Difference between revisions of "Theory of Stochastic Signals/Binomial Distribution"

From LNTwww
m (Text replacement - "root mean square" to "standard deviation")
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Dicrete Random Variable
+
|Untermenü=Discrete Random Variable
 
|Vorherige Seite=Moments of a Discrete Random Variable
 
|Vorherige Seite=Moments of a Discrete Random Variable
 
|Nächste Seite=Poissonverteilung
 
|Nächste Seite=Poissonverteilung
Line 9: Line 9:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$ 
 
$\text{Definition:}$ 
The  '''binomial distribution'''  represents an important special case for the occurrence probabilities of a discrete random variable.
+
The  »'''binomial distribution'''«  represents an important special case for the occurrence probabilities of a discrete random variable.
  
 
To derive the binomial distribution,  we assume that  $I$  binary and statistically independent random variables  $b_i$  each can achieve
 
To derive the binomial distribution,  we assume that  $I$  binary and statistically independent random variables  $b_i$  each can achieve
 
*the value  $1$  with probability  ${\rm Pr}(b_i = 1) = p$,  and  
 
*the value  $1$  with probability  ${\rm Pr}(b_i = 1) = p$,  and  
 +
 
*the value   $0$  with probability  ${\rm Pr}(b_i = 0) = 1-p$.  
 
*the value   $0$  with probability  ${\rm Pr}(b_i = 0) = 1-p$.  
  
Line 32: Line 33:
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Calculation rule:}$&nbsp;
+
$\text{Calculation rule:}$&nbsp; For the&nbsp; &raquo;'''probabilities of the binomial distribution'''&laquo;&nbsp;  with&nbsp;  $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, \ I$:
For the&nbsp; '''probabilities of the binomial distribution'''&nbsp;  with&nbsp;  $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, \ I$:
 
 
:$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$
 
:$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$
*The first term here indicates the number of combinations &nbsp; $($read:&nbsp;  $I\ \text{ over }\ μ)$:
+
The first term here indicates the number of combinations &nbsp; $($read:&nbsp;  $I\ \text{ over }\ μ)$:
 
:$${I \choose \mu}=\frac{I !}{\mu !\cdot (I-\mu) !}=\frac{ {I\cdot (I- 1) \cdot \ \cdots \ \cdot (I-\mu+ 1)} }{ 1\cdot  2\cdot \ \cdots \ \cdot  \mu}.$$}}
 
:$${I \choose \mu}=\frac{I !}{\mu !\cdot (I-\mu) !}=\frac{ {I\cdot (I- 1) \cdot \ \cdots \ \cdot (I-\mu+ 1)} }{ 1\cdot  2\cdot \ \cdots \ \cdot  \mu}.$$}}
  
  
Additional notes:
+
$\text{Additional notes:}$
*For very large values of&nbsp;  $I$,&nbsp; the binomial distribution can be approximated by the&nbsp;  [[Theory_of_Stochastic_Signals/Poisson_Distribution|Poisson distribution]]&nbsp; described in the next section.
+
#For very large values of&nbsp;  $I$,&nbsp; the binomial distribution can be approximated by the&nbsp;  [[Theory_of_Stochastic_Signals/Poisson_Distribution|&raquo;Poisson distribution&laquo;]]&nbsp; described in the next section.
*If at the same time the product&nbsp;  $I · p \gg 1$,&nbsp; then according to&nbsp;  [https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem de Moivre–Laplace's (central limit) theorem],&nbsp; the Poisson distribution&nbsp;  (and hence the binomial distribution)&nbsp; transitions to a discrete&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian distribution]].
+
#If at the same time the product&nbsp;  $I · p \gg 1$,&nbsp; then according to&nbsp;  [https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem &raquo;de Moivre–Laplace's $($central limit$)$ theorem&laquo;],&nbsp; the Poisson distribution&nbsp;  $($and hence the binomial distribution$)$&nbsp; transitions to a discrete&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|&raquo;Gaussian distribution&laquo;]].
  
  
{{GraueBox|TEXT=   
+
{{GraueBox|TEXT=
 +
[[File:P_ID203__Sto_T_2_3_S2_neu.png |frame|Binomial distribution probabilities]]  
 
$\text{Example 2:}$&nbsp;
 
$\text{Example 2:}$&nbsp;
The graph shows the probabilities of the binomial distribution are for&nbsp; $I =6$&nbsp;  and&nbsp; $p =0.4$.&nbsp;  
+
The graph shows the probabilities of the binomial distribution for&nbsp; $I =6$&nbsp;  and&nbsp; $p =0.4$.&nbsp;  
[[File:P_ID203__Sto_T_2_3_S2_neu.png |frame|Binomial distribution probabilites]]
 
 
*Thus&nbsp; $M = I+1=7$&nbsp; probabilities are different from zero.
 
*Thus&nbsp; $M = I+1=7$&nbsp; probabilities are different from zero.
  
Line 57: Line 57:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 3:}$&nbsp; Another example of the application of the binomial distribution is the&nbsp; '''Calculation of the block error probability in Digital Signal Transmission'''.
+
$\text{Example 3:}$&nbsp; Another example of the application of the binomial distribution is the&nbsp; &raquo;'''calculation of the block error probability in Digital Signal Transmission'''&laquo;.
  
 
If one transmits blocks each of&nbsp; $I =10$&nbsp; binary symbols over a channel   
 
If one transmits blocks each of&nbsp; $I =10$&nbsp; binary symbols over a channel   
*with probability&nbsp; $p = 0.01$&nbsp; that one symbol is corrupted &nbsp; &rArr; &nbsp; random variable&nbsp; $e_i = 1$,&nbsp; and  
+
*with probability&nbsp; $p = 0.01$&nbsp; that one symbol is falsified &nbsp; &rArr; &nbsp; random variable&nbsp; $e_i = 1$,&nbsp; and  
*correspondingly with probability&nbsp; $1 - p = 0.99$&nbsp; for a uncorrupted  symbol &nbsp; &rArr; &nbsp; random variable&nbsp; $e_i = 0$,
 
  
 +
*correspondingly with probability&nbsp; $1 - p = 0.99$&nbsp; for an unfalsified  symbol &nbsp; &rArr; &nbsp; random variable&nbsp; $e_i = 0$,
  
then the new random variable&nbsp; $f$ &nbsp; &rArr; &nbsp; "number of block error"&nbsp;  is:  
+
 
 +
then the new random variable&nbsp; $f$ &nbsp; &rArr; &nbsp; &raquo;number of block errors&laquo;&nbsp;  is:  
 
:$$f=\sum_{i=1}^{I}e_i.$$
 
:$$f=\sum_{i=1}^{I}e_i.$$
  
This random variable&nbsp; $f$&nbsp; can take all integer values between&nbsp; $0$&nbsp; (no symbol is corrupted)&nbsp; and&nbsp; $I$&nbsp; (all symbols symbol are corrupted)&nbsp;.&nbsp;  
+
This random variable&nbsp; $f$&nbsp; can take all integer values between&nbsp; $0$&nbsp; $($no symbol is falsified$)$&nbsp; and&nbsp; $I$&nbsp; $($all symbols symbol are falsified$)$&nbsp;.&nbsp;  
*We denote the probabilities for&nbsp; $\mu$&nbsp; corruptions by&nbsp; $p_μ$.  
+
#We denote the probabilities for&nbsp; $\mu$&nbsp; falsifications by&nbsp; $p_μ$.  
*The case where all&nbsp; $I$&nbsp; symbols are correctly transmitted occurs with probability&nbsp; $p_0 = 0.99^{10} ≈ 0.9044$&nbsp;.  
+
#The case where all&nbsp; $I$&nbsp; symbols are correctly transmitted occurs with probability&nbsp; $p_0 = 0.99^{10} ≈ 0.9044$&nbsp;.  
*This also follows from the binomial formula for&nbsp; $μ = 0$&nbsp; considering the definition&nbsp; $10\, \text{ over }\, 0 = 1$.  
+
#This also follows from the binomial formula for&nbsp; $μ = 0$&nbsp; considering the definition&nbsp; $10\, \text{ over }\, 0 = 1$.  
*A single symbol error&nbsp; $(f = 1)$&nbsp; occurs with the following probability:
+
#A single symbol error&nbsp; $(f = 1)$&nbsp; occurs with the probability&nbsp; $p_1 = \rm 10\cdot 0.01\cdot 0.99^9\approx 0.0914.$
:$$p_1 = \rm 10\cdot 0.01\cdot 0.99^9\approx 0.0914.$$
+
#The first factor considers that there are exactly&nbsp; $10\, \text{ over }\, 1 = 10$&nbsp; possibilities for the position of a single error.&nbsp;  
::The first factor considers that there are exactly&nbsp; $10\, \text{ over }\, 1 = 10$&nbsp; possibilities for the position of a single error.&nbsp;  
+
#The other two factors take into account that one symbol must be falsified and nine must be transmitted correctly if&nbsp; $f =1$&nbsp; is to hold.  
::The other two factors take into account that one symbol must be corrupted and nine must be transmitted correctly if&nbsp; $f =1$&nbsp; is to hold.  
+
 
*For&nbsp; $f =2$&nbsp; there are clearly more combinations,&nbsp; namely&nbsp; $10\, \text{ over }\, 2 = 45$, &nbsp; and we get  
+
 
 +
For&nbsp; $f =2$&nbsp; there are clearly more combinations,&nbsp; namely&nbsp; $10\, \text{ over }\, 2 = 45$, &nbsp; and we get  
 
:$$p_2 = \rm 45\cdot 0.01^2\cdot 0.99^8\approx 0.0041.$$
 
:$$p_2 = \rm 45\cdot 0.01^2\cdot 0.99^8\approx 0.0041.$$
  
If a block code can correct up to two errors,&nbsp; the block error probability is
+
If a block code can correct up to two errors,&nbsp; the &nbsp;&raquo;'''block error probability'''&laquo;&nbsp; is
 
:$$p_{\rm block} = \it p_{\rm 3} \rm +\hspace{0.1cm}\text{ ...} \hspace{0.1cm} \rm + \it p_{\rm 10}\approx \rm 10^{-4},$$
 
:$$p_{\rm block} = \it p_{\rm 3} \rm +\hspace{0.1cm}\text{ ...} \hspace{0.1cm} \rm + \it p_{\rm 10}\approx \rm 10^{-4},$$
 
or
 
or
 
:$$p_{\rm block} = \rm 1-\it p_{\rm 0}-\it p_{\rm 1}-p_{\rm 2}\approx \rm 10^{-4}.$$
 
:$$p_{\rm block} = \rm 1-\it p_{\rm 0}-\it p_{\rm 1}-p_{\rm 2}\approx \rm 10^{-4}.$$
  
*One can see that for large values of&nbsp; $I$&nbsp; the second possibility of calculation via the complement leads faster to the goal.  
+
*One can see that for large&nbsp; $I$&nbsp; values the second possibility of calculation via the complement leads faster to the goal.
 +
 
*However,&nbsp;  one could also consider that for these numerical values&nbsp; $p_{\rm block} ≈ p_3$&nbsp; holds  as an approximation. }}
 
*However,&nbsp;  one could also consider that for these numerical values&nbsp; $p_{\rm block} ≈ p_3$&nbsp; holds  as an approximation. }}
  
  
Use the interactive HTML5/JS applet&nbsp; [[Applets:Binomial_and_Poisson_Distribution_(Applet)|Binomial and Poisson distribution]]&nbsp; to find the binomial probabilities for any&nbsp; $I$&nbsp; and&nbsp; $p$&nbsp;.
+
&rArr; &nbsp; Use the interactive HTML5/JS applet&nbsp; [[Applets:Binomial_and_Poisson_Distribution_(Applet)|&raquo;Binomial and Poisson distribution&laquo;]]&nbsp; to find the binomial probabilities for any&nbsp; $I$&nbsp; and&nbsp; $p$&nbsp;.
  
  
Line 93: Line 96:
 
<br>
 
<br>
 
You can calculate the moments in general using the equations in the chapters&nbsp;  
 
You can calculate the moments in general using the equations in the chapters&nbsp;  
# [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable|Moments of a Discrete Random Variable]],  
+
* [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable|&raquo;Moments of a Discrete Random Variable&laquo;]],
# [[Theory_of_Stochastic_Signals/Binomial_Distribution#Probabilities_of_the_binomial_distribution|Probabilities of the Binomial Distribution]].
+
 +
* [[Theory_of_Stochastic_Signals/Binomial_Distribution#Probabilities_of_the_binomial_distribution|&raquo;Probabilities of the Binomial Distribution&raquo;]].
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Calculation rules:} $&nbsp;  
+
$\text{Calculation rules:} $&nbsp; For the&nbsp; &raquo;'''$k$-th order moment'''&laquo;&nbsp; of a binomially distributed random variable,&nbsp; the general rule is:  
 
 
For the&nbsp; '''$k$-th order moment'''&nbsp; of a binomially distributed random variable,&nbsp; the general rule is:  
 
 
:$$m_k={\rm E}\big[z^k\big]=\sum_{\mu={\rm 0} }^{I}\mu^k\cdot{I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$
 
:$$m_k={\rm E}\big[z^k\big]=\sum_{\mu={\rm 0} }^{I}\mu^k\cdot{I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$
 
From this,&nbsp; we obtain for after some transformations   
 
From this,&nbsp; we obtain for after some transformations   
*the first order moment &nbsp; &rArr; &nbsp; "linear mean":
+
*the first order moment &nbsp; &rArr; &nbsp; &raquo;linear mean&laquo;:
 
:$$m_1 ={\rm E}\big[z\big]= I\cdot p,$$
 
:$$m_1 ={\rm E}\big[z\big]= I\cdot p,$$
*the second order moment &nbsp; &rArr; &nbsp; "quadratic mean":
+
*the second order moment &nbsp; &rArr; &nbsp; &raquo;power&laquo;:
 
:$$m_2 ={\rm E}\big[z^2\big]= (I^2-I)\cdot p^2+I\cdot p,$$
 
:$$m_2 ={\rm E}\big[z^2\big]= (I^2-I)\cdot p^2+I\cdot p,$$
*the variance by applyings "Steiner's theorem":
+
*the variance by applying &raquo;Steiner's theorem&raquo;:
 
:$$\sigma^2 = {m_2-m_1^2} = {I \cdot p\cdot (1-p)} ,$$
 
:$$\sigma^2 = {m_2-m_1^2} = {I \cdot p\cdot (1-p)} ,$$
*the standard deviation value&nbsp; $\rm (rms)$&nbsp; or&nbsp;  "standard deviation":
+
*the standard deviation:
 
:$$\sigma =  \sqrt{I \cdot p\cdot (1-p)}.$$}}
 
:$$\sigma =  \sqrt{I \cdot p\cdot (1-p)}.$$}}
  
  
The maximum variance&nbsp; $σ^2 = I/4$&nbsp; is obtained for the&nbsp; "characteristic probability"&nbsp; $p = 1/2$.&nbsp;  
+
The maximum variance&nbsp; $σ^2 = I/4$&nbsp; is obtained for the&nbsp; &raquo;characteristic probability&laquo;&nbsp; $p = 1/2$.&nbsp;  
 
*In this case,&nbsp; the binomial probabilities are symmetric around the mean&nbsp; $m_1 = I/2  \ ⇒  \ p_μ = p_{I–μ}$.  
 
*In this case,&nbsp; the binomial probabilities are symmetric around the mean&nbsp; $m_1 = I/2  \ ⇒  \ p_μ = p_{I–μ}$.  
 
*The more the characteristic probability&nbsp; $p$&nbsp; deviates from the value&nbsp; $1/2$&nbsp;,  
 
*The more the characteristic probability&nbsp; $p$&nbsp; deviates from the value&nbsp; $1/2$&nbsp;,  
# &nbsp; the smaller is the standard deviation&nbsp; $σ$, and  
+
# &nbsp; the smaller is the standard deviation&nbsp; $σ$,&nbsp; and  
# &nbsp; the more asymmetric the probabilities become around the mean&nbsp; $m_1 = I · p$.  
+
# &nbsp; the more asymmetric become  the probabilities around the mean&nbsp; $m_1 = I · p$.  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 4:}$&nbsp;
+
$\text{Example 4:}$ &nbsp;
As in&nbsp; $\text{Example 3}$,&nbsp; we consider a block of&nbsp; $I =10$&nbsp; binary symbols,&nbsp; each of which is independently corrupted with probability&nbsp; $p = 0.01$&nbsp;.&nbsp;  
 
  
Then holds:  
+
As in&nbsp; $\text{Example 3}$,&nbsp; we consider a block of&nbsp; $I =10$&nbsp; binary symbols,&nbsp; each of which is independently falsified with probability&nbsp; $p = 0.01$&nbsp;.&nbsp; Then holds:  
 
*The mean number of block errors is equal to&nbsp; $m_f  = {\rm E}\big[ f\big] = I · p = 0.1$.
 
*The mean number of block errors is equal to&nbsp; $m_f  = {\rm E}\big[ f\big] = I · p = 0.1$.
 +
 
*The standard deviation of the random variable&nbsp; $f$&nbsp; is&nbsp; $σ_f  = \sqrt{0.1 \cdot 0.99}≈ 0.315$.
 
*The standard deviation of the random variable&nbsp; $f$&nbsp; is&nbsp; $σ_f  = \sqrt{0.1 \cdot 0.99}≈ 0.315$.
  
  
In contrast,&nbsp; in the completely corrupted channel &nbsp;  ⇒  &nbsp; bit error probability&nbsp; $p = 1/2$&nbsp; results in the values
+
In contrast,&nbsp; in the completely falsified channel &nbsp;  ⇒  &nbsp; bit error probability&nbsp; $p = 1/2$&nbsp; results in the values
 
   
 
   
 
*$m_f  = 5$ &nbsp;  ⇒  &nbsp; on average,&nbsp; five of the ten bits within a block are wrong,
 
*$m_f  = 5$ &nbsp;  ⇒  &nbsp; on average,&nbsp; five of the ten bits within a block are wrong,
 +
 
* $σ_f  = \sqrt{I}/2 ≈1.581$  &nbsp;  ⇒  &nbsp;  maximum standard deviation.}}
 
* $σ_f  = \sqrt{I}/2 ≈1.581$  &nbsp;  ⇒  &nbsp;  maximum standard deviation.}}
  

Latest revision as of 17:32, 7 February 2024

General description of the binomial distribution


$\text{Definition:}$  The  »binomial distribution«  represents an important special case for the occurrence probabilities of a discrete random variable.

To derive the binomial distribution,  we assume that  $I$  binary and statistically independent random variables  $b_i$  each can achieve

  • the value  $1$  with probability  ${\rm Pr}(b_i = 1) = p$,  and
  • the value  $0$  with probability  ${\rm Pr}(b_i = 0) = 1-p$.


Then the sum  $z$  is also a discrete random variable with the symbol set   $\{0, \ 1, \ 2,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}, \ I\}$,  which is called binomially distributed:

$$z=\sum_{i=1}^{I}b_i.$$

Thus,  the symbol set size is  $M = I + 1.$


$\text{Example 1:}$  The binomial distribution finds manifold applications in Communications Engineering as well as in other disciplines:

  1.   It describes the distribution of rejects in statistical quality control.
  2.   It allows the calculation of the residual error probability in blockwise coding.
  3.  The bit error rate of a digital transmission system obtained by simulation is actually a binomially distributed random quantity.

Probabilities of the binomial distribution


$\text{Calculation rule:}$  For the  »probabilities of the binomial distribution«  with  $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, \ I$:

$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$

The first term here indicates the number of combinations   $($read:  $I\ \text{ over }\ μ)$:

$${I \choose \mu}=\frac{I !}{\mu !\cdot (I-\mu) !}=\frac{ {I\cdot (I- 1) \cdot \ \cdots \ \cdot (I-\mu+ 1)} }{ 1\cdot 2\cdot \ \cdots \ \cdot \mu}.$$


$\text{Additional notes:}$

  1. For very large values of  $I$,  the binomial distribution can be approximated by the  »Poisson distribution«  described in the next section.
  2. If at the same time the product  $I · p \gg 1$,  then according to  »de Moivre–Laplace's $($central limit$)$ theorem«,  the Poisson distribution  $($and hence the binomial distribution$)$  transitions to a discrete  »Gaussian distribution«.


Binomial distribution probabilities

$\text{Example 2:}$  The graph shows the probabilities of the binomial distribution for  $I =6$  and  $p =0.4$. 

  • Thus  $M = I+1=7$  probabilities are different from zero.
  • In contrast,  for  $I = 6$  and  $p = 0.5$,  the probabilities of the binomial distribution are as follows:
$$\begin{align*}{\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}0) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}6)\hspace{-0.05cm} =\hspace{-0.05cm} 1/64\hspace{-0.05cm} = \hspace{-0.05cm}0.015625 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}1) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}5) \hspace{-0.05cm}= \hspace{-0.05cm}6/64 \hspace{-0.05cm}=\hspace{-0.05cm} 0.09375,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}2) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}4)\hspace{-0.05cm} = \hspace{-0.05cm}15/64 \hspace{-0.05cm}= \hspace{-0.05cm}0.234375 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}3) & = 20/64 \hspace{-0.05cm}= \hspace{-0.05cm} 0.3125 .\end{align*}$$
  • These are symmetrical with respect to the abscissa value  $\mu = I/2 = 3$.


$\text{Example 3:}$  Another example of the application of the binomial distribution is the  »calculation of the block error probability in Digital Signal Transmission«.

If one transmits blocks each of  $I =10$  binary symbols over a channel

  • with probability  $p = 0.01$  that one symbol is falsified   ⇒   random variable  $e_i = 1$,  and
  • correspondingly with probability  $1 - p = 0.99$  for an unfalsified symbol   ⇒   random variable  $e_i = 0$,


then the new random variable  $f$   ⇒   »number of block errors«  is:

$$f=\sum_{i=1}^{I}e_i.$$

This random variable  $f$  can take all integer values between  $0$  $($no symbol is falsified$)$  and  $I$  $($all symbols symbol are falsified$)$ . 

  1. We denote the probabilities for  $\mu$  falsifications by  $p_μ$.
  2. The case where all  $I$  symbols are correctly transmitted occurs with probability  $p_0 = 0.99^{10} ≈ 0.9044$ .
  3. This also follows from the binomial formula for  $μ = 0$  considering the definition  $10\, \text{ over }\, 0 = 1$.
  4. A single symbol error  $(f = 1)$  occurs with the probability  $p_1 = \rm 10\cdot 0.01\cdot 0.99^9\approx 0.0914.$
  5. The first factor considers that there are exactly  $10\, \text{ over }\, 1 = 10$  possibilities for the position of a single error. 
  6. The other two factors take into account that one symbol must be falsified and nine must be transmitted correctly if  $f =1$  is to hold.


For  $f =2$  there are clearly more combinations,  namely  $10\, \text{ over }\, 2 = 45$,   and we get

$$p_2 = \rm 45\cdot 0.01^2\cdot 0.99^8\approx 0.0041.$$

If a block code can correct up to two errors,  the  »block error probability«  is

$$p_{\rm block} = \it p_{\rm 3} \rm +\hspace{0.1cm}\text{ ...} \hspace{0.1cm} \rm + \it p_{\rm 10}\approx \rm 10^{-4},$$

or

$$p_{\rm block} = \rm 1-\it p_{\rm 0}-\it p_{\rm 1}-p_{\rm 2}\approx \rm 10^{-4}.$$
  • One can see that for large  $I$  values the second possibility of calculation via the complement leads faster to the goal.
  • However,  one could also consider that for these numerical values  $p_{\rm block} ≈ p_3$  holds as an approximation.


⇒   Use the interactive HTML5/JS applet  »Binomial and Poisson distribution«  to find the binomial probabilities for any  $I$  and  $p$ .


Moments of the binomial distribution


You can calculate the moments in general using the equations in the chapters 


$\text{Calculation rules:} $  For the  »$k$-th order moment«  of a binomially distributed random variable,  the general rule is:

$$m_k={\rm E}\big[z^k\big]=\sum_{\mu={\rm 0} }^{I}\mu^k\cdot{I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$

From this,  we obtain for after some transformations

  • the first order moment   ⇒   »linear mean«:
$$m_1 ={\rm E}\big[z\big]= I\cdot p,$$
  • the second order moment   ⇒   »power«:
$$m_2 ={\rm E}\big[z^2\big]= (I^2-I)\cdot p^2+I\cdot p,$$
  • the variance by applying »Steiner's theorem»:
$$\sigma^2 = {m_2-m_1^2} = {I \cdot p\cdot (1-p)} ,$$
  • the standard deviation:
$$\sigma = \sqrt{I \cdot p\cdot (1-p)}.$$


The maximum variance  $σ^2 = I/4$  is obtained for the  »characteristic probability«  $p = 1/2$. 

  • In this case,  the binomial probabilities are symmetric around the mean  $m_1 = I/2 \ ⇒ \ p_μ = p_{I–μ}$.
  • The more the characteristic probability  $p$  deviates from the value  $1/2$ ,
  1.   the smaller is the standard deviation  $σ$,  and
  2.   the more asymmetric become the probabilities around the mean  $m_1 = I · p$.


$\text{Example 4:}$  

As in  $\text{Example 3}$,  we consider a block of  $I =10$  binary symbols,  each of which is independently falsified with probability  $p = 0.01$ .  Then holds:

  • The mean number of block errors is equal to  $m_f = {\rm E}\big[ f\big] = I · p = 0.1$.
  • The standard deviation of the random variable  $f$  is  $σ_f = \sqrt{0.1 \cdot 0.99}≈ 0.315$.


In contrast,  in the completely falsified channel   ⇒   bit error probability  $p = 1/2$  results in the values

  • $m_f = 5$   ⇒   on average,  five of the ten bits within a block are wrong,
  • $σ_f = \sqrt{I}/2 ≈1.581$   ⇒   maximum standard deviation.

Exercises for the chapter


Exercise 2.3: Algebraic Sum of Binary Numbers

Exercise 2.4: Number Lottery (6 from 49)