Difference between revisions of "Aufgaben:Exercise 4.7: Copper Twin Wire 0.5 mm"

From LNTwww
 
(24 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Kupfer–Doppelader
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs
 
}}
 
}}
  
[[File:P_ID1818__LZI_A_4_7.png|right|Impulsantwort der Kupfer-Doppelader]]
+
[[File:P_ID1818__LZI_A_4_7.png|right|frame|Impulse response of the copper twin wire]]
Hier soll das Zeitverhalten einer Kupferdoppelader mit Durchmesser $d = 0.5 \ \rm mm$ analysiert werden. Der Frequenzgang lautet mit der Leitungslänge $l = 1.5 \ \rm km$ und der Bitrate $R = 10  \rm Mbit/s$:
+
The time response of a copper twin wire with diameter  $d = 0.5 \ \rm mm$  is to be analyzed.
 +
 
 +
*The frequency response with the line length  $l = 1.5 \ \rm km$  and the bit rate  $R = 10  \ \rm Mbit/s$:
 
:$$H_{\rm K}(f)  =  {\rm e}^{-{\rm a}_0 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot  \hspace{0.01cm}\tau_{\rm P}}
 
:$$H_{\rm K}(f)  =  {\rm e}^{-{\rm a}_0 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot  \hspace{0.01cm}\tau_{\rm P}}
 
   \cdot {\rm
 
   \cdot {\rm
Line 11: Line 13:
 
   e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}
 
   e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Verwendet sind folgende Größen, die sich aus dem Dämpfungs– und Phasenmaß ableiten lassen:
+
*The following quantities are used,  which can be derived from the attenuation and phase function per unit length:
$${\rm a}_0  =  \alpha_0 \cdot l\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\alpha_0 = 0.5066\,\, \frac{\rm Np}{\rm km}\hspace{0.05cm},$$
+
:$${\rm a}_0  =  \alpha_0 \cdot l\hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm}\alpha_0 = 0.5066\,\, \frac{\rm Np}{\rm km}\hspace{0.05cm},$$
$$  \tau_{\rm P}  =  \frac{\beta_1 \cdot l}{2 \pi} \hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\beta_1 = 30.6\,\,
+
:$$  \tau_{\rm P}  =  \frac{\beta_1 \cdot l}{2 \pi} \hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm}\beta_1 = 30.6\,\,
 
   \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm},$$
 
   \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm},$$
$$  {\rm a}_1  =  \alpha_1 \cdot l \cdot {{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}
+
:$$  {\rm a}_1  =  \alpha_1 \cdot l \cdot {{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm}
 
   \alpha_1 = 0.136\,\, \frac{\rm Np}{\rm km \cdot MHz}\hspace{0.05cm},$$
 
   \alpha_1 = 0.136\,\, \frac{\rm Np}{\rm km \cdot MHz}\hspace{0.05cm},$$
$$  {\rm a}_2  =  \alpha_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}
+
:$$  {\rm a}_2  =  \alpha_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm}
   \alpha_2 = 1.1467\,\, \frac{\rm Np}{\rm km \cdot MHz^{0.5}}\hspace{0.05cm},$$
+
   \alpha_2 = 1.1467\,\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm},$$
$$  {\rm b}_2  =  \beta_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}
+
:$$  {b}_2  =  \beta_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm}
 
   \beta_2 = 1.1467\,\, \frac{\rm rad}{\rm km \cdot
 
   \beta_2 = 1.1467\,\, \frac{\rm rad}{\rm km \cdot
   MHz^{0.5}}\hspace{0.05cm}.$$
+
   \sqrt{MHz}}\hspace{0.05cm}.$$
 +
 
 +
*The impulse response can thus be expressed in the form
 +
:$$h_{\rm K}(t )  = K \cdot \big [ \delta(t - \tau_{\rm P})\star h_{1}(t) \star h_{2}(t) \big ]$$
 +
where
 +
* the partial impulse response  $h_1(t)$  is due to the third term in the frequency domain equation,  and
 +
* $h_2(t)$  indicates the joint time-domain representation of the last two terms.
 +
 
 +
 
 +
The graph shows as red curve the part &nbsp;$h_2(t)$&nbsp; of the impulse response and the convolution product &nbsp;$h_1(t) \star h_2(t)$&nbsp; &rArr; &nbsp; blue curve). <br>Here &nbsp;$h_2(t)$&nbsp; is equal to the&nbsp; [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln#Impulsantwort_eines_Koaxialkabels|coaxial cable impulse response]]&nbsp; with the characteristic cable attenuation &nbsp;${\rm a}_\star = {\rm a}_2$.
 +
 
 +
 
 +
 
 +
 
  
Die Impulsantwort lässt sich somit in der Form
 
$$h_{\rm K}(t )  = K \cdot \left [ \delta(t - \tau_{\rm P})\star h_{1}(t) \star h_{2}(t) \right ]$$
 
darstellen, wobei
 
* die Teilimpulsantwort $h_1(t)$ auf den dritten Term in obiger Gleichung zurückgeht, und
 
* $h_2(t)$ die gemeinsame Zeitbereichsdarstellung der beiden letzten Terme angibt.
 
  
  
Die Grafik zeigt den Anteil $h_2(t)$ der Impulsantwort und das Faltungsprodukt $h_1(t) \star h_2(t)$. Dabei ist $h_2(t)$ gleich der [[Lineare_zeitinvariante_Systeme/Eigenschaften_von_Koaxialkabeln#Impulsantworten_von_Koaxialkabeln|Koaxialkabel&ndash;Impulsantwort]] mit der charakteristischen Kabeldämpfung ${\rm a}_\star = {\rm a}_2$.
 
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Eigenschaften_von_Kupfer–Doppeladern|Eigenschaften von Kupfer–Doppeladern]].
+
*The exercise belongs to the chapter&nbsp;   [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Properties of Balanced Copper Pairs]].
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
*Die Parameter $\alpha_0$, $\alpha_1$ und $\alpha_2$ wurden aus den $k$&ndash;Parametern umgerechnet, wie in [[Aufgaben:4.6_$k$-_und_$\alpha$-Parameter|Aufgabe 4.6]] gezeigt.  
+
*The parameters &nbsp;$\alpha_0$, &nbsp;$\alpha_1$ and &nbsp;$\alpha_2$ were converted from the &nbsp;$k$&ndash;parameters as shown in&nbsp; [[Aufgaben:Exercise_4.6:_k-parameters_and_alpha-parameters|Exercise 4.6]].  
*Der Phasenmaßparameter <i>&beta;</i><sub>2</sub> wurde hier zahlenmäßig gleich dem Dämpfungsmaßparameter <i>&alpha;</i><sub>2</sub> gesetzt. a<sub>2</sub> und <i>b</i><sub>2</sub> unterscheiden sich deshalb nur in der Einheit.  
+
*The phase function parameter &nbsp;$\beta_2$&nbsp; was set here numerically equal to the attenuation function parameter&nbsp; $\alpha_2$.&nbsp;
*Im Theorieteil zu diesem Kapitel 4.3 wird dargelegt, warum diese Maßnahme erforderlich ist.
+
*Therefore,&nbsp; the attenuation component &nbsp;${\rm a}_2$&nbsp; and the phase component &nbsp;${b}_2$&nbsp; differ only in units.
 +
*On the page&nbsp; [[Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs#Discussion_of_the_approximate_solution_found|Discussion of the approximate solution found]],&nbsp; it is explained why this measure is necessary.
 +
*You can use the&nbsp; (German language)&nbsp; interactive SWF applet &nbsp;[[Applets:Zeitverhalten_von_Kupferkabeln|"Zeitverhalten von Kupferkabeln"]] &nbsp; &rArr; &nbsp; "Time behavior of copper cables"&nbsp; to check your results.
  
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Konstante der Impulsantwort.
+
{Calculate the constant &nbsp;$K$&nbsp; of the impulse response &nbsp;$h_{\rm K}(t )$.
 
|type="{}"}
 
|type="{}"}
$K$ = { 0.468 3% }
+
$K \ = \ $ { 0.468 3% }
  
  
{Berechnen Sie die Phasenlaufzeit, bezogen auf die Symboldauer <i>T</i>.
+
{Calculate the phase delay &nbsp;$\tau_P$,&nbsp; related to the symbol duration &nbsp;$T$.
 
|type="{}"}
 
|type="{}"}
$\tau_P/T$ = { 73 3% }
+
$\tau_{\rm P}/T \ = \ $ { 73 3% }
  
  
{Wie groß ist die charakteristische Dämpfung des vergleichbaren Koaxialkabels?
+
{What is the characteristic attenuation &nbsp;$a_\star$&nbsp; of the comparable coaxial cable?
 
|type="{}"}
 
|type="{}"}
$a_\star$ = { 25.5 } $dB$
+
${\rm a}_\star \ = \ $ { 25.5 } $\ \rm dB$
  
  
{Welche Eigenschaften weist die Teilimpulsantwort <i>h</i><sub>1</sub>(<i>t</i>) auf?
+
{What are the characteristics of the partial impulse response &nbsp;$h_{\rm 1}(t )$?
 
|type="[]"}
 
|type="[]"}
+ <i>h</i><sub>1</sub>(<i>t</i>) ist eine gerade Funktion.
+
+ $h_{\rm 1}(t )$&nbsp; is an even function.
+ Das Maximum von <i>h</i><sub>1</sub>(<i>t</i>) liegt bei <i>t</i> = 0.
+
+ The maximum of &nbsp;$h_{\rm 1}(t )$&nbsp; is at &nbsp;$t = 0$.
- Das Integral über <i>h</i><sub>1</sub>(<i>t</i>) ergibt den Wert 2.
+
- The integral over &nbsp;$h_{\rm 1}(t )$&nbsp; gives the value &nbsp;$2$.
  
  
{Welche Eigenschaften erkennt man an der Funktion <i>h</i><sub>1</sub>(<i>t</i>) &#8727; <i>h</i><sub>2</sub>(<i>t</i>)?
+
{Which properties can you recognize in the function &nbsp;$h_1(t ) \star h_2(t )$?
 
|type="[]"}
 
|type="[]"}
+ <i>h</i><sub>1</sub>(<i>t</i>) &#8727; <i>h</i><sub>2</sub>(<i>t</i>) gibt die Verzerrungen von <i>h</i><sub>K</sub>(<i>t</i>) vollständig wieder.
+
+ $h_1(t ) \star h_2(t )$&nbsp; completely reproduces the distortions of &nbsp;$h_{\rm K}(t )$.&nbsp;
- <i>h</i><sub>1</sub>(<i>t</i>) &#8727; <i>h</i><sub>2</sub>(<i>t</i>) unterscheidet sich von <i>h</i><sub>K</sub>(<i>t</i>) nur durch einen Faktor.
+
- $h_1(t ) \star h_2(t )$&nbsp; differs from &nbsp;$h_{\rm K}(t )$&nbsp; only by one factor.
  
  
Line 77: Line 88:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Mit a<sub>0</sub> = <i>&alpha;</i><sub>0</sub> &middot; <i>l</i> &asymp; 0.76 Np erhält man für die Konstante <i>K</i>, die den Einfluss des Koeffizienten <i>&alpha;</i><sub>0</sub> auf die Impulsantwort angibt:
+
'''(1)'''&nbsp; With&nbsp; ${\rm a}_0 = \alpha_0 \cdot l \approx 0.76 \ \rm Np$,&nbsp; for the constant&nbsp; $K$,&nbsp; which indicates the influence of the coefficient&nbsp; $ \alpha_0$&nbsp; on the impulse response,&nbsp; we obtain:
 
:$$K = {\rm e}^{-{\rm a}_0 }= {\rm e}^{-0.76} \hspace{0.15cm}\underline{= 0.468} \hspace{0.05cm}.$$
 
:$$K = {\rm e}^{-{\rm a}_0 }= {\rm e}^{-0.76} \hspace{0.15cm}\underline{= 0.468} \hspace{0.05cm}.$$
  
:<b>2.</b>&nbsp;&nbsp;Für die Phasenlaufzeit gilt mit der angegebenen Gleichung:
+
 
:$$\tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi}=  \frac{30.6 \cdot 1.5}{2 \pi}\, {\rm \mu s}\approx 7.31\, {\rm \mu
+
 
 +
'''(2)'''&nbsp; For the phase delay,&nbsp; using the given equation:
 +
:$$\tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi}=  \frac{30.6 \cdot 1.5}{2 \pi}\, {\rm &micro; s}\approx 7.31\, {\rm &micro;
 
  s}\hspace{0.05cm},$$
 
  s}\hspace{0.05cm},$$
:und bezogen auf die Symboldauer <i>T</i> = 0.1 &mu;s:
+
and related to the symbol duration&nbsp; $T = 0.1 &micro; \rm s$:&nbsp; &nbsp;
 
:$${\tau_{\rm P}}/{T} \hspace{0.15cm}\underline{ \approx 73}\hspace{0.05cm}.$$
 
:$${\tau_{\rm P}}/{T} \hspace{0.15cm}\underline{ \approx 73}\hspace{0.05cm}.$$
  
:<b>3.</b>&nbsp;&nbsp;Die Impulsantwort eines Koaxialkabels ist näherungsweise gleich <i>h</i><sub>2</sub>(<i>t</i>), wenn dieses Koaxialkabel folgende charakteristische Kabeldämpfung aufweist:
+
 
 +
 
 +
'''(3)'''&nbsp; The impulse response of a coaxial cable is approximately equal to&nbsp; $h_2(t)$,&nbsp; if the cable has the following characteristic cable attenuation:
 
:$${\rm a}_\star ={\rm a}_2  =  \alpha_2 \cdot l \cdot \sqrt{{R}/{2}} =
 
:$${\rm a}_\star ={\rm a}_2  =  \alpha_2 \cdot l \cdot \sqrt{{R}/{2}} =
  1.1467\,\, \frac{\rm Np}{\rm km \cdot MHz^{0.5}} \cdot 1.5\,{\rm km} \cdot \sqrt{\frac{10\,{\rm MHz}}{2}}=\\
+
  1.1467\,\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot 1.5\,{\rm km} \cdot \sqrt{\frac{10\,{\rm MHz}}{2}}
 
   =  2.93\,{\rm Np} = 2.93\,{\rm Np} \cdot8.686\,\frac {\rm dB}{\rm Np} \hspace{0.15cm}\underline{ =25.5\,{\rm dB}}\hspace{0.05cm}.$$
 
   =  2.93\,{\rm Np} = 2.93\,{\rm Np} \cdot8.686\,\frac {\rm dB}{\rm Np} \hspace{0.15cm}\underline{ =25.5\,{\rm dB}}\hspace{0.05cm}.$$
  
:<b>4.</b>&nbsp;&nbsp;Richig sind <u>die Aussagen 1 und 2</u>. Die Fouriertransformierte <i>H</i><sub>1</sub>(<i>f</i>) = e<sup>&ndash;<i>A</i> &middot; |<i>f</i>|</sup> mit <i>A</i> = 2<i>a</i><sub>1</sub>/<i>R</i> ist reell und gerade, so dass <i>h</i>(<i>t</i>) ebenfalls reell und gerade ist. Aufgrund der Tiefpass&ndash;Charakteristik von <i>H</i><sub>1</sub>(<i>f</i>) liegt das Maximum bei <i>t</i> = 0. Dagegen ist die letzte Aussage falsch: Das Integral über <i>h</i><sub>1</sub>(<i>t</i>) im Bereich von &plusmn; &#8734; ist gleich <i>H</i><sub>1</sub>(<i>f</i> = 0), also 1.
 
  
:<b>5.</b>&nbsp;&nbsp;Richtig ist nur <u>der Lösungsvorschlag 1</u>: Die Teilimpulsantwort <i>h</i><sub>1</sub>(<i>t</i>) &#8727;  <i>h</i><sub>2</sub>(<i>t</i>) berücksichtigt den Einfluss von <i>&alpha;</i><sub>1</sub>, <i>&alpha;</i><sub>2</sub> und <i>&beta;</i><sub>2</sub> und damit alle Terme, die zu Verzerrungen führen. Dagegen führt <i>&alpha;</i><sub>0</sub> nur zu einer frequenzunabhängigen Dämpfung und <i>&beta;</i><sub>1</sub> zu einer für alle Frequenzen konstanten Laufzeit.
 
  
:Der Lösungsvorschlag 2 trifft dagegen nicht zu. Zunächst (bei kleinen <i>t</i>&ndash;Werten) ist <i>h</i><sub>1</sub>(<i>t</i>) &#8727<i>h</i><sub>2</sub>(<i>t</i>) kleiner als <i>h</i><sub>2</sub>(<i>t</i>). Bei großen <i>t</i>&ndash;Werten liegt dann die blaue Kurve oberhalb der roten. Das bedeutet: a<sub>1</sub> und damit auch <i>h</i><sub>1</sub>(<i>t</i>) bewirken tatsächlich zusätzliche Verzerrungen, auch wenn diese nicht ins Gewicht fallen.
+
'''(4)'''&nbsp; <u>Statements 1 and 2</u>&nbsp; are correct:
 +
*The Fourier transform&nbsp; $H_1(f) = {\rm e}^{-A \hspace{0.05cm} \cdot \hspace{0.05cm} |f|}$&nbsp; with&nbsp; $A = 2 \hspace{0.05cm}\cdot \hspace{0.05cm} {a}_1/R$&nbsp; is real and even,&nbsp; so&nbsp; $h_1(t)$&nbsp; is also real and even.
 +
*Due to the low&ndash;pass characteristic of&nbsp; $H_1(f)$,&nbsp; the maximum is at&nbsp; $t = 0$.
 +
*The last statement,&nbsp; on the other hand,&nbsp; is incorrect: &nbsp; The integral over&nbsp; $h_1(t)$&nbsp; in the entire time domain&nbsp; $ \pm \infty$&nbsp; is equal to&nbsp; $H_1(f=0) = 1$.
 +
 
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Only <u>solution 1</u>&nbsp; is correct:
 +
*The partial impulse response&nbsp;  $h_1(t ) \star h_2(t )$&nbsp; takes into account the influence of&nbsp; $\alpha_1$,&nbsp; $\alpha_2$&nbsp; and&nbsp; $\beta_2$&nbsp; and thus all terms leading to distortions.
 +
*In contrast, &nbsp; $\alpha_0$&nbsp; leads only to a frequency-independent attenuation and&nbsp; $\beta_1$&nbsp; only to a constant running time for all frequencies.
 +
*Solution 2 does not apply: &nbspFirst&nbsp; (for small&nbsp; $t$&ndash;values)&nbsp; &nbsp; $h_1(t ) \star h_2(t )$&nbsp; is smaller than&nbsp; $h_2(t )$.&nbsp;
 +
*Then, for large&nbsp; $t$&ndash;values, the blue curve lies above the red one.
 +
*This means: &nbsp; $\alpha_1$&nbsp; and thus also&nbsp; $h_1(t )$&nbsp; actually cause additional distortions,&nbsp; even when they are not very significant.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.3 Kupfer–Doppelader^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.3 Balanced Copper Twisted Pair^]]

Latest revision as of 13:52, 24 November 2021

Impulse response of the copper twin wire

The time response of a copper twin wire with diameter  $d = 0.5 \ \rm mm$  is to be analyzed.

  • The frequency response with the line length  $l = 1.5 \ \rm km$  and the bit rate  $R = 10 \ \rm Mbit/s$:
$$H_{\rm K}(f) = {\rm e}^{-{\rm a}_0 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot \hspace{0.01cm}\tau_{\rm P}} \cdot {\rm e}^{-{\rm a}_1 \hspace{0.05cm}\cdot \hspace{0.02cm}2f/R}\cdot {\rm e}^{-{\rm a}_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}} \hspace{0.05cm}.$$
  • The following quantities are used,  which can be derived from the attenuation and phase function per unit length:
$${\rm a}_0 = \alpha_0 \cdot l\hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm}\alpha_0 = 0.5066\,\, \frac{\rm Np}{\rm km}\hspace{0.05cm},$$
$$ \tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi} \hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm}\beta_1 = 30.6\,\, \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm},$$
$$ {\rm a}_1 = \alpha_1 \cdot l \cdot {{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm} \alpha_1 = 0.136\,\, \frac{\rm Np}{\rm km \cdot MHz}\hspace{0.05cm},$$
$$ {\rm a}_2 = \alpha_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm} \alpha_2 = 1.1467\,\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm},$$
$$ {b}_2 = \beta_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm with} \hspace{0.15cm} \beta_2 = 1.1467\,\, \frac{\rm rad}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm}.$$
  • The impulse response can thus be expressed in the form
$$h_{\rm K}(t ) = K \cdot \big [ \delta(t - \tau_{\rm P})\star h_{1}(t) \star h_{2}(t) \big ]$$

where

  • the partial impulse response  $h_1(t)$  is due to the third term in the frequency domain equation,  and
  • $h_2(t)$  indicates the joint time-domain representation of the last two terms.


The graph shows as red curve the part  $h_2(t)$  of the impulse response and the convolution product  $h_1(t) \star h_2(t)$  ⇒   blue curve).
Here  $h_2(t)$  is equal to the  coaxial cable impulse response  with the characteristic cable attenuation  ${\rm a}_\star = {\rm a}_2$.





Notes:

  • The parameters  $\alpha_0$,  $\alpha_1$ and  $\alpha_2$ were converted from the  $k$–parameters as shown in  Exercise 4.6.
  • The phase function parameter  $\beta_2$  was set here numerically equal to the attenuation function parameter  $\alpha_2$. 
  • Therefore,  the attenuation component  ${\rm a}_2$  and the phase component  ${b}_2$  differ only in units.
  • On the page  Discussion of the approximate solution found,  it is explained why this measure is necessary.
  • You can use the  (German language)  interactive SWF applet  "Zeitverhalten von Kupferkabeln"   ⇒   "Time behavior of copper cables"  to check your results.



Questions

1

Calculate the constant  $K$  of the impulse response  $h_{\rm K}(t )$.

$K \ = \ $

2

Calculate the phase delay  $\tau_P$,  related to the symbol duration  $T$.

$\tau_{\rm P}/T \ = \ $

3

What is the characteristic attenuation  $a_\star$  of the comparable coaxial cable?

${\rm a}_\star \ = \ $

$\ \rm dB$

4

What are the characteristics of the partial impulse response  $h_{\rm 1}(t )$?

$h_{\rm 1}(t )$  is an even function.
The maximum of  $h_{\rm 1}(t )$  is at  $t = 0$.
The integral over  $h_{\rm 1}(t )$  gives the value  $2$.

5

Which properties can you recognize in the function  $h_1(t ) \star h_2(t )$?

$h_1(t ) \star h_2(t )$  completely reproduces the distortions of  $h_{\rm K}(t )$. 
$h_1(t ) \star h_2(t )$  differs from  $h_{\rm K}(t )$  only by one factor.


Solution

(1)  With  ${\rm a}_0 = \alpha_0 \cdot l \approx 0.76 \ \rm Np$,  for the constant  $K$,  which indicates the influence of the coefficient  $ \alpha_0$  on the impulse response,  we obtain:

$$K = {\rm e}^{-{\rm a}_0 }= {\rm e}^{-0.76} \hspace{0.15cm}\underline{= 0.468} \hspace{0.05cm}.$$


(2)  For the phase delay,  using the given equation:

$$\tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi}= \frac{30.6 \cdot 1.5}{2 \pi}\, {\rm µ s}\approx 7.31\, {\rm µ s}\hspace{0.05cm},$$

and related to the symbol duration  $T = 0.1 \ µ \rm s$:   

$${\tau_{\rm P}}/{T} \hspace{0.15cm}\underline{ \approx 73}\hspace{0.05cm}.$$


(3)  The impulse response of a coaxial cable is approximately equal to  $h_2(t)$,  if the cable has the following characteristic cable attenuation:

$${\rm a}_\star ={\rm a}_2 = \alpha_2 \cdot l \cdot \sqrt{{R}/{2}} = 1.1467\,\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot 1.5\,{\rm km} \cdot \sqrt{\frac{10\,{\rm MHz}}{2}} = 2.93\,{\rm Np} = 2.93\,{\rm Np} \cdot8.686\,\frac {\rm dB}{\rm Np} \hspace{0.15cm}\underline{ =25.5\,{\rm dB}}\hspace{0.05cm}.$$


(4)  Statements 1 and 2  are correct:

  • The Fourier transform  $H_1(f) = {\rm e}^{-A \hspace{0.05cm} \cdot \hspace{0.05cm} |f|}$  with  $A = 2 \hspace{0.05cm}\cdot \hspace{0.05cm} {a}_1/R$  is real and even,  so  $h_1(t)$  is also real and even.
  • Due to the low–pass characteristic of  $H_1(f)$,  the maximum is at  $t = 0$.
  • The last statement,  on the other hand,  is incorrect:   The integral over  $h_1(t)$  in the entire time domain  $ \pm \infty$  is equal to  $H_1(f=0) = 1$.



(5)  Only solution 1  is correct:

  • The partial impulse response  $h_1(t ) \star h_2(t )$  takes into account the influence of  $\alpha_1$,  $\alpha_2$  and  $\beta_2$  and thus all terms leading to distortions.
  • In contrast,   $\alpha_0$  leads only to a frequency-independent attenuation and  $\beta_1$  only to a constant running time for all frequencies.
  • Solution 2 does not apply:   First  (for small  $t$–values)    $h_1(t ) \star h_2(t )$  is smaller than  $h_2(t )$. 
  • Then, for large  $t$–values, the blue curve lies above the red one.
  • This means:   $\alpha_1$  and thus also  $h_1(t )$  actually cause additional distortions,  even when they are not very significant.