Difference between revisions of "Channel Coding/Examples of Binary Block Codes"

From LNTwww
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Binäre Blockcodes zur Kanalcodierung |Vorherige Seite=Kanalmodelle und Entscheiderstrukturen |Nächste Seite=Allgemeine Beschreibung li…“)
 
Line 36: Line 36:
 
*Für <i>k</i> = 2 &#8658; <i>n</i> = 3 ergeben sich die folgenden vier Codeworte, wobei in der ersten Zeile das Prüfbit jeweils durch einen kleinen Pfeil markiert ist:
 
*Für <i>k</i> = 2 &#8658; <i>n</i> = 3 ergeben sich die folgenden vier Codeworte, wobei in der ersten Zeile das Prüfbit jeweils durch einen kleinen Pfeil markiert ist:
  
:<math>\underline{x}_0 = (0, 0_{\hspace{0.05cm} \rightarrow}\hspace{0.05cm} 0)\hspace{0.05cm}, \hspace{0.2cm} \underline{x}_1 = (0, 1_{\hspace{0.05cm} \rightarrow}\hspace{0.05cm} 1)\hspace{0.05cm}, \hspace{0.2cm}
+
::<math>\underline{x}_0 = (0, 0_{\hspace{0.05cm} \rightarrow}\hspace{0.05cm} 0)\hspace{0.05cm}, \hspace{0.2cm} \underline{x}_1 = (0, 1_{\hspace{0.05cm} \rightarrow}\hspace{0.05cm} 1)\hspace{0.05cm}, \hspace{0.2cm}
 
\underline{x}_2 = (1, 0 _{\hspace{0.05cm} \rightarrow}\hspace{0.05cm} 1)\hspace{0.05cm}, \hspace{0.2cm} \underline{x}_3 = (1, 1 _{\hspace{0.05cm} \rightarrow}\hspace{0.05cm} 0)</math>
 
\underline{x}_2 = (1, 0 _{\hspace{0.05cm} \rightarrow}\hspace{0.05cm} 1)\hspace{0.05cm}, \hspace{0.2cm} \underline{x}_3 = (1, 1 _{\hspace{0.05cm} \rightarrow}\hspace{0.05cm} 0)</math>
  

Revision as of 22:45, 8 January 2017

Single Parity–check Codes (1)


Der Single Parity–check Code (SPC) fügt zu dem Informationsblock u = (u1, u2, ... , uk) ein Prüfbit (englisch: Parity) p hinzu:

u_=(u1,u2,...,uk)x_=(x1,x2,...,xn)=(u1,u2,...,uk,p).

Die Grafik zeigt drei Beispiele solcher Codes mit |C| = 4 (k = 2), |C| = 8 (k = 3) und |C| = 16 (k = 4).

Single Parity–check Code (n = k + 1)

Dieser sehr einfache Code ist wie folgt charakterisiert:

  • Aus n = k + 1 folgt für die Coderate R = k/n = (n – 1)/n und für die Redundanz 1 – R = 1/n. Für k = 2 ergibt sich zum Beispiel die Coderate 2/3 und die relative Redundanz beträgt 33.3%.
  • Das Prüfbit erhält man durch die Modulo–2–Addition. Darunter versteht man die Addition im Galoisfeld zur Basis 2  ⇒  GF(2), sodass 1⊕1 = 0 ergibt:
p=u1u2...uk.
  • Damit enthält jedes gültige Codewort x eine gerade Anzahl von Einsen. Ausgedrückt mit ⊕ bzw. in vereinfachter Schreibweise entsprechend der zweiten Gleichung lautet diese Bedingung:
x1x2...xn=0,oder:ni=1xi=0,AdditioninGF(2).
  • Für k = 2 ⇒ n = 3 ergeben sich die folgenden vier Codeworte, wobei in der ersten Zeile das Prüfbit jeweils durch einen kleinen Pfeil markiert ist:
x_0=(0,00),x_1=(0,11),x_2=(1,01),x_3=(1,10)
  • Es handelt sich um einen linearen Code, da die Summe zweier beliebiger Codeworte wieder ein gültiges Codewort ergibt, zum Beispiel x1x2 = x3.
  • Für beliebiges k  ⇒  n = k + 1 unterscheidet sich jedes Codewort von allen anderen an einer geraden Anzahl von Positionen. Bei diesem Code ist die minimale Distanz dmin = 2.

Mit der allgemeinen Codebezeichnung (n, k, dmin) lässt sich jeder Single Parity–check Code auch mit (n, n – 1, 2) benennen. Die Grafik zeigt den SPC (3, 2, 2), den SPC (4, 3, 2) und den SPC (5, 4, 2).

: Jeder Single Parity–check Code (SPC) lässt sich formal wie folgt beschreiben: C={x_GF(2n):mitgeradzahligerAnzahlvonEinseninx_}.