05cm}.$$}}
  
 
 
 
 
  
==Decision content - Message content==
+
==Maximum entropy of a discrete source==
 
<br>
 
<br>
[https://de.wikipedia.org/wiki/Claude_Shannon Claude Elwood Shannon]&nbsp; defined in 1948 in the standard work of information theory&nbsp; [Sha48]<ref name='Sha48'>Shannon, C.E.: A Mathematical Theory of Communication. In: Bell Syst. Techn. J. 27 (1948), pp. 379-423 and pp. 623-656.</ref>&nbsp; the concept of information as "decrease of uncertainty about the occurrence of a statistical event".  
+
[https://en.wikipedia.org/wiki/Claude_Shannon $\text{Claude Elwood Shannon}$]&nbsp; defined in 1948 in the standard work of information theory&nbsp; [Sha48]<ref name='Sha48'>Shannon, C.E.: A Mathematical Theory of Communication. In: Bell Syst. Techn. J. 27 (1948), pp. 379-423 and pp. 623-656.</ref>&nbsp; the concept of information as&nbsp; "decrease of uncertainty about the occurrence of a statistical event".  
  
 
Let us make a mental experiment with&nbsp; $M$&nbsp; possible results, which are all equally probable: &nbsp; $p_1 = p_2 = \hspace{0.05cm} \text{ ...}\hspace{0.05cm} = p_M = 1/M \hspace{0.05cm}.$  
 
Let us make a mental experiment with&nbsp; $M$&nbsp; possible results, which are all equally probable: &nbsp; $p_1 = p_2 = \hspace{0.05cm} \text{ ...}\hspace{0.05cm} = p_M = 1/M \hspace{0.05cm}.$  
Line 86: Line 83:
 
Under this assumption applies:
 
Under this assumption applies:
 
*Is&nbsp; $M = 1$, then each individual attempt will yield the same result and therefore there is no uncertainty about the output.
 
*Is&nbsp; $M = 1$, then each individual attempt will yield the same result and therefore there is no uncertainty about the output.
*On the other hand, an observer learns about an experiment with&nbsp; $M = 2$, for example the "coin toss" with the set of events&nbsp; $\big \{\rm \boldsymbol{\rm Z}, \rm \boldsymbol{\rm W} \big \}$&nbsp; and the probabilities&nbsp; $p_{\rm Z} = p_{\rm W} = 0. 5$, a gain in information; The uncertainty regarding&nbsp; $\rm Z$ &nbsp;resp.&nbsp; $\rm W$&nbsp; is resolved.
+
 
*In the experiment "dice"&nbsp; $(M = 6)$&nbsp; and even more in roulette&nbsp; $(M = 37)$&nbsp; the gained information is even more significant for the observer than in the "coin toss" when he learns which number was thrown or which ball fell.
+
*On the other hand, an observer learns about an experiment with&nbsp; $M = 2$, for example the&nbsp; &raquo;coin toss&laquo;&nbsp; with the set of events&nbsp; $\big \{\rm \boldsymbol{\rm Z}(ahl), \rm \boldsymbol{\rm W}(app) \big \}$&nbsp; and the probabilities&nbsp; $p_{\rm Z} = p_{\rm W} = 0. 5$, a gain in information.&nbsp; The uncertainty regarding&nbsp; $\rm Z$ &nbsp;resp.&nbsp; $\rm W$&nbsp; is resolved.
*Finally it should be considered that the experiment&nbsp; "triple coin toss"&nbsp; with the&nbsp; $M = 8$&nbsp; possible results&nbsp; $\rm ZZZ$,&nbsp; $\rm ZZW$,&nbsp; $\rm ZWZ$,&nbsp; $\rm ZWW$,&nbsp; $\rm WZZ$,&nbsp; $\rm WZW$,&nbsp; $\rm WWZ$,&nbsp; $\rm WWW$&nbsp; provides three times the information as the single coin toss&nbsp; $(M = 2)$.
+
 
 +
*In the experiment&nbsp; &raquo;dice&laquo;&nbsp; $(M = 6)$&nbsp; and even more in&nbsp; &raquo;roulette&laquo;&nbsp; $(M = 37)$&nbsp; the gained information is even more significant for the observer than in the&nbsp; &raquo;coin toss&laquo;&nbsp; when he learns which number was thrown or which ball fell.
 +
 
 +
*Finally it should be considered that the experiment&nbsp; &raquo;triple coin toss&laquo;&nbsp; with&nbsp; $M = 8$&nbsp; possible results&nbsp; $\rm ZZZ$,&nbsp; $\rm ZZW$,&nbsp; $\rm ZWZ$,&nbsp; $\rm ZWW$,&nbsp; $\rm WZZ$,&nbsp; $\rm WZW$,&nbsp; $\rm WWZ$,&nbsp; $\rm WWW$&nbsp; provides three times the information as the single coin toss&nbsp; $(M = 2)$.
  
  
The following definition fulfills all the requirements listed here for a quantitative information measure for equally probable events, indicated only by the symbol range&nbsp; $M$.
+
The following definition fulfills all the requirements listed here for a quantitative information measure for equally probable events, indicated only by the symbol set size&nbsp; $M$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The&nbsp; '''decision content''' &nbsp; of a message source depends only on the symbol range&nbsp; $M$&nbsp; and results in
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''maximum average information content'''&laquo; &nbsp; of a message source depends only on the symbol set size&nbsp; $M$&nbsp; and results in
 
   
 
   
 
:$$H_0 = {\rm log}\hspace{0.1cm}M = {\rm log}_2\hspace{0.1cm}M \hspace{0.15cm} {\rm (in \ &#8220;bit")}
 
:$$H_0 = {\rm log}\hspace{0.1cm}M = {\rm log}_2\hspace{0.1cm}M \hspace{0.15cm} {\rm (in \ &#8220;bit")}
Line 100: Line 100:
 
= {\rm lg}\hspace{0.1cm}M \hspace{0.15cm}\text {(in &#8220;Hartley")}\hspace{0.05cm}.$$
 
= {\rm lg}\hspace{0.1cm}M \hspace{0.15cm}\text {(in &#8220;Hartley")}\hspace{0.05cm}.$$
  
*The term&nbsp; ''message content'' is also commonly used for this.
+
*Since&nbsp; $H_0$&nbsp; indicates the maximum value of the&nbsp; [[Information_Theory/Discrete_Memoryless_Sources#Information_content_and_entropy|$\text{entropy}$]]&nbsp; $H$,&nbsp; $H_\text{max}=H_0$&nbsp; is also used in our tutorial as short notation. }}
*Since&nbsp; $H_0$&nbsp; indicates the maximum value of the&nbsp; [[Information_Theory/Sources with Memory#Information_Content_and_Entropy|Entropy]]&nbsp; $H$&nbsp;, $H_\text{max}$&nbsp; is also used in our tutorial as short notation&nbsp;. }}
 
  
  
 
Please note our nomenclature:
 
Please note our nomenclature:
*The logarithm will be called "log" in the following, independent of the base.  
+
*The logarithm will be called&nbsp; &raquo;log&laquo;&nbsp; in the following, independent of the base.
 +
 
*The relations mentioned above are fulfilled due to the following properties:
 
*The relations mentioned above are fulfilled due to the following properties:
 
   
 
   
Line 112: Line 112:
 
{\rm log}\hspace{0.1cm}M^k = k \cdot {\rm log}\hspace{0.1cm}M \hspace{0.05cm}.$$
 
{\rm log}\hspace{0.1cm}M^k = k \cdot {\rm log}\hspace{0.1cm}M \hspace{0.05cm}.$$
  
* Usually we use the logarithm to the base&nbsp; $2$ &nbsp; ⇒ &nbsp; ''Logarithm dualis''&nbsp; $\rm (ld)$, where the pseudo unit "bit", more precisely:&nbsp; "bit/symbol", is then added:
+
* Usually we use the logarithm to the base&nbsp; $2$ &nbsp; ⇒ &nbsp; &raquo;logarithm dualis&laquo;&nbsp; &nbsp; $\rm (ld)$,&nbsp; where the pseudo unit&nbsp; "bit"&nbsp; $($more precisely:&nbsp; "bit/symbol"$)$&nbsp; is then added:
 
   
 
   
 
:$${\rm ld}\hspace{0.1cm}M = {\rm log_2}\hspace{0.1cm}M = \frac{{\rm lg}\hspace{0.1cm}M}{{\rm lg}\hspace{0.1cm}2}
 
:$${\rm ld}\hspace{0.1cm}M = {\rm log_2}\hspace{0.1cm}M = \frac{{\rm lg}\hspace{0.1cm}M}{{\rm lg}\hspace{0.1cm}2}
Line 118: Line 118:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*In addition, you can find in the literature some additional definitions, which are based on the natural logarithm&nbsp; $\rm (ln)$&nbsp; or the logarithm&nbsp; $\rm (lg)$&nbsp;.
+
*In addition, you can find in the literature some additional definitions, which are based on the natural logarithm&nbsp; $\rm (ln)$&nbsp; or the logarithm of the tens&nbsp; $\rm (lg)$.
 
   
 
   
 
==Information content and entropy ==
 
==Information content and entropy ==
 
<br>
 
<br>
We now waive the previous requirement that all&nbsp; $M$&nbsp; possible results of an experiment are equally probable.&nbsp; In order to keep the spelling as compact as possible, we define for this page only:
+
We now waive the previous requirement that all&nbsp; $M$&nbsp; possible results of an experiment are equally probable.&nbsp; In order to keep the spelling as compact as possible, we define for this section only:
 
   
 
   
 
:$$p_1 > p_2 > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_\mu > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_{M-1} > p_M\hspace{0.05cm},\hspace{0.4cm}\sum_{\mu = 1}^M p_{\mu} = 1 \hspace{0.05cm}.$$
 
:$$p_1 > p_2 > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_\mu > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_{M-1} > p_M\hspace{0.05cm},\hspace{0.4cm}\sum_{\mu = 1}^M p_{\mu} = 1 \hspace{0.05cm}.$$
  
We now consider the ''information content''&nbsp; of the individual symbols, where we denote the "logarithm dualis" with $\log_2$:
+
We now consider the &raquo;'''information content'''&laquo;&nbsp; of the individual symbols, where we denote the&nbsp; "logarithm dualis"&nbsp; with&nbsp; $\log_2$:
 
   
 
   
 
:$$I_\mu = {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\hspace{0.05cm}{\rm log_2}\hspace{0.1cm}{p_\mu}
 
:$$I_\mu = {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\hspace{0.05cm}{\rm log_2}\hspace{0.1cm}{p_\mu}
Line 133: Line 133:
  
 
You can see:
 
You can see:
*because of&nbsp; $p_μ ≤ 1$&nbsp; the information content is never negative.&nbsp; In the borderline case&nbsp; $p_μ \to 1$&nbsp; goes&nbsp; $I_μ \to 0$.  
+
*Because of&nbsp; $p_μ ≤ 1$&nbsp; the information content is never negative.&nbsp; In the borderline case&nbsp; $p_μ \to 1$&nbsp; goes&nbsp; $I_μ \to 0$.
*However for&nbsp; $I_μ = 0$ &nbsp; &rArr; &nbsp; $p_μ = 1$ &nbsp; &rArr; &nbsp; $M = 1$&nbsp; the decision content is also&nbsp; $H_0 = 0$.
+
 +
*However, for&nbsp; $I_μ = 0$ &nbsp; &rArr; &nbsp; $p_μ = 1$ &nbsp; &rArr; &nbsp; $M = 1$&nbsp; the information content is also&nbsp; $H_0 = 0$.
 +
 
 
*For decreasing probabilities&nbsp; $p_μ$&nbsp; the information content increases continuously:
 
*For decreasing probabilities&nbsp; $p_μ$&nbsp; the information content increases continuously:
 
   
 
   
Line 141: Line 143:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Conclusion:}$&nbsp; '''The more improbable an event is, the greater is its information content'''.&nbsp; This fact is also found in daily life:
 
$\text{Conclusion:}$&nbsp; '''The more improbable an event is, the greater is its information content'''.&nbsp; This fact is also found in daily life:
*"6 right ones" in the lottery are more likely to be noticed than "3 right ones" or no win at all.
+
#"6 right ones" in the lottery are more likely to be noticed than "3 right ones" or no win at all.
*A tsunami in Asia also dominates the news in Germany for weeks as opposed to the almost standard Deutsche Bahn delays.
+
#A tsunami in Asia also dominates the news in Germany for weeks as opposed to the almost standard Deutsche Bahn delays.
*A series of defeats of Bayern Munich leads to huge headlines in contrast to a winning series.&nbsp; With 1860 Munich exactly the opposite is the case.}}
+
#A series of defeats of Bayern Munich leads to huge headlines in contrast to a winning series.&nbsp; With 1860 Munich exactly the opposite is the case.}}
  
  
However, the information content of a single symbol (or event) is not very interesting.&nbsp; On the other hand  
+
However, the information content of a single symbol (or event) is not very interesting.&nbsp; On the other hand one of the central quantities of information theory is obtained,
*by ensemble averaging over all possible symbols&nbsp; $q_μ$ &nbsp;bzw.&nbsp;  
+
*by ensemble averaging over all possible symbols&nbsp; $q_μ$ &nbsp;bzw.&nbsp;
*by time averaging over all elements of the sequence&nbsp; $\langle q_ν \rangle$
+
 +
*by time averaging over all elements of the sequence&nbsp; $\langle q_ν \rangle$.
  
one of the central variables of information theory.
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The&nbsp; '''Entropy'''&nbsp; $H$&nbsp; of a source indicates the ''mean information content of all symbols''&nbsp;:
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''entropy'''&laquo;&nbsp; $H$&nbsp; of a discrete source indicates the&nbsp; &raquo;'''mean information content of all symbols'''&laquo;:
 
   
 
   
 
:$$H = \overline{I_\nu} = {\rm E}\hspace{0.01cm}[I_\mu] = \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}=
 
:$$H = \overline{I_\nu} = {\rm E}\hspace{0.01cm}[I_\mu] = \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}=
Line 159: Line 161:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
The overline marks again a time averaging and&nbsp; $\rm E[\text{...}]$&nbsp; a ensemble averaging.}}
+
The overline marks again a time averaging and&nbsp; $\rm E[\text{...}]$&nbsp; an ensemble averaging.}}
  
  
 
Entropy is among other things a measure for
 
Entropy is among other things a measure for
 
*the mean uncertainty about the outcome of a statistical event,
 
*the mean uncertainty about the outcome of a statistical event,
*the "randomness" of this event,&nbsp; and
+
 
 +
*the&nbsp; "randomness"&nbsp; of this event,&nbsp; and
 +
 
 
*the average information content of a random variable.  
 
*the average information content of a random variable.  
 
   
 
   
Line 170: Line 174:
 
==Binary entropy function ==
 
==Binary entropy function ==
 
<br>
 
<br>
At first we will restrict ourselves to the special case&nbsp; $M = 2$&nbsp; and consider a binary source, which returns the two symbols&nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$&nbsp; &nbsp; The occurrence probabilities are &nbsp; $p_{\rm A} = p$&nbsp; and&nbsp; $p_{\rm B} = 1 - p$.
+
At first we will restrict ourselves to the special case&nbsp; $M = 2$&nbsp; and consider a binary source, which returns the two symbols&nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$.&nbsp; The symbol probabilities are &nbsp; $p_{\rm A} = p$&nbsp; and &nbsp; $p_{\rm B} = 1 - p$.
  
 
For the entropy of this binary source applies:  
 
For the entropy of this binary source applies:  
 
   
 
   
:$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1-p} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/Symbol)}
+
:$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1-p} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/symbol)}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
The function is called&nbsp; $H_\text{bin}(p)$&nbsp; the&nbsp; '''binary entropy function'''.&nbsp; The entropy of a source with a larger symbol range&nbsp; $M$&nbsp; can often be expressed using&nbsp; $H_\text{bin}(p)$&nbsp;.
+
This function is called&nbsp; $H_\text{bin}(p)$&nbsp; the&nbsp; &raquo;'''binary entropy function'''&laquo;.&nbsp; The entropy of a source with a larger symbol set size&nbsp; $M$&nbsp; can often be expressed using&nbsp; $H_\text{bin}(p)$&nbsp;.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 2:}$&nbsp;
 
$\text{Example 2:}$&nbsp;
The figure shows the binary entropy function for the values&nbsp; $0 ≤ p ≤ 1$&nbsp; of the symbol probability of&nbsp; $\rm A$&nbsp; $($or also of&nbsp; $\rm B)$.&nbsp; You can see
+
The figure shows the binary entropy function for the values&nbsp; $0 ≤ p ≤ 1$&nbsp; of the symbol probability of&nbsp; $\rm A$&nbsp; $($or also of&nbsp; $\rm B)$.&nbsp; You can see:
 +
 
 +
[[File:EN_Inf_T_1_1_S5_v2.png|frame|Binary entropy function as a function of&nbsp; $p$ |right]]
 +
*The maximum value&nbsp; $H_\text{max} = 1\; \rm bit$&nbsp; results for&nbsp; $p = 0.5$, thus for equally probable binary symbols.&nbsp; Then &nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$&nbsp; contribute the same amount to the entropy.
 +
 
 +
* $H_\text{bin}(p)$&nbsp; is symmetrical around&nbsp; $p = 0.5$.&nbsp; A source with&nbsp; $p_{\rm A} = 0.1$&nbsp; and&nbsp; $p_{\rm B} = 0. 9$&nbsp; has the same entropy&nbsp; $H = 0.469 \; \rm bit$&nbsp; as a source with&nbsp; $p_{\rm A} = 0.9$&nbsp; and&nbsp; $p_{\rm B} = 0.1$.
 +
 
 +
*The difference&nbsp; $ΔH = H_\text{max} - H$ gives&nbsp; the&nbsp; &raquo;redundancy&laquo;&nbsp; of the source and&nbsp; $r = ΔH/H_\text{max}$&nbsp; the&nbsp; &raquo;relative redundancy&laquo;. &nbsp; In the example,&nbsp; $ΔH = 0.531\; \rm bit$&nbsp; and&nbsp; $r = 53.1 \rm \%$.
  
[[File:Inf_T_1_1_S4_vers2.png|frame|Binary entropy function as function of&nbsp; $p$|right]]
+
*For&nbsp; $p = 0$&nbsp; this results in&nbsp; $H = 0$, since the symbol sequence &nbsp;$\rm B \ B \ B \text{...}$&nbsp; can be predicted with certainty &nbsp; &rArr; &nbsp; symbol set size only&nbsp; $M = 1$.&nbsp; The same applies to&nbsp; $p = 1$ &nbsp; &rArr; &nbsp; symbol sequence &nbsp;$\rm A \ A \ A \text{...}$.
*The maximum value&nbsp; $H_\text{max} = 1\; \rm bit$&nbsp; results for&nbsp; $p = 0.5$, thus for equally probable binary symbols.&nbsp; Then &nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$&nbsp; contribute the same amount to entropy.
+
 
* $H_\text{bin}(p)$&nbsp; is symmetrical about&nbsp; $p = 0.5$.&nbsp; A source with&nbsp; $p_{\rm A} = 0.1$&nbsp; and&nbsp; $p_{\rm B} = 0. 9$&nbsp; has the same entropy&nbsp; $H = 0.469 \; \rm bit$&nbsp; as a source with&nbsp; $p_{\rm A} = 0.9$&nbsp; and&nbsp; $p_{\rm B} = 0.1$.
+
*$H_\text{bin}(p)$&nbsp; is always a&nbsp; &raquo;concave function&laquo;,&nbsp; since the second derivative after the parameter&nbsp; $p$&nbsp; is negative for all values of&nbsp; $p$&nbsp;:  
*The difference&nbsp; $ΔH = H_\text{max} - H$ gives&nbsp; the&nbsp; ''redundancy''&nbsp; of the source and&nbsp; $r = ΔH/H_\text{max}$&nbsp; the&nbsp; ''relative redundancy''. &nbsp; In the example,&nbsp; $ΔH = 0.531\; \rm bit$&nbsp; and&nbsp; $r = 53.1 \rm \%$.
 
*For&nbsp; $p = 0$&nbsp; this results in&nbsp; $H = 0$, since the symbol sequence &nbsp;$\rm B \ B \ B \text{...}$&nbsp; can be predicted with certainty. &nbsp; Actually, the symbol range is now only&nbsp; $M = 1$.&nbsp; The same applies to&nbsp; $p = 1$ &nbsp; &rArr; &nbsp; symbol sequence &nbsp;$\rm A \ A \ A \ text{...}$.
 
*$H_\text{bin}(p)$&nbsp; is always a&nbsp; ''concave function'', since the second derivative after the parameter&nbsp; $p$&nbsp; is negative for all values of&nbsp; $p$&nbsp;:  
 
 
:$$\frac{ {\rm d}^2H_{\rm bin} (p)}{ {\rm d}\,p^2} = \frac{- 1}{ {\rm ln}(2) \cdot p \cdot (1-p)}< 0
 
:$$\frac{ {\rm d}^2H_{\rm bin} (p)}{ {\rm d}\,p^2} = \frac{- 1}{ {\rm ln}(2) \cdot p \cdot (1-p)}< 0
 
\hspace{0.05cm}.$$}}
 
\hspace{0.05cm}.$$}}
  
==Message sources with a larger symbol range==   
+
==Non-binary sources==   
 
<br>
 
<br>
In the&nbsp; [[Information_Theory/Sources with Memory#Model_and_Prerequisites|first section]]&nbsp; of this chapter we have a quaternary message source&nbsp; $(M = 4)$&nbsp; with the symbol probabilities&nbsp; $p_{\rm A} = 0. 4$, &nbsp; $p_{\rm B} = 0.3$, &nbsp; $p_{\rm C} = 0.2$ &nbsp; and&nbsp; $ p_{\rm D} = 0.1$&nbsp; considered.&nbsp; This source has the following entropy:
+
In the&nbsp; [[Information_Theory/Discrete_Memoryless_Sources#Model_and_requirements|"first section"]]&nbsp; of this chapter we considered a quaternary message source&nbsp; $(M = 4)$&nbsp; with the symbol probabilities&nbsp; $p_{\rm A} = 0. 4$, &nbsp; $p_{\rm B} = 0.3$, &nbsp; $p_{\rm C} = 0.2$&nbsp; and&nbsp; $ p_{\rm D} = 0.1$.&nbsp; This source has the following entropy:
 
   
 
   
 
:$$H_{\rm quat} = 0.4 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.1}.$$
 
:$$H_{\rm quat} = 0.4 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.1}.$$
  
For numerical calculation, the detour via the decimal logarithm&nbsp; $\lg \ x = {\rm log}_{10} \ x$&nbsp;, is often necessary. Since the ''logarithm dualis''&nbsp; $ {\rm log}_2 \ x$&nbsp; is mostly not found on pocket calculators.
+
For numerical calculation, the detour via the decimal logarithm&nbsp; $\lg \ x = {\rm log}_{10} \ x$&nbsp; is often necessary, since the&nbsp; "logarithm dualis"&nbsp; $ {\rm log}_2 \ x$&nbsp; is mostly not found on pocket calculators.
  
 
:$$H_{\rm quat}=\frac{1}{{\rm lg}\hspace{0.1cm}2} \cdot \left [ 0.4 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.2} + 0.1 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.1} \right ] = 1.845\,{\rm bit}
 
:$$H_{\rm quat}=\frac{1}{{\rm lg}\hspace{0.1cm}2} \cdot \left [ 0.4 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.2} + 0.1 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.1} \right ] = 1.845\,{\rm bit}
Line 206: Line 214:
 
$\text{Example 3:}$&nbsp;
 
$\text{Example 3:}$&nbsp;
 
Now there are certain symmetries between the symbol probabilities:  
 
Now there are certain symmetries between the symbol probabilities:  
[[File:Inf_T_1_1_S5_vers2.png|frame|Entropy of binary source and quaternary source]]
+
[[File:EN_Inf_T_1_1_S5_v3.png|frame|Entropy of binary source and quaternary source]]
 
   
 
   
 
:$$p_{\rm A} = p_{\rm D} = p \hspace{0.05cm},\hspace{0.4cm}p_{\rm B} = p_{\rm C} = 0.5 - p \hspace{0.05cm},\hspace{0.3cm}{\rm with} \hspace{0.15cm}0 \le p \le 0.5 \hspace{0.05cm}.$$
 
:$$p_{\rm A} = p_{\rm D} = p \hspace{0.05cm},\hspace{0.4cm}p_{\rm B} = p_{\rm C} = 0.5 - p \hspace{0.05cm},\hspace{0.3cm}{\rm with} \hspace{0.15cm}0 \le p \le 0.5 \hspace{0.05cm}.$$
Line 217: Line 225:
 
The graphic shows as a function of&nbsp; $p$
 
The graphic shows as a function of&nbsp; $p$
 
*the entropy of the quaternary source (blue)  
 
*the entropy of the quaternary source (blue)  
 +
 
*in comparison to the entropy course of the binary source (red).  
 
*in comparison to the entropy course of the binary source (red).  
  
  
 
For the quaternary source only the abscissa&nbsp; $0 ≤ p ≤ 0.5$&nbsp; is allowed.  
 
For the quaternary source only the abscissa&nbsp; $0 ≤ p ≤ 0.5$&nbsp; is allowed.  
<br clear=all>
+
 
You can see from the blue curve for the quaternary source:
+
&rArr; &nbsp; You can see from the blue curve for the quaternary source:
 
*The maximum entropy&nbsp; $H_\text{max} = 2 \; \rm bit/symbol$&nbsp; results for&nbsp; $p = 0.25$ &nbsp; &rArr; &nbsp; equally probable symbols: &nbsp; $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm A} = 0.25$.
 
*The maximum entropy&nbsp; $H_\text{max} = 2 \; \rm bit/symbol$&nbsp; results for&nbsp; $p = 0.25$ &nbsp; &rArr; &nbsp; equally probable symbols: &nbsp; $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm A} = 0.25$.
*With&nbsp; $p = 0$&nbsp; resp.&nbsp; $p = 0.5$&nbsp; the quaternary source degenerates to a binary source with&nbsp; $p_{\rm B} = p_{\rm C} = 0. 5$&nbsp; and&nbsp; $p_{\rm A} = p_{\rm D} = 0$ &nbsp; &rArr; &nbsp; entropy&nbsp; $H = 1 \; \rm bit/symbol$.
+
 
 +
*With&nbsp; $p = 0$&nbsp; the quaternary source degenerates to a binary source with&nbsp; $p_{\rm B} = p_{\rm C} = 0. 5$, &nbsp; $p_{\rm A} = p_{\rm D} = 0$ &nbsp; &rArr; &nbsp; $H = 1 \; \rm bit/symbol$.&nbsp; Similar applies to $p = 0.5$.
 +
 
*The source with&nbsp; $p_{\rm A} = p_{\rm D} = 0.1$&nbsp; and&nbsp; $p_{\rm B} = p_{\rm C} = 0.4$&nbsp; has the following characteristics (each with the pseudo unit "bit/symbol"):
 
*The source with&nbsp; $p_{\rm A} = p_{\rm D} = 0.1$&nbsp; and&nbsp; $p_{\rm B} = p_{\rm C} = 0.4$&nbsp; has the following characteristics (each with the pseudo unit "bit/symbol"):
  
Line 231: Line 242:
 
: &nbsp; &nbsp; '''(2)''' &nbsp; Redundancy: &nbsp; ${\rm \Delta }H = {\rm log_2}\hspace{0.1cm} M - H =2- 1.722= 0.278,$
 
: &nbsp; &nbsp; '''(2)''' &nbsp; Redundancy: &nbsp; ${\rm \Delta }H = {\rm log_2}\hspace{0.1cm} M - H =2- 1.722= 0.278,$
  
: &nbsp; &nbsp; '''(3)''' &nbsp; relative redundancy: &nbsp; $r ={\rm \delta }H/({\rm log_2}\hspace{0.1cm} M) = 0.139\hspace{0.05cm}.$
+
: &nbsp; &nbsp; '''(3)''' &nbsp; relative redundancy: &nbsp; $r ={\rm \Delta }H/({\rm log_2}\hspace{0.1cm} M) = 0.139\hspace{0.05cm}.$
  
*The redundancy of the quaternary source with&nbsp; $p = 0.1$&nbsp; is equal to&nbsp; $ΔH = 0.278 \; \rm bit/symbol$&nbsp; and thus exactly the same as the redundancy of the binary source with&nbsp; $p = 0.2$.}}
+
*The redundancy of the quaternary source with&nbsp; $p = 0.1$&nbsp; is&nbsp; $ΔH = 0.278 \; \rm bit/symbol$ &nbsp; &rArr; &nbsp; exactly the same as the redundancy of the binary source with&nbsp; $p = 0.2$.}}
  
  
Line 241: Line 252:
 
[[Aufgaben:Exercise_1.1:_Entropy_of_the_Weather|Exercise 1.1: Entropy of the Weather]]
 
[[Aufgaben:Exercise_1.1:_Entropy_of_the_Weather|Exercise 1.1: Entropy of the Weather]]
  
[[Aufgaben:1.1Z Binäre Entropiefunktion|Aufgabe 1.1Z: Binäre Entropiefunktion]]
+
[[Aufgaben:Exercise_1.1Z:_Binary_Entropy_Function|Exercise 1.1Z: Binary Entropy Function]]
  
[[Aufgaben:1.2 Entropie von Ternärquellen|Aufgabe 1.2: Entropie von Ternärquellen]]
+
[[Aufgaben:Exercise_1.2:_Entropy_of_Ternary_Sources|Exercise 1.2: Entropy of Ternary Sources]]
  
  
==List of sources==
+
==References==
 
<references />
 
<references />
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:52, 9 January 2024

# OVERVIEW OF THE FIRST MAIN CHAPTER #


This first chapter describes the calculation and the meaning of entropy.  According to the Shannonian information definition,  entropy is a measure of the mean uncertainty about the outcome of a statistical event or the uncertainty in the measurement of a stochastic quantity.  Somewhat casually expressed,  the entropy of a random quantity quantifies its  »randomness«.

In detail are discussed:

  1. The  »information content«  of a symbol and the  »entropy«  of a discrete memoryless source,
  2. the  »binary entropy function«  and its application to non-binary sources,
  3. the entropy calculation for  »sources with memory«  and suitable approximations,
  4. the special features of  »Markov sources«  regarding the entropy calculation,
  5. the procedure for sources with a large number of symbols, for example  »natural texts«,
  6. the  »entropy estimates«  according to Shannon and Küpfmüller.


Model and requirements


We consider a discrete message source  $\rm Q$, which gives a sequence  $ \langle q_ν \rangle$  of symbols.

  • For the variable  $ν = 1$, ... , $N$, where  $N$  should be sufficiently large.
  • Each individual source symbol  $q_ν$  comes from a symbol set  $\{q_μ \}$  where  $μ = 1$, ... , $M$.  $M$  denotes the symbol set size:
$$q_{\nu} \in \left \{ q_{\mu} \right \}, \hspace{0.25cm}{\rm with}\hspace{0.25cm} \nu = 1, \hspace{0.05cm} \text{ ...}\hspace{0.05cm} , N\hspace{0.25cm}{\rm and}\hspace{0.25cm}\mu = 1,\hspace{0.05cm} \text{ ...}\hspace{0.05cm} , M \hspace{0.05cm}.$$

The figure shows a quaternary message source  $(M = 4)$  with alphabet  $\rm \{A, \ B, \ C, \ D\}$  and an exemplary sequence of length  $N = 100$.

Quaternary source

The following requirements apply:

  • The quaternary source is fully described by  $M = 4$  symbol probabilities  $p_μ$.  In general it applies:
$$\sum_{\mu = 1}^M \hspace{0.1cm}p_{\mu} = 1 \hspace{0.05cm}.$$
$${\rm Pr} \left (q_{\nu} = q_{\mu} \right ) = {\rm Pr} \left (q_{\nu} = q_{\mu} \hspace{0.03cm} | \hspace{0.03cm} q_{\nu -1}, q_{\nu -2}, \hspace{0.05cm} \text{ ...}\hspace{0.05cm}\right ) \hspace{0.05cm}.$$
  • Since the alphabet consists of symbols  $($and not of random variables$)$,  the specification of  »expected values«  $($linear mean, second moment, standard deviation, etc.$)$  is not possible here,  but also not necessary from an information-theoretical point of view.


These properties will now be illustrated with an example.

Relative frequencies as a function of  $N$

$\text{Example 1:}$  For the symbol probabilities of a quaternary source applies:

$$p_{\rm A} = 0.4 \hspace{0.05cm},\hspace{0.2cm}p_{\rm B} = 0.3 \hspace{0.05cm},\hspace{0.2cm}p_{\rm C} = 0.2 \hspace{0.05cm},\hspace{0.2cm} p_{\rm D} = 0.1\hspace{0.05cm}.$$

For an infinitely long sequence  $(N \to \infty)$

  • the  »relative frequencies«  $h_{\rm A}$,  $h_{\rm B}$,  $h_{\rm C}$,  $h_{\rm D}$   ⇒   a-posteriori parameters
  • were identical to the  »probabilities«  $p_{\rm A}$,  $p_{\rm B}$,  $p_{\rm C}$,  $p_{\rm D}$   ⇒   a-priori parameters.


With smaller  $N$  deviations may occur, as the adjacent table  $($result of a simulation$)$  shows.

  • In the graphic above an exemplary sequence is shown with  $N = 100$  symbols.
  • Due to the set elements  $\rm A$,  $\rm B$,  $\rm C$  and  $\rm D$  no mean values can be given.


However,  if you replace the symbols with numerical values,  for example  $\rm A \Rightarrow 1$,   $\rm B \Rightarrow 2$,   $\rm C \Rightarrow 3$,   $\rm D \Rightarrow 4$, then you will get after
    »time averaging«   ⇒   crossing line     or     »ensemble averaging«   ⇒   expected value formation

$$m_1 = \overline { q_{\nu} } = {\rm E} \big [ q_{\mu} \big ] = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4 = 2 \hspace{0.05cm},$$
$$m_2 = \overline { q_{\nu}^{\hspace{0.05cm}2} } = {\rm E} \big [ q_{\mu}^{\hspace{0.05cm}2} \big ] = 0.4 \cdot 1^2 + 0.3 \cdot 2^2 + 0.2 \cdot 3^2 + 0.1 \cdot 4^2 = 5 \hspace{0.05cm},$$
$$\sigma = \sqrt {m_2 - m_1^2} = \sqrt {5 - 2^2} = 1 \hspace{0.05cm}.$$


Maximum entropy of a discrete source


$\text{Claude Elwood Shannon}$  defined in 1948 in the standard work of information theory  [Sha48][1]  the concept of information as  "decrease of uncertainty about the occurrence of a statistical event".

Let us make a mental experiment with  $M$  possible results, which are all equally probable:   $p_1 = p_2 = \hspace{0.05cm} \text{ ...}\hspace{0.05cm} = p_M = 1/M \hspace{0.05cm}.$

Under this assumption applies:

  • Is  $M = 1$, then each individual attempt will yield the same result and therefore there is no uncertainty about the output.
  • On the other hand, an observer learns about an experiment with  $M = 2$, for example the  »coin toss«  with the set of events  $\big \{\rm \boldsymbol{\rm Z}(ahl), \rm \boldsymbol{\rm W}(app) \big \}$  and the probabilities  $p_{\rm Z} = p_{\rm W} = 0. 5$, a gain in information.  The uncertainty regarding  $\rm Z$  resp.  $\rm W$  is resolved.
  • In the experiment  »dice«  $(M = 6)$  and even more in  »roulette«  $(M = 37)$  the gained information is even more significant for the observer than in the  »coin toss«  when he learns which number was thrown or which ball fell.
  • Finally it should be considered that the experiment  »triple coin toss«  with  $M = 8$  possible results  $\rm ZZZ$,  $\rm ZZW$,  $\rm ZWZ$,  $\rm ZWW$,  $\rm WZZ$,  $\rm WZW$,  $\rm WWZ$,  $\rm WWW$  provides three times the information as the single coin toss  $(M = 2)$.


The following definition fulfills all the requirements listed here for a quantitative information measure for equally probable events, indicated only by the symbol set size  $M$.

$\text{Definition:}$  The  »maximum average information content«   of a message source depends only on the symbol set size  $M$  and results in

$$H_0 = {\rm log}\hspace{0.1cm}M = {\rm log}_2\hspace{0.1cm}M \hspace{0.15cm} {\rm (in \ “bit")} = {\rm ln}\hspace{0.1cm}M \hspace{0.15cm}\text {(in “nat")} = {\rm lg}\hspace{0.1cm}M \hspace{0.15cm}\text {(in “Hartley")}\hspace{0.05cm}.$$
  • Since  $H_0$  indicates the maximum value of the  $\text{entropy}$  $H$,  $H_\text{max}=H_0$  is also used in our tutorial as short notation.


Please note our nomenclature:

  • The logarithm will be called  »log«  in the following, independent of the base.
  • The relations mentioned above are fulfilled due to the following properties:
$${\rm log}\hspace{0.1cm}1 = 0 \hspace{0.05cm},\hspace{0.2cm} {\rm log}\hspace{0.1cm}37 > {\rm log}\hspace{0.1cm}6 > {\rm log}\hspace{0.1cm}2\hspace{0.05cm},\hspace{0.2cm} {\rm log}\hspace{0.1cm}M^k = k \cdot {\rm log}\hspace{0.1cm}M \hspace{0.05cm}.$$
  • Usually we use the logarithm to the base  $2$   ⇒   »logarithm dualis«    $\rm (ld)$,  where the pseudo unit  "bit"  $($more precisely:  "bit/symbol"$)$  is then added:
$${\rm ld}\hspace{0.1cm}M = {\rm log_2}\hspace{0.1cm}M = \frac{{\rm lg}\hspace{0.1cm}M}{{\rm lg}\hspace{0.1cm}2} = \frac{{\rm ln}\hspace{0.1cm}M}{{\rm ln}\hspace{0.1cm}2} \hspace{0.05cm}.$$
  • In addition, you can find in the literature some additional definitions, which are based on the natural logarithm  $\rm (ln)$  or the logarithm of the tens  $\rm (lg)$.

Information content and entropy


We now waive the previous requirement that all  $M$  possible results of an experiment are equally probable.  In order to keep the spelling as compact as possible, we define for this section only:

$$p_1 > p_2 > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_\mu > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_{M-1} > p_M\hspace{0.05cm},\hspace{0.4cm}\sum_{\mu = 1}^M p_{\mu} = 1 \hspace{0.05cm}.$$

We now consider the »information content«  of the individual symbols, where we denote the  "logarithm dualis"  with  $\log_2$:

$$I_\mu = {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\hspace{0.05cm}{\rm log_2}\hspace{0.1cm}{p_\mu} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/Symbol)} \hspace{0.05cm}.$$

You can see:

  • Because of  $p_μ ≤ 1$  the information content is never negative.  In the borderline case  $p_μ \to 1$  goes  $I_μ \to 0$.
  • However, for  $I_μ = 0$   ⇒   $p_μ = 1$   ⇒   $M = 1$  the information content is also  $H_0 = 0$.
  • For decreasing probabilities  $p_μ$  the information content increases continuously:
$$I_1 < I_2 < \hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_\mu <\hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_{M-1} < I_M \hspace{0.05cm}.$$

$\text{Conclusion:}$  The more improbable an event is, the greater is its information content.  This fact is also found in daily life:

  1. "6 right ones" in the lottery are more likely to be noticed than "3 right ones" or no win at all.
  2. A tsunami in Asia also dominates the news in Germany for weeks as opposed to the almost standard Deutsche Bahn delays.
  3. A series of defeats of Bayern Munich leads to huge headlines in contrast to a winning series.  With 1860 Munich exactly the opposite is the case.


However, the information content of a single symbol (or event) is not very interesting.  On the other hand one of the central quantities of information theory is obtained,

  • by ensemble averaging over all possible symbols  $q_μ$  bzw. 
  • by time averaging over all elements of the sequence  $\langle q_ν \rangle$.


$\text{Definition:}$  The  »entropy«  $H$  of a discrete source indicates the  »mean information content of all symbols«:

$$H = \overline{I_\nu} = {\rm E}\hspace{0.01cm}[I_\mu] = \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\sum_{\mu = 1}^M p_{\mu} \cdot{\rm log_2}\hspace{0.1cm}{p_\mu} \hspace{0.5cm}\text{(unit: bit, more precisely: bit/symbol)} \hspace{0.05cm}.$$

The overline marks again a time averaging and  $\rm E[\text{...}]$  an ensemble averaging.


Entropy is among other things a measure for

  • the mean uncertainty about the outcome of a statistical event,
  • the  "randomness"  of this event,  and
  • the average information content of a random variable.


Binary entropy function


At first we will restrict ourselves to the special case  $M = 2$  and consider a binary source, which returns the two symbols  $\rm A$  and  $\rm B$.  The symbol probabilities are   $p_{\rm A} = p$  and   $p_{\rm B} = 1 - p$.

For the entropy of this binary source applies:

$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1-p} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/symbol)} \hspace{0.05cm}.$$

This function is called  $H_\text{bin}(p)$  the  »binary entropy function«.  The entropy of a source with a larger symbol set size  $M$  can often be expressed using  $H_\text{bin}(p)$ .

$\text{Example 2:}$  The figure shows the binary entropy function for the values  $0 ≤ p ≤ 1$  of the symbol probability of  $\rm A$  $($or also of  $\rm B)$.  You can see:

Binary entropy function as a function of  $p$
  • The maximum value  $H_\text{max} = 1\; \rm bit$  results for  $p = 0.5$, thus for equally probable binary symbols.  Then   $\rm A$  and  $\rm B$  contribute the same amount to the entropy.
  • $H_\text{bin}(p)$  is symmetrical around  $p = 0.5$.  A source with  $p_{\rm A} = 0.1$  and  $p_{\rm B} = 0. 9$  has the same entropy  $H = 0.469 \; \rm bit$  as a source with  $p_{\rm A} = 0.9$  and  $p_{\rm B} = 0.1$.
  • The difference  $ΔH = H_\text{max} - H$ gives  the  »redundancy«  of the source and  $r = ΔH/H_\text{max}$  the  »relative redundancy«.   In the example,  $ΔH = 0.531\; \rm bit$  and  $r = 53.1 \rm \%$.
  • For  $p = 0$  this results in  $H = 0$, since the symbol sequence  $\rm B \ B \ B \text{...}$  can be predicted with certainty   ⇒   symbol set size only  $M = 1$.  The same applies to  $p = 1$   ⇒   symbol sequence  $\rm A \ A \ A \text{...}$.
  • $H_\text{bin}(p)$  is always a  »concave function«,  since the second derivative after the parameter  $p$  is negative for all values of  $p$ :
$$\frac{ {\rm d}^2H_{\rm bin} (p)}{ {\rm d}\,p^2} = \frac{- 1}{ {\rm ln}(2) \cdot p \cdot (1-p)}< 0 \hspace{0.05cm}.$$

Non-binary sources


In the  "first section"  of this chapter we considered a quaternary message source  $(M = 4)$  with the symbol probabilities  $p_{\rm A} = 0. 4$,   $p_{\rm B} = 0.3$,   $p_{\rm C} = 0.2$  and  $ p_{\rm D} = 0.1$.  This source has the following entropy:

$$H_{\rm quat} = 0.4 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.1}.$$

For numerical calculation, the detour via the decimal logarithm  $\lg \ x = {\rm log}_{10} \ x$  is often necessary, since the  "logarithm dualis"  $ {\rm log}_2 \ x$  is mostly not found on pocket calculators.

$$H_{\rm quat}=\frac{1}{{\rm lg}\hspace{0.1cm}2} \cdot \left [ 0.4 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.2} + 0.1 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.1} \right ] = 1.845\,{\rm bit} \hspace{0.05cm}.$$

$\text{Example 3:}$  Now there are certain symmetries between the symbol probabilities:

Entropy of binary source and quaternary source
$$p_{\rm A} = p_{\rm D} = p \hspace{0.05cm},\hspace{0.4cm}p_{\rm B} = p_{\rm C} = 0.5 - p \hspace{0.05cm},\hspace{0.3cm}{\rm with} \hspace{0.15cm}0 \le p \le 0.5 \hspace{0.05cm}.$$

In this case, the binary entropy function can be used to calculate the entropy:

$$H_{\rm quat} = 2 \cdot p \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + 2 \cdot (0.5-p) \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.5-p}$$

$$\Rightarrow \hspace{0.3cm} H_{\rm quat} = 1 + H_{\rm bin}(2p) \hspace{0.05cm}.$$

The graphic shows as a function of  $p$

  • the entropy of the quaternary source (blue)
  • in comparison to the entropy course of the binary source (red).


For the quaternary source only the abscissa  $0 ≤ p ≤ 0.5$  is allowed.

⇒   You can see from the blue curve for the quaternary source:

  • The maximum entropy  $H_\text{max} = 2 \; \rm bit/symbol$  results for  $p = 0.25$   ⇒   equally probable symbols:   $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm A} = 0.25$.
  • With  $p = 0$  the quaternary source degenerates to a binary source with  $p_{\rm B} = p_{\rm C} = 0. 5$,   $p_{\rm A} = p_{\rm D} = 0$   ⇒   $H = 1 \; \rm bit/symbol$.  Similar applies to $p = 0.5$.
  • The source with  $p_{\rm A} = p_{\rm D} = 0.1$  and  $p_{\rm B} = p_{\rm C} = 0.4$  has the following characteristics (each with the pseudo unit "bit/symbol"):
    (1)   entropy:   $H = 1 + H_{\rm bin} (2p) =1 + H_{\rm bin} (0.2) = 1.722,$
    (2)   Redundancy:   ${\rm \Delta }H = {\rm log_2}\hspace{0.1cm} M - H =2- 1.722= 0.278,$
    (3)   relative redundancy:   $r ={\rm \Delta }H/({\rm log_2}\hspace{0.1cm} M) = 0.139\hspace{0.05cm}.$
  • The redundancy of the quaternary source with  $p = 0.1$  is  $ΔH = 0.278 \; \rm bit/symbol$   ⇒   exactly the same as the redundancy of the binary source with  $p = 0.2$.


Exercises for the chapter


Exercise 1.1: Entropy of the Weather

Exercise 1.1Z: Binary Entropy Function

Exercise 1.2: Entropy of Ternary Sources


References

  1. Shannon, C.E.: A Mathematical Theory of Communication. In: Bell Syst. Techn. J. 27 (1948), pp. 379-423 and pp. 623-656.