Difference between revisions of "Theory of Stochastic Signals/Poisson Distribution"

From LNTwww
 
(38 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Diskrete Zufallsgrößen
+
|Untermenü=Discrete Random Variables
|Vorherige Seite=Binomialverteilung
+
|Vorherige Seite=Binomial Distribution
|Nächste Seite=Erzeugung von diskreten Zufallsgrößen
+
|Nächste Seite=Generation of Discrete Random Variables
 
}}
 
}}
==Wahrscheinlichkeiten der Poissonverteilung==
+
==Probabilities of the Poisson distribution==
{{Definition}}
+
<br>
Die '''Poissonverteilung''' ist ein Grenzfall der [[Stochastische_Signaltheorie/Binomialverteilung#Allgemeine_Beschreibung_der_Binomialverteilung|Binomialverteilung]], wobei
+
{{BlaueBox|TEXT= 
*zum einen von den Grenzübergängen $I → ∞$ und $p →$ 0 ausgegangen wird,  
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''Poisson distribution'''&laquo;&nbsp; is a limiting case of the&nbsp; [[Theory_of_Stochastic_Signals/Binomial_Distribution#General_description_of_the_binomial_distribution|&raquo;binomial distribution&raquo;]],&nbsp; where
*zusätzlich vorausgesetzt ist, dass das Produkt $I · p = λ$ einen endlichen Wert besitzt.
+
*on the one hand,&nbsp; the limit transitions&nbsp; $I → ∞$&nbsp; and&nbsp; $p → 0$&nbsp; are assumed,
 +
 +
*additionally,&nbsp; it is assumed that the product has following value:
 +
:$$I · p =\it λ.$$  
  
Der Parameter $λ$ gibt die mittlere Anzahl der „Einsen” in einer festgelegten Zeiteinheit an und wird als die '''Rate''' bezeichnet.
+
The parameter&nbsp; $\it \lambda $&nbsp; gives the average number of&nbsp; &raquo;ones&laquo;&nbsp; in a fixed time unit  and is called the&nbsp; &raquo;'''rate'''&laquo;. }}
{{end}}
 
Weiter ist zu vermerken:
 
*Im Gegensatz zur Binomialverteilung ($0 ≤ μ ≤ I$) kann hier die Zufallsgröße beliebig große (ganzzahlige, nichtnegative) Werte annehmen, was bedeutet, dass die Menge der möglichen Werte hier nicht abzählbar ist. Da jedoch keine Zwischenwerte auftreten können, spricht man auch hier von einer ''diskreten Verteilung''.  
 
*Berücksichtigt man die oben genannten Grenzübergänge in der Gleichung für die [[Stochastische_Signaltheorie/Binomialverteilung#Wahrscheinlichkeiten_der_Binomialverteilung|Wahrscheinlichkeiten der Binomialverteilung]], so folgt für die Auftrittswahrscheinlichkeiten der poissonverteilten Zufallsgröße $z$:
 
:$$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu  )!} \cdot (\frac{\lambda}{I}  )^\mu \cdot  ( 1-\frac{\lambda}{I})^{I-\mu}.$$
 
*Daraus erhält man nach einigen algebraischen Umformungen:
 
:$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$
 
  
{{Beispiel}}
 
[[File: P_ID615__Sto_T_2_4_S1_neu.png | Wahrscheinlichkeiten der Poissonverteilung | rechts]]
 
Die Wahrscheinlichkeiten von
 
*Binomialverteilung (mit $I =6$, $p = 0.4$), und 
 
*Poissonverteilung (mit $λ = 2.4$)
 
  
 +
$\text{Further,&nbsp; it should be noted:}$
 +
*In contrast to the binomial distribution&nbsp; $(0 ≤ μ ≤ I)$&nbsp; here the random quantity can take on arbitrarily large&nbsp; $($integer,&nbsp; non-negative$)$&nbsp; values.
  
sind nebenstehender Grafik zu entnehmen:
+
*This means that the set of possible values is uncountable here.
*Beide Verteilungen besitzen den gleichen Mittelwert $m_1 = 2.4$.  
+
*Bei der Poissonverteilung (rote Pfeile und Beschriftung) sind die äußeren Werte wahrscheinlicher als bei der Binomialverteilung.
+
*But since no intermediate values can occur,&nbsp; this is also called a&nbsp; &raquo;discrete distribution&laquo;.  
*Zudem sind auch Zufallsgrößen $z > 6$ möglich, auch wenn deren Wahrscheinlichkeiten bei der gewählten Rate eher klein sind.  
 
  
  
{{end}}
+
{{BlueBox|TEXT= 
 +
$\text{Calculation rule:}$&nbsp; Considering above limit transitions for the&nbsp; [[Theory_of_Stochastic_Signals/Binomial_Distribution#Probabilities_of_the_binomial_distribution|&raquo;probabilities of the binomial distribution&laquo;]],&nbsp; it follows for the&nbsp; &raquo;'''Poisson distribution probabilities'''&laquo;:
 +
:$$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu )!} \cdot (\frac{\lambda}{I} )^\mu \cdot ( 1-\frac{\lambda}{I})^{I-\mu}.$$
 +
From this,&nbsp; after some algebraic transformations:
 +
:$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$}}
  
==Momente der Poissonverteilung==
 
Mittelwert und Streuung der Poissonverteilung ergeben sich direkt aus den entsprechenden Gleichungen der Binomialverteilung durch zweifache Grenzwertbildung:
 
$$m_1 =\lim_{\left.{I\to\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0}}\right.} I \cdot p= \lambda,$$
 
$$\sigma =\lim_{\left.{I\to\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0}}\right.} \sqrt{I \cdot p \cdot (1-p)} = \sqrt {\lambda}.$$
 
  
Daraus ist ersichtlich, dass bei der Poissonverteilung stets $σ^2 = m_1 = λ$ gilt.  
+
{{GraueBox|TEXT=
 +
[[File: EN_Sto_T_2_4_S1_neu.png |frame| Binomial and Poisson  probabilities| right]] 
 +
$\text{Example 1:}$&nbsp; In the graph on the right can be seen the probabilities of
 +
*binomial distribution with&nbsp; $I =6$,&nbsp; $p = 0.4$,&nbsp; $($blue arrows and labels$)$&nbsp;
 +
 
 +
*Poisson distribution with&nbsp; $λ = 2.4$ &nbsp; $($red arrows and labels$)$.&nbsp;
  
{{Beispiel}}
 
[[File: P_ID616__Sto_T_2_4_S2neu.png | Momente der Poissonverteilung | rechts]]
 
Wie im letzten Beispiel werden hier
 
*Binomialverteilung (mit $I =$ 6, $p =$ 0.4)
 
*und Poissonverteilung (mit $λ =$ 2.4)
 
  
 +
You can recognize:
 +
#Both distributions have the same mean&nbsp; $m_1 = 2.4$.
 +
#In the binomial distribution,&nbsp; all probabilities&nbsp; ${\rm Pr}(z > 6) \equiv 0$. 
 +
#In the Poisson distribution the outer values&nbsp; are more probable than with the binomial distribution.
 +
#Random variables&nbsp; $z > 6$&nbsp; are also possible with the Poisson distribution.&nbsp;
 +
#But their probabilities are also rather small at the chosen rate. }}
  
miteinander verglichen:
 
*Beide Verteilungen besitzen genau den gleichen Mittelwert $m_1 =$ 2.4.
 
*Bei der Poissonverteilung (im Bild rot markiert) beträgt die Streuung $σ ≈$ 1.55.
 
*Bei der (blauen) Binomialverteilung ist die Standardabweichung nur $σ =$ 1.2.
 
{{end}}
 
  
 +
==Moments of the Poisson distribution==
 +
<br>
 +
{{BlueBox|TEXT= 
 +
$\text{Calculation rule:}$&nbsp; &raquo;'''Mean'''&laquo;&nbsp; and&nbsp; &raquo;'''standard deviation'''&laquo;&nbsp;  are obtained directly from the&nbsp; [[Theory_of_Stochastic_Signals/Binomial_Distribution#Moments_of_the_binomial_distribution|&raquo;corresponding equations of the binomial distribution&laquo;]]&nbsp; by twofold limiting:
 +
:$$m_1 =\lim_{\left.{I\hspace{0.05cm}\to\hspace{0.05cm}\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0} }\right.} I \cdot p= \lambda,$$
 +
:$$\sigma =\lim_{\left.{I\hspace{0.05cm}\to\hspace{0.05cm}\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0} }\right.} \sqrt{I \cdot p \cdot (1-p)} = \sqrt {\lambda}.$$
  
Mit den nachfolgend genannten Modulen können Sie die Wahrscheinlichkeiten und Mittelwerte der Poissonverteilung für beliebige $λ$–Werte ermitteln:
+
From this it can be seen that with the Poisson distribution the variance is always&nbsp;
 +
:$$σ^2 = m_1 = λ.$$ }}
  
Ereigniswahrscheinlichkeiten der Poissonverteilung  (für zwei unterschiedliche Raten)
 
Gegenüberstellung Binomialverteilung - Poissonverteilung
 
  
==Gegenüberstellung Binomialverteilung - Poissonverteilung==
+
{{GraueBox|TEXT=
Im Folgenden sollen die Gemeinsamkeiten als auch die Unterschiede zwischen binomial- und poissonverteilten Zufallsgrößen nochmals herausgearbeitet werden.  
+
[[File: P_ID616__Sto_T_2_4_S2neu.png |frame| Moments of the Poisson distribution | right]] 
 +
$\text{Example 2:}$&nbsp; As in&nbsp; $\text{Example 1}$,&nbsp; here we compare
 +
*the binomial distribution with&nbsp; $I =6$,&nbsp; $p = 0.4$,&nbsp; $($blue arrows and labels$)$&nbsp; and
 +
 
 +
*the Poisson distribution with&nbsp; $λ = 2.4$ &nbsp; $($red arrows and labels$)$.&nbsp;
  
Die Binomialverteilung ist zur Beschreibung von solchen stochastischen Ereignissen geeignet, die durch einen vorgegebenen Takt $T$ gekennzeichnet sind. Beispielsweise beträgt bei [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|ISDN]]  (''Integrated Services Digital Network'') mit 64 kbit/s die Taktzeit $T$ etwa 15.6 μs.
 
*Nur in diesem Zeitraster treten binäre Ereignisse auf. Solche Ereignisse sind beispielsweise die fehlerfreie $(e_i = 0)$ oder fehlerhafte $(e_i = 1)$ Übertragung einzelner Symbole.
 
*Die Binomialverteilung ermöglicht nun statistische Aussagen über die Anzahl der in einem längeren Zeitintervall $T_{\rm I} = I · T$ zu erwartenden Übertragungsfehler entsprechend des oberen Zeitdiagramms (blau markierte Zeitpunkte).
 
  
 +
One can see from the accompanying sketch:
  
[[File:  P_ID60__Sto_T_2_4_S3_neu.png | Binomialverteilung vs. Poissonverteilung]]
+
#Both distributions have exactly the same mean&nbsp; $m_1 = 2.4$.
 +
#For the red Poisson distribution,&nbsp; the standard deviation&nbsp; $σ ≈ 1.55$.
 +
#In contrast,&nbsp; for the blue binomial distribution,&nbsp; the standard deviation is only&nbsp; $σ = 1.2$.
  
  
Auch die Poissonverteilung macht Aussagen über die Anzahl eintretender Binärereignisse in einem endlichen Zeitintervall:  
+
&rArr; &nbsp; With the interactive HTML 5/JavaScript applet&nbsp; [[Applets:Binomial_and_Poisson_Distribution_(Applet)|&raquo;Binomial and Poisson Distribution&raquo;]],&nbsp; you can
*Geht man hierbei vom gleichen Betrachtungszeitraum $T_{\rm I}$ aus und vergrößert die Anzahl $I$ der Teilintervalle immer mehr, so wird die Taktzeit $T$, zu der jeweils ein neues Binärereignis („0” oder „1”) eintreten kann, immer kleiner. Im Grenzfall geht $T$ gegen Null.
+
*determine the probabilities and moments of the Poisson distribution for any&nbsp; $λ$-values
*Das heißt: Bei der Poissonverteilung sind die binären Ereignisse nicht nur zu diskreten, durch ein Zeitraster vorgegebenen Zeitpunkten möglich, sondern jederzeit. Das untere Bild verdeutlicht diesen Sachverhalt.
+
*Um im Mittel während der Zeit $T_{\rm I}$ genau so viele „Einsen” wie bei der Binomialverteilung zu erhalten (im Beispiel: sechs), muss allerdings die (charakteristische) Wahrscheinlichkeit $p =$ Pr( $e_i =$ 1) gegen Null tendieren.
+
*and visualize the similarities and differences compared to the binomial distribution.}}
  
  
Das folgende Interaktionsmodul erlaubt die Berechnung der Wahrscheinlichkeiten und Momente:
+
==Comparison of binomial distribution vs. Poisson distribution==
Gegenüberstellung Binomialverteilung – Poissonverteilung
+
<br>
 +
Now both the similarities and the differences between binomial and Poisson distributed random variables shall be worked out again.
  
==Anwendungen der Poissonverteilung==
+
The&nbsp; &raquo;'''binomial distribution'''&laquo;&nbsp; is suitable for the description of such stochastic events,&nbsp; which are characterized by a given clock&nbsp; $T$. &nbsp; For example,&nbsp; for&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|'''ISDN''']]&nbsp; $($&raquo;Integrated Services Digital Network&raquo;$)$&nbsp; with&nbsp; $64 \ \rm kbit/s$ &nbsp; &rArr; &nbsp; the clock time&nbsp; $T \approx 15.6 \ \rm &micro; s$.
Die Poissonverteilung ist das Ergebnis eines so genannten Poissonprozesses. Ein solcher dient häufig als Modell für Folgen von Ereignissen, die zu zufälligen Zeitpunkten eintreten können. Beispiele für derartige Ereignisse sind
+
[[File:  EN_Sto_T_2_4_S3.png |right|frame| Binomial distribution&nbsp; $($blue$)$&nbsp; vs. Poisson distribution&nbsp; $($red$)$]]
*der Ausfall von Geräten – eine wichtige Aufgabenstellung in der Zuverlässigkeitstheorie,
 
*das Schrotrauschen bei der optischen Übertragung, und
 
*der Beginn von Telefongesprächen in einer Vermittlungsstelle („Verkehrstheorie”).  
 
  
  
{{Beispiel}}
+
#'''Binary events only occur in this time grid'''.&nbsp; Such events are,&nbsp; for example,&nbsp; error-free&nbsp; $(e_i = 0)$&nbsp; or errored&nbsp; $(e_i = 1)$&nbsp; transmission of individual symbols.  
Gehen bei einer Vermittlungsstelle im Langzeitmittel neunzig Vermittlungswünsche pro Minute (entsprechend $λ =$ 1.5 pro Sekunde) ein, so lauten die Wahrscheinlichkeiten $p_µ$, dass in einem beliebigen Zeitraum von einer Sekunde genau $\mu$ Belegungen auftreten:
+
#The binomial distribution now allows statistical statements about the number of transmission errors to be expected in a longer time interval&nbsp; $T_{\rm I} = I ⋅ T$&nbsp; according to the upper diagram of the graph&nbsp; $($time marked in blue$)$.
$$p_\mu = \frac{1.5^\mu}{\mu!}\cdot {\rm e}^{-1.5}.$$
 
  
Es ergeben sich die Zahlenwerte $p_0 =$ 0.223, $p_1 =$ 0.335, $p_2 =$ 0.251, usw.
 
  
Daraus lassen sich weitere Kenngrößen ableiten:
+
Also the&nbsp; &raquo;'''Poisson distribution'''&laquo;&nbsp; makes statements about the number of occurring binary events in a finite time interval:  
*Die Abtand $τ$ zwischen zwei Vermittlungswünschen genügt der [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Einseitige_Exponentialverteilung|Exponentialverteilung]].
+
#If one assumes the same observation period&nbsp; $T_{\rm I}$&nbsp; and increases the number&nbsp; $I$&nbsp; of subintervals more and more,&nbsp; then the clock time&nbsp; $T$,&nbsp; at which a new binary event&nbsp; $(0$&nbsp; or&nbsp; $1)$&nbsp; can occur,&nbsp; becomes smaller and smaller.&nbsp; In the limiting case:&nbsp; $T \to 0$.
*Die mittlere Zeitspanne zwischen Vermittlungswünschen beträgt E[ $τ$] $= 1/λ ≈$ 0.667 s.
+
#This means:&nbsp; In the Poisson distribution,&nbsp; '''the binary events are possible'''&nbsp; not only at discrete time  points given by a time grid,&nbsp; but&nbsp; '''at any time'''.&nbsp; 
 +
#In order to obtain during time&nbsp; $T_{\rm I}$&nbsp; on average exactly as many&nbsp; on average &raquo;ones&laquo;&nbsp; as in the binomial distribution&nbsp; $($in the example:&nbsp; six$)$,&nbsp; the characteristic probability related to the infinitesimally small  interval&nbsp; $T$&nbsp; must tend to&nbsp; $p = {\rm Pr}( e_i = 1)=0$.  
  
  
{{end}}
+
==Applications of the Poisson distribution==
 +
<br>
 +
The Poisson distribution is the result of a so-called&nbsp; [https://en.wikipedia.org/wiki/Poisson_point_process &raquo;Poisson process&laquo;].&nbsp; Such a process is often used as a model for sequences of events that may occur at random times.&nbsp; Examples of such events include
 +
#the prediction of equipmente failure &ndash; an important task in reliability theory,
 +
#the shot noise in optical transmission,&nbsp;  and
 +
#the start of telephone calls in a switching center&nbsp; $($&raquo;teletraffic engineering&laquo;$)$.
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; If ninety switching requests per minute&nbsp; $(λ = 1.5 \text{ per second})$&nbsp; are received by a switching center on a long&ndash;term average,&nbsp; the probabilities&nbsp; $p_\mu$&nbsp; that exactly&nbsp; $\mu$&nbsp; connections occur in any one-second period:
 +
:$$p_\mu = \frac{1.5^\mu}{\mu!}\cdot {\rm e}^{-1.5}.$$
 +
 
 +
This gives the numerical values &nbsp;$p_0 = 0.223$, &nbsp; $p_1 = 0.335$, &nbsp; $p_2 = 0.251$, etc.
 +
 
 +
From this,&nbsp; further characteristics can be derived:
 +
*The distance&nbsp; $τ$&nbsp; between two connection requests satisfies the&nbsp; [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#One-sided_exponential_distribution|&raquo;exponential distribution&laquo;]].
 +
 
 +
*So,&nbsp; the mean time interval between two connection requests is&nbsp; ${\rm E}[\hspace{0.05cm}τ\hspace{0.05cm}] = 1/λ ≈ 0.667 \ \rm s$.}}
 +
 
 +
 
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_2.5:_"Binomial"_or_"Poisson"%3F|Exercise 2.5: "Binomial" or "Poisson"?]]
 +
 
 +
[[Aufgaben:Exercise_2.5Z:_Flower_Meadow|Exercise 2.5Z: Flower Meadow]]
 +
 
  
 
{{Display}}
 
{{Display}}

Latest revision as of 18:58, 7 February 2024

Probabilities of the Poisson distribution


$\text{Definition:}$  The  »Poisson distribution«  is a limiting case of the  »binomial distribution»,  where

  • on the one hand,  the limit transitions  $I → ∞$  and  $p → 0$  are assumed,
  • additionally,  it is assumed that the product has following value:
$$I · p =\it λ.$$

The parameter  $\it \lambda $  gives the average number of  »ones«  in a fixed time unit and is called the  »rate«.


$\text{Further,  it should be noted:}$

  • In contrast to the binomial distribution  $(0 ≤ μ ≤ I)$  here the random quantity can take on arbitrarily large  $($integer,  non-negative$)$  values.
  • This means that the set of possible values is uncountable here.
  • But since no intermediate values can occur,  this is also called a  »discrete distribution«.


$\text{Calculation rule:}$  Considering above limit transitions for the  »probabilities of the binomial distribution«,  it follows for the  »Poisson distribution probabilities«:

$$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu )!} \cdot (\frac{\lambda}{I} )^\mu \cdot ( 1-\frac{\lambda}{I})^{I-\mu}.$$

From this,  after some algebraic transformations:

$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$


Binomial and Poisson probabilities

$\text{Example 1:}$  In the graph on the right can be seen the probabilities of

  • binomial distribution with  $I =6$,  $p = 0.4$,  $($blue arrows and labels$)$ 
  • Poisson distribution with  $λ = 2.4$   $($red arrows and labels$)$. 


You can recognize:

  1. Both distributions have the same mean  $m_1 = 2.4$.
  2. In the binomial distribution,  all probabilities  ${\rm Pr}(z > 6) \equiv 0$.
  3. In the Poisson distribution the outer values  are more probable than with the binomial distribution.
  4. Random variables  $z > 6$  are also possible with the Poisson distribution. 
  5. But their probabilities are also rather small at the chosen rate.


Moments of the Poisson distribution


$\text{Calculation rule:}$  »Mean«  and  »standard deviation«  are obtained directly from the  »corresponding equations of the binomial distribution«  by twofold limiting:

$$m_1 =\lim_{\left.{I\hspace{0.05cm}\to\hspace{0.05cm}\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0} }\right.} I \cdot p= \lambda,$$
$$\sigma =\lim_{\left.{I\hspace{0.05cm}\to\hspace{0.05cm}\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0} }\right.} \sqrt{I \cdot p \cdot (1-p)} = \sqrt {\lambda}.$$

From this it can be seen that with the Poisson distribution the variance is always 

$$σ^2 = m_1 = λ.$$


Moments of the Poisson distribution

$\text{Example 2:}$  As in  $\text{Example 1}$,  here we compare

  • the binomial distribution with  $I =6$,  $p = 0.4$,  $($blue arrows and labels$)$  and
  • the Poisson distribution with  $λ = 2.4$   $($red arrows and labels$)$. 


One can see from the accompanying sketch:

  1. Both distributions have exactly the same mean  $m_1 = 2.4$.
  2. For the red Poisson distribution,  the standard deviation  $σ ≈ 1.55$.
  3. In contrast,  for the blue binomial distribution,  the standard deviation is only  $σ = 1.2$.


⇒   With the interactive HTML 5/JavaScript applet  »Binomial and Poisson Distribution»,  you can

  • determine the probabilities and moments of the Poisson distribution for any  $λ$-values
  • and visualize the similarities and differences compared to the binomial distribution.


Comparison of binomial distribution vs. Poisson distribution


Now both the similarities and the differences between binomial and Poisson distributed random variables shall be worked out again.

The  »binomial distribution«  is suitable for the description of such stochastic events,  which are characterized by a given clock  $T$.   For example,  for  ISDN  $($»Integrated Services Digital Network»$)$  with  $64 \ \rm kbit/s$   ⇒   the clock time  $T \approx 15.6 \ \rm µ s$.

Binomial distribution  $($blue$)$  vs. Poisson distribution  $($red$)$


  1. Binary events only occur in this time grid.  Such events are,  for example,  error-free  $(e_i = 0)$  or errored  $(e_i = 1)$  transmission of individual symbols.
  2. The binomial distribution now allows statistical statements about the number of transmission errors to be expected in a longer time interval  $T_{\rm I} = I ⋅ T$  according to the upper diagram of the graph  $($time marked in blue$)$.


Also the  »Poisson distribution«  makes statements about the number of occurring binary events in a finite time interval:

  1. If one assumes the same observation period  $T_{\rm I}$  and increases the number  $I$  of subintervals more and more,  then the clock time  $T$,  at which a new binary event  $(0$  or  $1)$  can occur,  becomes smaller and smaller.  In the limiting case:  $T \to 0$.
  2. This means:  In the Poisson distribution,  the binary events are possible  not only at discrete time points given by a time grid,  but  at any time
  3. In order to obtain during time  $T_{\rm I}$  on average exactly as many  on average »ones«  as in the binomial distribution  $($in the example:  six$)$,  the characteristic probability related to the infinitesimally small interval  $T$  must tend to  $p = {\rm Pr}( e_i = 1)=0$.


Applications of the Poisson distribution


The Poisson distribution is the result of a so-called  »Poisson process«.  Such a process is often used as a model for sequences of events that may occur at random times.  Examples of such events include

  1. the prediction of equipmente failure – an important task in reliability theory,
  2. the shot noise in optical transmission,  and
  3. the start of telephone calls in a switching center  $($»teletraffic engineering«$)$.


$\text{Example 3:}$  If ninety switching requests per minute  $(λ = 1.5 \text{ per second})$  are received by a switching center on a long–term average,  the probabilities  $p_\mu$  that exactly  $\mu$  connections occur in any one-second period:

$$p_\mu = \frac{1.5^\mu}{\mu!}\cdot {\rm e}^{-1.5}.$$

This gives the numerical values  $p_0 = 0.223$,   $p_1 = 0.335$,   $p_2 = 0.251$, etc.

From this,  further characteristics can be derived:

  • So,  the mean time interval between two connection requests is  ${\rm E}[\hspace{0.05cm}τ\hspace{0.05cm}] = 1/λ ≈ 0.667 \ \rm s$.


Exercises for the chapter


Exercise 2.5: "Binomial" or "Poisson"?

Exercise 2.5Z: Flower Meadow