Difference between revisions of "Aufgaben:Exercise 3.3: p-Transfer Function"

From LNTwww
 
(31 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Transformation und p–Übertragungsfunktion
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function
 
}}
 
}}
  
[[File:P_ID1765__LZI_A_3_3.png|right|Betrachteter Vierpol ]]
+
[[File:P_ID1765__LZI_A_3_3.png|right|frame|Considered two-port network]]
Jedes lineare zeitinvariante System, das durch eine Schaltung aus diskreten zeitkonstanten Bauelementen (Widerstände $R$, Kapazitäten $C$, Induktivitäten $L$, Verstärkerelemente, usw.) realisiert werden kann, ist kausal und besitzt zudem eine gebrochen&ndash;rationale <i>p</i>&ndash;Übertragungsfunktion der Form
+
Any linear time-invariant system that can be realized by a circuit of discrete time-constant components&nbsp; (resistances &nbsp;$R$,&nbsp; capacitances &nbsp;$C$,&nbsp; inductances &nbsp;$L$,&nbsp; amplifier elements, etc.)&nbsp; is causal and has a fractional&ndash;rational&nbsp; $p$&ndash;transfer function of the form
:$$H_{\rm L}(p)= \frac {A_Z \cdot p^Z + ... + A_1 \cdot p + A_0}
+
:$$H_{\rm L}(p)= \frac {A_Z \cdot p^Z +\text{ ...} + A_1 \cdot p + A_0}
  {B_N \cdot p^N + ... + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)}
+
  {B_N \cdot p^N + \text{ ...} + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
Alle Koeffizienten $A_Z$, ... , $A_0$, $B_N$, ... , $B_0$ sind reell. $Z$ bezeichnet den Grad des Zählerpolynoms $Z(p)$ und $N$ den Grad des Nennerpolynoms  $N(p)$. Eine äquivalente Darstellungsform obiger Gleichung lautet:
+
*All coefficients&nbsp; $A_Z$, ... ,&nbsp; $A_0$,&nbsp; $B_N$, ... ,&nbsp; $B_0$&nbsp; are real.  
 +
*$Z$&nbsp; denotes the degree of the numerator polynomial&nbsp; $Z(p)$.
 +
*$N$&nbsp; denotes the degree of the denominator polynomial&nbsp; $N(p)$&nbsp;.  
 +
 
 +
 
 +
An equivalent representation form of the above equation is:
 
:$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i}}
 
:$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i}}
  {\prod\limits_{i=1}^N p - p_{\rm x i}}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot ... \cdot (p - p_{{\rm o} \hspace{-0.03cm} Z})}
+
  {\prod\limits_{i=1}^N p - p_{\rm x i}}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{ ...} \cdot (p - p_{{\rm o} \hspace{-0.03cm} Z})}
  {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot ... \cdot (p - p_{{\rm x} \hspace{-0.03cm} N})}
+
  {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{ ...} \cdot (p - p_{{\rm x} \hspace{-0.03cm} N})}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
Die $Z + N + 1$ Parameter bedeuten:
+
The&nbsp; $Z + N + 1$&nbsp; parameters mean:
* $K = A_Z/B_n$ ist ein konstanter Faktor. Gilt $Z = N$, so ist dieser dimensionslos.
+
* $K = A_Z/B_n$&nbsp; is a constant factor.&nbsp; If &nbsp;$Z = N$ applies, then this is dimensionless.
* Die Lösungen der Gleichung $Z(p) = 0$ ergeben die $Z$ Nullstellen $p_{{\rm o}1}$, ... , $p_{{\rm o}N}$ von $H_{\rm L}(p)$.
+
* The solutions of the equation &nbsp;$Z(p) = 0$&nbsp; yield the &nbsp;$Z$ zeros &nbsp;$p_{{\rm o}1}$, ... , $p_{{\rm o}Z}$&nbsp; of &nbsp;$H_{\rm L}(p)$.
* Die Nullstellen des Nennerpolynoms $N(p)$ ergeben die $N$ Polstellen $p_{{\rm x}1}$, ... , $p_{{\rm x}N}$ der Übertragungsfunktion.
+
* The zeros of the denominator polynomial &nbsp;$N(p)$&nbsp; yield the &nbsp;$N$ &nbsp;poles &nbsp;$p_{{\rm x}1}$, ... , $p_{{\rm x}N}$&nbsp; of the transfer function.
 +
 
 +
 
 +
These characteristics are to be determined for the circuit shown in the diagram with the following components:
 +
:$$R = 50\,\,{\rm \Omega}\hspace{0.05cm},\hspace{0.2cm} L = 10\,\,{\rm &micro; H}\hspace{0.05cm},\hspace{0.2cm}C = 25\,\,{\rm nF}$$
 +
 
 +
Additionally, the Fourier frequency response&nbsp; $H(f)$&nbsp; is to be determined which arises as a result from&nbsp; $H_{\rm L}(p)$&nbsp; by the substitution&nbsp; $p= {\rm j } \cdot 2\pi f$&nbsp;.
 +
 
 +
 
 +
 
 +
 
  
Diese Kenngrößen sollen für die in der Grafik gezeigten Schaltung mit den Bauelementen
 
:$$R = 50\,\,{\rm \Omega}\hspace{0.05cm},\hspace{0.2cm} L = 10\,\,{\rm \mu H}\hspace{0.05cm},\hspace{0.2cm}C = 25\,\,{\rm nF}$$
 
  
ermittelt werden. Außerdem soll der Frequenzgang $H(f)$ nach Fourier bestimmt werden, der sich aus $H_{\rm L}(p)$ durch die Substitution $p= {\rm j } \cdot 2\pi f$ ergibt.
 
  
''Hinweise:''
+
Please note:  
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace–Transformation und p–Übertragungsfunktion]].
+
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|Laplace Transform and p-Transfer Function]].
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
*Als Hilfsgrößen werden in dieser Aufgabe verwendet:
+
*The following are the auxiliary quantities used in this exercise:
 
:$$A = \frac{R}{2L}\hspace{0.05cm},\hspace{0.2cm} B = \frac{1}{\sqrt{LC}}\hspace{0.05cm} .$$
 
:$$A = \frac{R}{2L}\hspace{0.05cm},\hspace{0.2cm} B = \frac{1}{\sqrt{LC}}\hspace{0.05cm} .$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie die $p$&ndash;Übertragungsfunktion. Welche asymptotischen Werte erhält man für $p &#8594; 0$ und $p &#8594; \infty$?
+
{Determine the &nbsp;$p$&ndash;transfer function.&nbsp; What asymptotic values are obtained for &nbsp;$p &#8594; 0$&nbsp; and &nbsp;$p &#8594; \infty$?
 
|type="{}"}
 
|type="{}"}
$H_L(p &#8594; 0) \ =$  { 1 3% }
+
$H_L(p &#8594; 0) \ = \ $  { 1 3% }
$H_L(p &#8594; &#8734;) \ =$ { 1 3% }
+
$H_L(p &#8594; &#8734;) \ = \ $ { 1 3% }
  
  
{Ermitteln Sie aus $H_{\rm L}(p)$ den Frequenzgang $H(f)$, indem Sie $p= {\rm j } \cdot 2\pi f$ setzen. Welche der folgenden Aussagen treffen zu?
+
{Find the frequency response &nbsp;$H(f)$ from &nbsp;$H_{\rm L}(p)$&nbsp; by setting &nbsp;$p= {\rm j } \cdot 2\pi f$&nbsp;.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Es handelt sich um einen Bandpass.
+
- It is a band-pass filter.
+ Es handelt sich um eine Bandsperre.
+
+ It is a band-stop filter.
- Ohne genaue Kenntnis von $R$, $L$ und $C$ ist keine Aussage möglich.
+
- Without exact knowledge of &nbsp;$R$, &nbsp;$L$ and &nbsp;$C$&nbsp; it is not possible to make a statement.
  
  
{Berechnen Sie die Hilfsgrößen $A$ und $B$ für $R = 50 \ \rm \Omega$, $L = 10 \ &mu;\rm H$, $C = 25 \ \rm nF$.
+
{Compute the auxiliary quantities&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; for &nbsp;$R = 50 \ \rm \Omega$, &nbsp;$L = 10 \ &micro;\rm H$, &nbsp;$C = 25 \ \rm nF$.
 
|type="{}"}
 
|type="{}"}
$A \ =$ { 2.5 3% } $\cdot \ 10^6 \ \rm 1/s$
+
$A \ = \ $ { 2.5 3% } $\ \cdot \ 10^6 \ \rm 1/s$
$B \ =$ { 2 3% } $\cdot \ 10^6 \ \rm 1/s$
+
$B \ = \ $ { 2 3% } $\ \cdot \ 10^6 \ \rm 1/s$
  
  
{Stellen Sie $H_{\rm L}(p)$ in Pol&ndash;Nullstellen&ndash;Form dar. Wieviele Nullstellen ($Z$) und Pole ($N$) gibt es? Wie groß ist der konstante Faktor $K$?
+
{Express &nbsp;$H_{\rm L}(p)$&nbsp; in pole&ndash;zero form.&nbsp; How many zeros&nbsp; $(Z)$&nbsp; and poles&nbsp; $(N)$&nbsp; are there?&nbsp; What is the constant factor &nbsp;$K$?
 
|type="{}"}
 
|type="{}"}
$Z \ =$  { 2 3% }
+
$Z \ = \ $  { 2 3% }
$N \ =$ { 2 3% }
+
$N \ = \ $ { 2 3% }
$K \ =$ { 1 3% }
+
$K \ = \ $ { 1 3% }
  
  
{Berechnen Sie die Nullstellen $p_\text{o1}$ und $p_\text{o1}$. Beachten Sie die Einheit $\rm 1/&mu;s$.
+
{Compute the zeros &nbsp;$p_\text{o1}$ (in the upper half-plane) and &nbsp;$p_\text{o2}$ (in the lower half-plane). &nbsp;Consider the unit &nbsp;$\rm 1/ &micro;s$.
 
|type="{}"}
 
|type="{}"}
obere Halbebene: &nbsp;&nbsp; ${\rm Re}\{p_\text{o1}\} \ =$ { 0. } $\ \rm 1/ \mu s$
+
${\rm Re}\{p_\text{o1}\} \ =\ $ { 0. } $\ \rm 1/ &micro; s$
${\rm Im}\{p_\text{o1}\} \ =$ { 2.5 3% } $\ \rm 1/ \mu s$
+
${\rm Im}\{p_\text{o1}\} \ = \ $ { 2.5 3% } $\ \rm 1/ &micro; s$
untere Halbebene: &nbsp;&nbsp; ${\rm Re}\{p_\text{o2}\} \ =$ { 0. } $\ \rm 1/ \mu s$
+
${\rm Re}\{p_\text{o2}\} \ =\ $ { 0. } $\ \rm 1/ &micro; s$
${\rm Re}\{p_\text{o2}\} \ =$  { -2.57--2.43 } $\ \rm1/ \mu s$
+
${\rm Re}\{p_\text{o2}\} \ = \ $  { -2.57--2.43 } $\ \rm1/ &micro; s$
  
  
{Berechnen Sie die Pole $p_\text{x1}$ und $p_\text{x2}$. Es gelte $|p_\text{x2}| > p_\text{x1}$|.
+
{Compute the poles &nbsp;$p_\text{x1}$&nbsp; and &nbsp;$p_\text{x2}$.&nbsp; Let &nbsp;$|p_\text{x2}| > |p_\text{x1}|$ hold.
 
|type="{}"}
 
|type="{}"}
${\rm Re}\{p_\text{x1}\} \ =$  { -1.03--0.97 } $\ \rm 1/ \mu s$
+
${\rm Re}\{p_\text{x1}\} \ =\ $  { -1.03--0.97 } $\ \rm 1/ &micro; s$
${\rm Im}\{p_\text{x1}\} \ =$ { 0. } $\ \rm 1/ \mu s$
+
${\rm Im}\{p_\text{x1}\} \ =\ $ { 0. } $\ \rm 1/ &micro; s$
${\rm Re}\{p_\text{x2}\} \ =$ { -4.12--3.88 } $\ \rm 1/ \mu s$
+
${\rm Re}\{p_\text{x2}\} \ =\ $ { -4.12--3.88 } $\ \rm 1/ &micro; s$
${\rm Im}\{p_\text{x2}\} \ =$ { 0. } $\ \rm 1/ \mu s$
+
${\rm Im}\{p_\text{x2}\} \ =\ $ { 0. } $\ \rm 1/ &micro; s$
  
  
{Wie kann man ohne Änderung der Nullstellen die Lage der Pole verändern?
+
{How can you change the position of the poles without changing the zeros?
 
|type="[]"}
 
|type="[]"}
+ Änderung von $R$. $L$ und $C$ gleichbleibend.
+
+ Change of&nbsp; $R$; &nbsp; $L$ and $C$ unchanged.
- Änderung von $L$. $R$ und <i>C</i> gleichbleibend.
+
- Change of&nbsp; $L$; &nbsp; $R$ and $C$ unchanged.
- Änderung von <i>C</i>. $L$ und $R$ gleichbleibend.
+
- Change of&nbsp; $C$; &nbsp; $L$ and $R$ unchanged.
  
  
{Wie muss die Hilfsgröße $A$ verändert werden ($B$ gleichbleibend), damit eine doppelte Polstelle auftritt (aperiodischer Grenzfall)?  
+
{How must the auxiliary quantity&nbsp; $A$&nbsp; be changed&nbsp; $(B$ unchanged$)$ so that a double pole occurs&nbsp; (critically-damped case)?  
 
|type="{}"}
 
|type="{}"}
$A \ =$  { 2 3% } $\rm \cdot 10^6\ 1/s$
+
$A \ =\ $  { 2 3% } $\ \rm \cdot 10^6\ 1/s$
  
  
Line 92: Line 104:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Nach dem Spannungsteilerprinzip kann für die $p$&ndash;Übertragungsfunktion geschrieben werden:
+
'''(1)'''&nbsp; According to the voltage divider principle,&nbsp; the following can be written for the $p$&ndash;transfer function:
$$H_{\rm L}(p)= \frac {pL +{1}/{(pC)}}
+
:$$H_{\rm L}(p)= \frac {pL +{1}/{(pC)}}
 
  {R + pL + {1}/{(pC)}}= \frac { p^2 \cdot{LC}+1}
 
  {R + pL + {1}/{(pC)}}= \frac { p^2 \cdot{LC}+1}
 
  {p^2 \cdot{LC} + p \cdot{RC}+ 1}
 
  {p^2 \cdot{LC} + p \cdot{RC}+ 1}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
Die beiden gewünschten Grenzübergänge ergeben sich zu
+
*The two desired limit processes yield:
$$\underline {H_{\rm L}(p \rightarrow 0)= 1, \hspace{0.2cm}H_{\rm L}(p \rightarrow \infty)= 1}
+
:$$\underline {H_{\rm L}(p \rightarrow 0)= 1, \hspace{0.2cm}H_{\rm L}(p \rightarrow \infty)= 1}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
Daraus folgt, dass es sich weder um einen Tiefpass noch um einen Hochpass handeln kann. Sowohl bei sehr niedrigen als auch bei sehr hohen Frequenzen gilt $y(t)=x(t)$.
+
:#From this it follows that it can be neither a low-pass filter nor a high-pass filter.
 +
:#Both at very low and very high frequencies, &nbsp; $y(t)=x(t)$ holds.
 +
 
  
  
'''(2)'''&nbsp; Ersetzt man $p$ durch ${\rm j } \cdot 2\pi f$, so erhält man
+
'''(2)'''&nbsp; <u>Suggested solution 2</u>&nbsp; is correct:
$$H(f)= \frac {1 - (2\pi f)^2 \cdot LC}
+
*Replacing&nbsp; $p$&nbsp; by&nbsp; ${\rm j } \cdot 2\pi f$ the following is obtained:
 +
:$$H(f)= \frac {1 - (2\pi f)^2 \cdot LC}
 
  {1 - (2\pi f)^2 \cdot LC + {\rm j} \cdot 2\pi f \cdot RC}
 
  {1 - (2\pi f)^2 \cdot LC + {\rm j} \cdot 2\pi f \cdot RC}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
Es gibt also stets eine Frequenz, bei der der Zähler $0$ ist, nämlich die Resonanzfrequenz von $L$ und $C$. Für diese Frequenz $f_0 = 1 \ \rm MHz/2\pi$ wirkt die Reihenschaltung von $L$ und $C$ wie ein Kurzschluss. Daraus folgt: Unabhängig von den Werten von $R$, $L$ und $C$ handelt es sich um eine <u>Bandsperre (Lösungsvorschlag 2)</u>.
+
*So,&nbsp; there is always a frequency at which the numerator is zero, namely the resonance frequency of&nbsp; $L$&nbsp; and&nbsp; $C$.  
 +
*For this frequency &nbsp;$f_0 = 1 \ \rm MHz/2\pi$&nbsp; the series connection of &nbsp;$L$&nbsp; and &nbsp;$C$&nbsp; acts like a short circuit.  
 +
*From this it follows:&nbsp; Regardless of the values of &nbsp;$R$, &nbsp;$L$&nbsp; and &nbsp;$C$ it is a&nbsp; $\rm band&ndash;stop \:filter$.
 +
 
  
  
'''(3)'''&nbsp; Entsprechend dem Angabenblatt gilt:
+
'''(3)'''&nbsp; The following holds according to the information sheet:
$$A = \frac{R}{2L}= \frac{50\,{\rm \Omega}}{2 \cdot 10\,{\rm \mu H}} = \frac{50\,{\rm \Omega}}{2 \cdot 10^{-5 }\,{\rm \Omega s}}\hspace{0.15cm} \underline {=
+
:$$A = \frac{R}{2L}= \frac{50\,{\rm \Omega}}{2 \cdot 10\,{\rm \mu H}} = \frac{50\,{\rm \Omega}}{2 \cdot 10^{-5 }\,{\rm \Omega s}}\hspace{0.15cm} \underline {=
 
  2.5} \cdot 10^6 \, \,{1}/{\rm s}\hspace{0.05cm},$$
 
  2.5} \cdot 10^6 \, \,{1}/{\rm s}\hspace{0.05cm},$$
$$ B = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-5 }\,{\rm \Omega s} \cdot 25 \cdot 10^{-9 }\,{\rm s/\Omega }}}\hspace{0.15cm} \underline {=
+
:$$ B = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-5 }\,{\rm \Omega s} \cdot 25 \cdot 10^{-9 }\,{\rm s/\Omega }}}\hspace{0.15cm} \underline {=
 
  2.0} \cdot 10^6 \, \,{1}/{\rm s}\hspace{0.05cm} .$$
 
  2.0} \cdot 10^6 \, \,{1}/{\rm s}\hspace{0.05cm} .$$
  
  
'''(4)'''&nbsp; Mit $A=R/(2L)$ und $B^2 = 1/(LC)$ erhält man aus der in der Teilaufgabe (1) ermittelten $p$&ndash;Übertragungsfunktion:
+
 
$$H_{\rm L}(p)=  \frac { p^2 + {1}/(LC)}
+
'''(4)'''&nbsp; Using &nbsp;$A=R/(2L)$&nbsp; and &nbsp;$B^2 = 1/(LC)$&nbsp; the following is obtained from the&nbsp; $p$&ndash;transfer function determined in subtask&nbsp; '''(1)'''&nbsp;:
 +
:$$H_{\rm L}(p)=  \frac { p^2 + {1}/(LC)}
 
  {p^2 + p \cdot{R}/{L} +{1}/(LC)} = \frac { p^2 + B^2}
 
  {p^2 + p \cdot{R}/{L} +{1}/(LC)} = \frac { p^2 + B^2}
 
  {p^2 + 2A \cdot p + B^2}
 
  {p^2 + 2A \cdot p + B^2}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
Zählerpolynom $Z(p)$ und Nennerpolynom $N(p)$ sind jeweils quadratisch &#8658; $\underline {Z = N = 2}$. Der konstante Faktor ergibt sich zu $\underline {K = 1}$.
+
*The numerator polynomial &nbsp;$Z(p)$&nbsp; and the denominator polynomial &nbsp;$N(p)$&nbsp; are each quadratic &nbsp; &#8658; &nbsp; $\underline {Z = N = 2}$.
 +
*The constant factor is &nbsp;$\underline {K = 1}$.
 +
 
  
  
'''(5)'''&nbsp; Die Lösung der Gleichung $p^2 + B^2 = 0$ führt zum Ergebnis $p = \pm {\rm j} \cdot B$ und damit zu den Nullstellen
+
'''(5)'''&nbsp; Solving the equation &nbsp;$p^2 + B^2 = 0$&nbsp; leads to the result &nbsp;$p = \pm {\rm j} \cdot B$&nbsp; and thus to the zeros
$${\rm Re}\{ p_{\rm o1}\} \underline {= 0}\hspace{-0.3cm}  \hspace{1cm}{\rm Im}\{ p_{\rm o1}\} \underline {=+2.5} \cdot 10^6 \, {1}/{{\rm
+
:$${\rm Re}\{ p_{\rm o1}\} \underline {= 0}\hspace{-0.3cm}  \hspace{1cm}{\rm Im}\{ p_{\rm o1}\} \underline {=+2.5} \cdot 10^6 \, {1}/{{\rm
 
  s}}  \hspace{0.05cm},$$
 
  s}}  \hspace{0.05cm},$$
$$ {\rm Re}\{ p_{\rm o2}\}\hspace{0.15cm} \underline { = 0}\hspace{-0.3cm}  \hspace{1cm}{\rm Im}\{ p_{\rm o2}\} \underline {=-2.5} \cdot 10^6 \, {1}/{{\rm
+
:$$ {\rm Re}\{ p_{\rm o2}\}\hspace{0.15cm} \underline { = 0}\hspace{-0.3cm}  \hspace{1cm}{\rm Im}\{ p_{\rm o2}\} \underline {=-2.5} \cdot 10^6 \, {1}/{{\rm
 
  s}}  \hspace{0.05cm}.$$
 
  s}}  \hspace{0.05cm}.$$
  
Die Normierung der Frequenzvariablen  $p$ und aller Pole und Nullstellen auf die Einheit ($ \ \rm 1/\mu s$) würde die numerische Auswertung vereinfachen, insbesondere im Zeitbereich. Verzichtet man auf die Einheit ganz, so ergeben sich alle $t$&ndash;Werte in Mikrosekunden.
+
*The normalization of the variable &nbsp;$p$&nbsp; and all poles and zeros to the unit &nbsp;$( \rm 1/&micro; s)$&nbsp; simplifies the numerical evaluation,&nbsp; especially in the time domain.  
 +
*If the unit is dispensed with altogether,&nbsp; all&nbsp; $t$&ndash;values are obtained in microseconds.
 +
 
  
  
'''(6)'''&nbsp; Setzt man das Nennerpolynom $N(p) = 0$, so ergibt sich folgende Bestimmungsgleichung:
+
'''(6)'''&nbsp; If the denominator polynomial is set &nbsp;$N(p) = 0$,&nbsp; the following conditional equation arises as a result:
$$p^2 + 2A \cdot p + B^2 = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
:$$p^2 + 2A \cdot p + B^2 = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  p_{\rm x1,\hspace{0.05cm}2}= -A \pm \sqrt{A^2 - B^2}
 
  p_{\rm x1,\hspace{0.05cm}2}= -A \pm \sqrt{A^2 - B^2}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
$${\rm Mit}\hspace{0.2cm}A =  2.5 \cdot 10^6 \dot {1}/{\rm s}\hspace{0.05cm},\hspace{0.2cm}
+
:$${\rm Mit}\hspace{0.2cm}A =  2.5 \cdot 10^6 \cdot {1}/{\rm s}\hspace{0.05cm},\hspace{0.2cm}
 
  \sqrt{A^2 - B^2}=  1.5 \cdot 10^6 \cdot {1}/{{\rm
 
  \sqrt{A^2 - B^2}=  1.5 \cdot 10^6 \cdot {1}/{{\rm
 
  s}}\hspace{0.05cm}:$$
 
  s}}\hspace{0.05cm}:$$
  
$${\rm Re}\{ p_{\rm x1}\}\hspace{0.15cm} \underline {= -1} \cdot 10^6 \cdot {1}/{{\rm
+
:$${\rm Re}\{ p_{\rm x1}\}\hspace{0.15cm} \underline {= -1} \cdot 10^6 \cdot {1}/{{\rm
 
  s}}\hspace{0.15cm} \underline {= -1}  \cdot {1}/{{\rm
 
  s}}\hspace{0.15cm} \underline {= -1}  \cdot {1}/{{\rm
 
  \mu s}}, \hspace{0.2cm}{\rm Im}\{ p_{\rm x1}\}\hspace{0.15cm} \underline { = 0} \hspace{0.05cm},$$
 
  \mu s}}, \hspace{0.2cm}{\rm Im}\{ p_{\rm x1}\}\hspace{0.15cm} \underline { = 0} \hspace{0.05cm},$$
$${\rm Re}\{ p_{\rm x2}\}\hspace{0.15cm} \underline {= -4} \cdot 10^6 \cdot {1}/{{\rm
+
:$${\rm Re}\{ p_{\rm x2}\}\hspace{0.15cm} \underline {= -4} \cdot 10^6 \cdot {1}/{{\rm
 
  s}}\hspace{0.15cm} \underline {= -4}  \cdot {1}/{{\rm
 
  s}}\hspace{0.15cm} \underline {= -4}  \cdot {1}/{{\rm
 
  \mu s}}, \hspace{0.2cm}{\rm Im}\{ p_{\rm x1}\}\hspace{0.15cm} \underline { = 0} \hspace{0.05cm}.$$
 
  \mu s}}, \hspace{0.2cm}{\rm Im}\{ p_{\rm x1}\}\hspace{0.15cm} \underline { = 0} \hspace{0.05cm}.$$
  
Dieses Ergebnis ist nur eindeutig unter Berücksichtigung der Angabe  $|p_\text{x2}| > p_\text{x1}$|.
+
This result is only unique considering the specification &nbsp;$|p_\text{x2}| > |p_\text{x1}|$.
 +
 
 +
 
  
 +
'''(7)'''&nbsp; <u>Suggested solution 1</u>&nbsp; is correct:
 +
*Since only one of the components is to be changed, &nbsp;$L$&nbsp; and &nbsp;$C$&nbsp; must remain the same because otherwise the zeros would also be shifted.
 +
* The resistance value &nbsp;$R$&nbsp; must be changed.
  
'''(7)'''&nbsp; Da man nur eines der Bauelemente ändern soll, müssen $L$ und $C$ gleich bleiben, da sonst auch die Nullstellen verschoben würden &nbsp;&#8658;&nbsp; man muss den Widerstandswert $R$ ändern &nbsp;&#8658;&nbsp; <u>Antwort 1</u>.
 
  
  
'''(8)'''&nbsp; Entsprechend dem Ergebnis aus (7) ergibt sich eine doppelte Polstelle für $\underline {A = B = 2 \cdot 10^{-6} \cdot \rm  1/s}$.  
+
'''(8)'''&nbsp; According to the result in subtask&nbsp; '''(7)'''&nbsp; there is a double pole for &nbsp;$\underline {A = B = 2 \cdot 10^{-6} \cdot \rm  1/s}$.  
*Dazu muss der Ohmsche Widerstand von $50 \ \rm \Omega$ auf $40 \ \rm \Omega$ herabgesetzt werden.  
+
*To do this,&nbsp; the ohmic resistance must be reduced from &nbsp;$50 \ \rm \Omega$&nbsp; to &nbsp;$40 \ \rm \Omega$&nbsp;.  
*Der doppelte Pol liegt dann bei ${-2 \cdot 10^{6} \cdot \rm  1/s}$. Oder bei anderer Normierung bei ${-2 \cdot \rm  (1/\mu s)}$.
+
*Then,&nbsp; the double pole is at &nbsp;${-2 \cdot 10^{6} \cdot \rm  1/s}$.  
 +
*Or with another normalization at &nbsp;${-2 \cdot \rm  (1/&micro; s)}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.2 Laplace–Transformation und p–Übertragungsfunktion^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.2 Laplace Transform and p-Transfer Function^]]

Latest revision as of 14:16, 13 October 2021

Considered two-port network

Any linear time-invariant system that can be realized by a circuit of discrete time-constant components  (resistances  $R$,  capacitances  $C$,  inductances  $L$,  amplifier elements, etc.)  is causal and has a fractional–rational  $p$–transfer function of the form

$$H_{\rm L}(p)= \frac {A_Z \cdot p^Z +\text{ ...} + A_1 \cdot p + A_0} {B_N \cdot p^N + \text{ ...} + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)} \hspace{0.05cm} .$$
  • All coefficients  $A_Z$, ... ,  $A_0$,  $B_N$, ... ,  $B_0$  are real.
  • $Z$  denotes the degree of the numerator polynomial  $Z(p)$.
  • $N$  denotes the degree of the denominator polynomial  $N(p)$ .


An equivalent representation form of the above equation is:

$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i}} {\prod\limits_{i=1}^N p - p_{\rm x i}}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{ ...} \cdot (p - p_{{\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{ ...} \cdot (p - p_{{\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$

The  $Z + N + 1$  parameters mean:

  • $K = A_Z/B_n$  is a constant factor.  If  $Z = N$ applies, then this is dimensionless.
  • The solutions of the equation  $Z(p) = 0$  yield the  $Z$ zeros  $p_{{\rm o}1}$, ... , $p_{{\rm o}Z}$  of  $H_{\rm L}(p)$.
  • The zeros of the denominator polynomial  $N(p)$  yield the  $N$  poles  $p_{{\rm x}1}$, ... , $p_{{\rm x}N}$  of the transfer function.


These characteristics are to be determined for the circuit shown in the diagram with the following components:

$$R = 50\,\,{\rm \Omega}\hspace{0.05cm},\hspace{0.2cm} L = 10\,\,{\rm µ H}\hspace{0.05cm},\hspace{0.2cm}C = 25\,\,{\rm nF}$$

Additionally, the Fourier frequency response  $H(f)$  is to be determined which arises as a result from  $H_{\rm L}(p)$  by the substitution  $p= {\rm j } \cdot 2\pi f$ .




Please note:

  • The following are the auxiliary quantities used in this exercise:
$$A = \frac{R}{2L}\hspace{0.05cm},\hspace{0.2cm} B = \frac{1}{\sqrt{LC}}\hspace{0.05cm} .$$


Questions

1

Determine the  $p$–transfer function.  What asymptotic values are obtained for  $p → 0$  and  $p → \infty$?

$H_L(p → 0) \ = \ $

$H_L(p → ∞) \ = \ $

2

Find the frequency response  $H(f)$ from  $H_{\rm L}(p)$  by setting  $p= {\rm j } \cdot 2\pi f$ .  Which of the following statements are true?

It is a band-pass filter.
It is a band-stop filter.
Without exact knowledge of  $R$,  $L$ and  $C$  it is not possible to make a statement.

3

Compute the auxiliary quantities  $A$  and  $B$  for  $R = 50 \ \rm \Omega$,  $L = 10 \ µ\rm H$,  $C = 25 \ \rm nF$.

$A \ = \ $

$\ \cdot \ 10^6 \ \rm 1/s$
$B \ = \ $

$\ \cdot \ 10^6 \ \rm 1/s$

4

Express  $H_{\rm L}(p)$  in pole–zero form.  How many zeros  $(Z)$  and poles  $(N)$  are there?  What is the constant factor  $K$?

$Z \ = \ $

$N \ = \ $

$K \ = \ $

5

Compute the zeros  $p_\text{o1}$ (in the upper half-plane) and  $p_\text{o2}$ (in the lower half-plane).  Consider the unit  $\rm 1/ µs$.

${\rm Re}\{p_\text{o1}\} \ =\ $

$\ \rm 1/ µ s$
${\rm Im}\{p_\text{o1}\} \ = \ $

$\ \rm 1/ µ s$
${\rm Re}\{p_\text{o2}\} \ =\ $

$\ \rm 1/ µ s$
${\rm Re}\{p_\text{o2}\} \ = \ $

$\ \rm1/ µ s$

6

Compute the poles  $p_\text{x1}$  and  $p_\text{x2}$.  Let  $|p_\text{x2}| > |p_\text{x1}|$ hold.

${\rm Re}\{p_\text{x1}\} \ =\ $

$\ \rm 1/ µ s$
${\rm Im}\{p_\text{x1}\} \ =\ $

$\ \rm 1/ µ s$
${\rm Re}\{p_\text{x2}\} \ =\ $

$\ \rm 1/ µ s$
${\rm Im}\{p_\text{x2}\} \ =\ $

$\ \rm 1/ µ s$

7

How can you change the position of the poles without changing the zeros?

Change of  $R$;   $L$ and $C$ unchanged.
Change of  $L$;   $R$ and $C$ unchanged.
Change of  $C$;   $L$ and $R$ unchanged.

8

How must the auxiliary quantity  $A$  be changed  $(B$ unchanged$)$ so that a double pole occurs  (critically-damped case)?

$A \ =\ $

$\ \rm \cdot 10^6\ 1/s$


Solution

(1)  According to the voltage divider principle,  the following can be written for the $p$–transfer function:

$$H_{\rm L}(p)= \frac {pL +{1}/{(pC)}} {R + pL + {1}/{(pC)}}= \frac { p^2 \cdot{LC}+1} {p^2 \cdot{LC} + p \cdot{RC}+ 1} \hspace{0.05cm} .$$
  • The two desired limit processes yield:
$$\underline {H_{\rm L}(p \rightarrow 0)= 1, \hspace{0.2cm}H_{\rm L}(p \rightarrow \infty)= 1} \hspace{0.05cm} .$$
  1. From this it follows that it can be neither a low-pass filter nor a high-pass filter.
  2. Both at very low and very high frequencies,   $y(t)=x(t)$ holds.


(2)  Suggested solution 2  is correct:

  • Replacing  $p$  by  ${\rm j } \cdot 2\pi f$ the following is obtained:
$$H(f)= \frac {1 - (2\pi f)^2 \cdot LC} {1 - (2\pi f)^2 \cdot LC + {\rm j} \cdot 2\pi f \cdot RC} \hspace{0.05cm} .$$
  • So,  there is always a frequency at which the numerator is zero, namely the resonance frequency of  $L$  and  $C$.
  • For this frequency  $f_0 = 1 \ \rm MHz/2\pi$  the series connection of  $L$  and  $C$  acts like a short circuit.
  • From this it follows:  Regardless of the values of  $R$,  $L$  and  $C$ it is a  $\rm band–stop \:filter$.


(3)  The following holds according to the information sheet:

$$A = \frac{R}{2L}= \frac{50\,{\rm \Omega}}{2 \cdot 10\,{\rm \mu H}} = \frac{50\,{\rm \Omega}}{2 \cdot 10^{-5 }\,{\rm \Omega s}}\hspace{0.15cm} \underline {= 2.5} \cdot 10^6 \, \,{1}/{\rm s}\hspace{0.05cm},$$
$$ B = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-5 }\,{\rm \Omega s} \cdot 25 \cdot 10^{-9 }\,{\rm s/\Omega }}}\hspace{0.15cm} \underline {= 2.0} \cdot 10^6 \, \,{1}/{\rm s}\hspace{0.05cm} .$$


(4)  Using  $A=R/(2L)$  and  $B^2 = 1/(LC)$  the following is obtained from the  $p$–transfer function determined in subtask  (1) :

$$H_{\rm L}(p)= \frac { p^2 + {1}/(LC)} {p^2 + p \cdot{R}/{L} +{1}/(LC)} = \frac { p^2 + B^2} {p^2 + 2A \cdot p + B^2} \hspace{0.05cm} .$$
  • The numerator polynomial  $Z(p)$  and the denominator polynomial  $N(p)$  are each quadratic   ⇒   $\underline {Z = N = 2}$.
  • The constant factor is  $\underline {K = 1}$.


(5)  Solving the equation  $p^2 + B^2 = 0$  leads to the result  $p = \pm {\rm j} \cdot B$  and thus to the zeros

$${\rm Re}\{ p_{\rm o1}\} \underline {= 0}\hspace{-0.3cm} \hspace{1cm}{\rm Im}\{ p_{\rm o1}\} \underline {=+2.5} \cdot 10^6 \, {1}/{{\rm s}} \hspace{0.05cm},$$
$$ {\rm Re}\{ p_{\rm o2}\}\hspace{0.15cm} \underline { = 0}\hspace{-0.3cm} \hspace{1cm}{\rm Im}\{ p_{\rm o2}\} \underline {=-2.5} \cdot 10^6 \, {1}/{{\rm s}} \hspace{0.05cm}.$$
  • The normalization of the variable  $p$  and all poles and zeros to the unit  $( \rm 1/µ s)$  simplifies the numerical evaluation,  especially in the time domain.
  • If the unit is dispensed with altogether,  all  $t$–values are obtained in microseconds.


(6)  If the denominator polynomial is set  $N(p) = 0$,  the following conditional equation arises as a result:

$$p^2 + 2A \cdot p + B^2 = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x1,\hspace{0.05cm}2}= -A \pm \sqrt{A^2 - B^2} \hspace{0.05cm},$$
$${\rm Mit}\hspace{0.2cm}A = 2.5 \cdot 10^6 \cdot {1}/{\rm s}\hspace{0.05cm},\hspace{0.2cm} \sqrt{A^2 - B^2}= 1.5 \cdot 10^6 \cdot {1}/{{\rm s}}\hspace{0.05cm}:$$
$${\rm Re}\{ p_{\rm x1}\}\hspace{0.15cm} \underline {= -1} \cdot 10^6 \cdot {1}/{{\rm s}}\hspace{0.15cm} \underline {= -1} \cdot {1}/{{\rm \mu s}}, \hspace{0.2cm}{\rm Im}\{ p_{\rm x1}\}\hspace{0.15cm} \underline { = 0} \hspace{0.05cm},$$
$${\rm Re}\{ p_{\rm x2}\}\hspace{0.15cm} \underline {= -4} \cdot 10^6 \cdot {1}/{{\rm s}}\hspace{0.15cm} \underline {= -4} \cdot {1}/{{\rm \mu s}}, \hspace{0.2cm}{\rm Im}\{ p_{\rm x1}\}\hspace{0.15cm} \underline { = 0} \hspace{0.05cm}.$$

This result is only unique considering the specification  $|p_\text{x2}| > |p_\text{x1}|$.


(7)  Suggested solution 1  is correct:

  • Since only one of the components is to be changed,  $L$  and  $C$  must remain the same because otherwise the zeros would also be shifted.
  • The resistance value  $R$  must be changed.


(8)  According to the result in subtask  (7)  there is a double pole for  $\underline {A = B = 2 \cdot 10^{-6} \cdot \rm 1/s}$.

  • To do this,  the ohmic resistance must be reduced from  $50 \ \rm \Omega$  to  $40 \ \rm \Omega$ .
  • Then,  the double pole is at  ${-2 \cdot 10^{6} \cdot \rm 1/s}$.
  • Or with another normalization at  ${-2 \cdot \rm (1/µ s)}$.