Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.Ten: QPSK Channel Capacity"

From LNTwww
 
(23 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertdiskretem Eingang
+
{{quiz-Header|Buchseite=Information_Theory/AWGN_Channel_Capacity_for_Discrete_Input
 
}}
 
}}
  
[[File:P_ID2957__Inf_A_4_10_neu.png|right|]]
+
[[File:EN_Inf_Z_4_10_v2.png|right|frame|Capacity curves for BPSK and QPSK]]
Gegeben sind AWGN–Kanalkapazitätskurven für die beiden Modulationsverfahren
+
Given are the AWGN channel capacity limit curves for the modulation methods
:* [[Modulationsverfahren/Lineare_digitale_Modulationsverfahren#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|'''Binary Phase Shift Keying ''']] (BPSK),
+
* [[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|Binary Phase Shift Keying]]  (BPSK),
:* [[Modulationsverfahren/Quadratur–Amplitudenmodulation#Weitere_Signalraumkonstellationen|'''Quaternary Phase Shift Keying         ''']] (4–PSK oder auch QPSK).
+
* [[Modulation_Methods/Quadratur–Amplitudenmodulation#Other_signal_space_constellations|Quaternary Phase Shift Keying]]  (4–PSK or QPSK).
  
Das obere Diagramm zeigt die Abhängigkeit von 10 &middot; lg (<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) in dB, wobei <i>E</i><sub>B</sub> die &bdquo;Energie pro Informationsbit&rdquo; angibt. Für große <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>&ndash;Werte liefert die BPSK&ndash;Kurve die maximale Coderate <i>R</i> &asymp; 1, während für die QPSK&ndash;Kurve <i>R</i> &asymp; 2 abgelesen werden kann.
 
  
Die Kapazitätskurven für digitalen Eingang (jeweils mit der Einheit &bdquo;bit/Symbol&rdquo;),
+
The channel capacities&nbsp; CBPSK&nbsp; and&nbsp; CQPSK&nbsp; simultaneously indicate the maximum code rate&nbsp; Rmax&nbsp;, with which the bit error probability&nbsp; $p_\text{B} &equiv; 0$&nbsp; can be asymptotically achieved with BPSK (or QPSK) with suitable channel coding.
:* grüne Kurve <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) und
 
:* blaue Kurve <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>)
 
  
sollen in der Teilaufgabe (c) in Bezug gesetzt werden zu zwei Shannon&ndash;Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind:
+
The upper diagram shows the dependence on the parameter&nbsp; $10 \cdot \lg (E_{\rm B}/{N_0})$&nbsp; in&nbsp; $\rm dB$, where&nbsp; $E_{\rm B}$&nbsp; indicates the "energy per information bit".
$$C_1( E_{\rm B}/{N_0}) = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\hspace{0.05cm}R\hspace{0.05cm} E_{\rm B}}{N_0}) ,$$
+
*For large&nbsp; $E_{\rm B}/{N_0}$ values, the BPSK curve provides the maximum code rate&nbsp; $R &asymp; 1$.  
$$C_2( E_{\rm B}/{N_0}) =  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R\hspace{0.05cm} E_{\rm B}}{N_0}) .$$
+
*From the QPSK curve, on the other hand,&nbsp; $R &asymp; 2$&nbsp; can be read.
Die beiden Kurven geben gleichzeitig die maximale Coderate <i>R</i> an, mit der durch lange Kanalcodes eine fehlerfreie Übertragung entsprechend dem [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|'''Kanalcodierungstheorem''']] möglich ist. Natürlich gelten für <i>C</i><sub>1</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) bzw. <i>C</i><sub>2</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) unterschiedliche Randbedingungen. Welche, sollen Sie herausfinden.
 
  
Die Abszisse im unteren Diagramm ist dagegen  10 &middot; lg (<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) mit der &bdquo;Energie pro Symbol&rdquo; (<i>E</i><sub>S</sub>). Die beiden Endwerte bleiben gegenüber oben unverändert.
 
  
'''Hinweis :'''
+
The capacitance curves for digital input (each with the unit "bit/symbol"),
 +
* green curve &nbsp; &rArr; &nbsp; CBPSK(EB/N0)&nbsp; and
 +
* blue curve &nbsp; &rArr; &nbsp; CQPSK(EB/N0)
  
:* Die Aufgabe gehört zum Themengebiet von [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|'''Kapitel 4.3.''']]
 
  
 +
are to be related in subtask&nbsp; '''(3)'''&nbsp; to two Shannon limit curves, each valid for a Gaussian input distribution:
 +
:C1(EB/N0)=1/2log2(1+2REBN0),
 +
:C2(EB/N0)=log2(1+REBN0).
  
===Fragebogen===
+
The two curves simultaneously indicate the maximum code rate&nbsp; Rmax&nbsp; with which error-free transmission is possible by long channel codes according to the&nbsp; [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Definition_and_meaning_of_channel_capacity|channel coding theorem]]&nbsp;.&nbsp; Of course, different boundary conditions apply to &nbsp;C1(EB/N0)&nbsp; &nbsp;or &nbsp; &nbsp;C2(EB/N0)&nbsp;.&nbsp; Which ones, you shall find out.
 +
 
 +
On the other hand, the abscissa in the lower diagram is&nbsp;  &nbsp;10lg(ES/N0)&nbsp; with the "energy per symbol"&nbsp; (ES).&nbsp; Notice that the two limits are not changed from the upper plot::
 +
:$$C_{\rm BPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm BPSK}( E_{\rm B}/{N_0} \to \infty)  = 1 \ \rm bit/symbol,$$
 +
:$$C_{\rm QPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm QPSK}( E_{\rm B}/{N_0} \to \infty)  = 2 \ \rm bit/symbol.$$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The task belongs to the chapter&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN channel capacity with discrete value input]].
 +
*Reference is made in particular to the page&nbsp; [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Maximum_code_rate_for_QAM_structures|Maximum code rate for QAM structures]].
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Unterscheiden sich QPSK und 4&ndash;QAM aus informationstechnischer Sicht?
+
{Do QPSK and 4-QAM differ from an information theoretic point of view?
|type="[]"}
+
|type="()"}
- Ja.
+
- Yes.
+ Nein.
+
+ No.
  
{Wie lässt sich <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) aus <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) konstruieren?
+
{How can &nbsp;$C_{\rm QPSK}( E_{\rm B}/{N_0})&nbsp; be constructed from &nbsp;C_{\rm BPSK}( E_{\rm B}/{N_0})$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Durch Verdopplung: <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) &nbsp;=&nbsp; 2 &middot; <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>).
+
+ By doubling: &nbsp; $C_{\rm QPSK}( E_{\rm B}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm B}/{N_0})$.
- Zusätzlich durch eine Verschiebung nach rechts.
+
- Additionally by a shift to the right.
- Zusätzlich durch eine Verschiebung nach links.
+
- Additionally by a shift to the left.
- <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) kann man aus <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) nicht konstruieren.
+
- $C_{\rm QPSK}( E_{\rm B}/{N_0})&nbsp; cannot be constructed from &nbsp;C_{\rm BPSK}( E_{\rm B}/{N_0})$&nbsp;&nbsp;.
  
  
{Welcher Zusammenhang besteht zu den Shannon&ndash;Grenzkurven?
+
{What is the relation to the Shannon boundary curves?
 
|type="[]"}
 
|type="[]"}
+ Es gilt <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) &#8804; <i>C</i><sub>1</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>).
+
+ &nbsp;  $C_{\rm BPSK}( E_{\rm B}/{N_0}) \le C_{\rm 1}( E_{\rm B}/{N_0})$ holds.
+ Es gilt <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) &#8804; <i>C</i><sub>2</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>).
+
+ &nbsp;  $C_{\rm BPSK}( E_{\rm B}/{N_0}) \le C_{\rm 2}( E_{\rm B}/{N_0})$ holds.
- Es gilt <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) &#8804; <i>C</i><sub>1</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>).
+
- &nbsp;  $C_{\rm QPSK}( E_{\rm B}/{N_0}) \le C_{\rm 1}( E_{\rm B}/{N_0})$ holds.
+ Es gilt <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) &#8804; <i>C</i><sub>2</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>).  
+
+ &nbsp;  $C_{\rm QPSK}( E_{\rm B}/{N_0}) \le C_{\rm 2}( E_{\rm B}/{N_0})$ holds.  
  
{Wie lässt sich <i>C</i><sub>QPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) aus <i>C</i><sub>BPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) konstruieren?
+
{How can &nbsp;$C_{\rm QPSK}( E_{\rm S}/{N_0})&nbsp; be constructed from &nbsp;C_{\rm BPSK}( E_{\rm S}/{N_0})$&nbsp;?
|type="[]"}
+
|type="()"}
+ Durch Verdopplung: <i>C</i><sub>QPSK</sub> (<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) &nbsp;=&nbsp; 2 &middot; <i>C</i><sub>BPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>).
+
+ By doubling: &nbsp; $C_{\rm QPSK}( E_{\rm S}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm S}/{N_0})$&nbsp; and Additionally by a shift to the right.
+ Zusätzlich durch eine Verschiebung nach rechts.
+
- By doubling: &nbsp; $C_{\rm QPSK}( E_{\rm S}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm S}/{N_0})$&nbsp; and Additionally by a shift to the left.
- Zusätzlich durch eine Verschiebung nach links.
+
- $C_{\rm QPSK}( E_{\rm S}/{N_0})&nbsp; cannot be constructed from &nbsp;C_{\rm BPSK}( E_{\rm S}/{N_0})$&nbsp;.
- <i>C</i><sub>QPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) kann man aus <i>C</i><sub>BPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) nicht konstruieren.
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID2958__Inf_A_4_10a.png|right|]]
+
[[File:P_ID2958__Inf_A_4_10a.png|right|frame|QPSK– und 4&ndash;QAM–Signalraumkonstellation]]
'''(1)'''&nbsp; Die Grafik zeigt die Signalraumkonstellationen für
+
'''(1)'''&nbsp; The diagram shows the signal space constellations for
:* QPSK (<i>Quaternary Phase Shift Keying</i>), und
+
* <i>Quaternary Phase Shift Keying</i>&nbsp; (QPSK), and
:* 4&ndash;QAM (vierstufige Quadraturamplitudenmodulation).
+
* four-level quadrature amplitude modulation&nbsp; (4&ndash;QAM).
 +
 
 +
 
 +
The latter is also referred to as&nbsp; [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Definition_and_meaning_of_channel_capacity|&pi;/4&ndash;QPSK]]&nbsp;.&nbsp; Both are identical from an information-theoretic point of view &nbsp; &#8658; &nbsp; <u>answer NO</u>.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Correct is the <u>proposed solution 1</u>:  
 +
*The 4&ndash;QAM can be viewed as two BPSK constellations in orthogonal planes, where the energy per information bit&nbsp;(EB)&nbsp; is the same in both cases.
 +
*Since, according to subtask&nbsp; '''(1)'''&nbsp; the 4&ndash;QAM is identical to the QSPK, in fact:
 +
:$$C_{\rm QPSK}( E_{\rm B}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm B}/{N_0}).$$
  
Letztere wird auch als [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|'''&pi;/4&ndash;QPSK''']] bezeichnet. Beide sind aus informationstechnischer Sicht identisch &#8658; <u>Antwort NEIN</u>.
 
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>: Die 4&ndash;QAM kann man als zwei BPSK&ndash;Konstellationen in orthogonalen Ebenen betrachten, wobei die Energie pro Informationsbit (<i>E</i><sub>B</sub>) in beiden Fällen gleich ist. Da entsprechend Teilaufgabe (a) die 4&ndash;QAM mit der QSPK identisch ist, gilt tatsächlich <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>)&nbsp;=&nbsp;2&nbsp;&middot;&nbsp;<i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>).
 
<br><br><br><br>
 
'''(3)'''&nbsp; In der nebenstehenden Grafik sind die beiden angegebenen Shannon&ndash;Grenzkurven zusammen mit <i>C</i><sub>BPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) und <i>C</i><sub>QPSK</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) skizziert:
 
[[File:P_ID2959__Inf_A_4_1c.png|right|]]
 
C1(EB/N0)=12log2(1+2REBN0),
 
C2(EB/N0)=log2(1+REBN0).
 
Die grün&ndash;gestrichelte Kurve <i>C</i><sub>1</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) gilt für den AWGN&ndash;Kanal mit gaußverteiltem Eingang. Für die Coderate <i>R</i>&nbsp;=&nbsp;1 sind nach dieser Kurve 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 1.76 dB erforderlich. Für <i>R</i> = 2 benötigt man 10&nbsp;&middot;&nbsp;lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>)&nbsp;=&nbsp;5.74&nbsp;dB.
 
  
Die blau&ndash;gestrichelte Kurve <i>C</i><sub>2</sub>(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) gibt die Shannon&ndash;Grenze für <i>K</i>&nbsp;=&nbsp;2 parallele Gaußkanäle an.<br> Hier benötigt man 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 0 dB für <i>R</i> = 1 bzw. 10 &middot; lg(<i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>) = 1.76 dB für <i>R</i> = 2.
+
'''(3)'''&nbsp; In the lower graph, the two Shannon boundary curves given are sketched together with &nbsp;CBPSK(EB/N0)&nbsp; and &nbsp;CQPSK(EB/N0)&nbsp;:
 +
:$$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) ,$$
 +
:$$C_2( E_{\rm B}/{N_0}) =  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$
 +
[[File:EN_Inf_Z_4_10c_v2.png|right|frame|Four capacity curves with different statements]]
 +
One can see from this sketch: &nbsp; <u>Proposed solutions 1, 2 and 4</u> are correct.
 +
*The green&ndash;dashed curve &nbsp;$C_1( E_{\rm B}/{N_0})$&nbsp; is valid for the AWGN channel with Gaussian distributed input.&nbsp;
 +
*For code rate&nbsp; R=1&nbsp;, &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 1.76\ \rm  dB$&nbsp; is required according to this curve. &nbsp;
 +
*For&nbsp; R=2&nbsp;, on the other hand &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 5.74\ \rm  dB$ is required.
 +
*The blue&ndash;dashed curve &nbsp;$C_2( E_{\rm B}/{N_0})$&nbsp; gives the Shannon limit for&nbsp; $K=2$&nbsp; parallel Gaussian channels.&nbsp; Here one needs&nbsp; $10 \cdot \lg (E_{\rm B}/{N_0}) = 0\ \rm  dB&nbsp;  for &nbsp;R =1$&nbsp; or &nbsp;$10 \cdot \lg (E_{\rm B}/{N_0}) = 1.76\ \rm  dB&nbsp; for &nbsp;R =2$.
 +
* The one&ndash;dimensional BPSK is below &nbsp;C1&nbsp; in the entire range and thus, of course, below &nbsp;C2>C1.
 +
* As expected, the two&ndash;dimensional QPSK lies below the &nbsp;C2 limit curve relevant for it.&nbsp; However, it is above&nbsp;C1 in the lower range &nbsp; (up to almost &nbsp;6 dB)&nbsp;.
  
Man erkennt aus der obigen Skizze:
 
:* Die eindimensionale BPSK liegt im gesamten Bereich unterhalb von <i>C</i><sub>1</sub> und damit natürlich auch unterhalb von <i>C</i><sub>2</sub> > <i>C</i><sub>1</sub>.
 
:* Die zweidimensionale QPSK liegt erwartungsgemäß unter der für sie relevanten Grenzkurve <i>C</i><sub>2</sub>. Sie liegt aber im unteren Bereich (bis nahezu 6 dB) oberhalb von <i>C</i><sub>1</sub>.
 
  
Richtig sind also die <u>Lösungsvorschläge 1, 2 und 4</u>.
 
  
  
'''(4)'''&nbsp; Die <i>C</i><sub>QPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>)&ndash;Kurve kann ebenfalls aus <i>C</i><sub>BPSK</sub>(<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) konstruiert werden und zwar
+
'''(4)'''&nbsp; The &nbsp;$C_{\rm QPSK}( E_{\rm B}/{N_0})$ curve can also be constructed from &nbsp;$C_{\rm BPSK}( E_{\rm B}/{N_0})$, namely
:* durch Verdopplung
+
* on the one hand by doubling:
$$C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
+
:$$C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
\hspace{0.5cm}\Rightarrow \hspace{0.5cm}
+
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) ,$$   
 
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) ,$$   
:* sowie durch eine Verschiebung um 3 dB nach rechts:
+
* as well as by a shift of&nbsp; $3\ \rm  dB$&nbsp; to the right:
$$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
+
:$$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
 
=
 
=
 
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0} - 3\,{\rm dB}) .$$
 
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0} - 3\,{\rm dB}) .$$
Richtig sind die <u>beiden ersten Lösungsvorschläge</u>, wobei der zweite Vorschlag berücksichtigt, dass bei QPSK die Energie in einer Dimension nur <i>E</i><sub>S</sub>/2 beträgt.
+
*The&nbsp; <u>proposed solution 1</u>&nbsp; is correct.&nbsp; This takes into account that with QPSK the energy in one dimension is only  &nbsp;$E_{\rm S}/2$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 101: Line 125:
  
  
[[Category:Aufgaben zu Informationstheorie|^4.3 AWGN & wertdiskreter Eingang^]]
+
[[Category:Information Theory: Exercises|^4.3 AWGN and Value-Discrete Input^]]

Latest revision as of 11:29, 10 November 2021

Capacity curves for BPSK and QPSK

Given are the AWGN channel capacity limit curves for the modulation methods


The channel capacities  CBPSK  and  CQPSK  simultaneously indicate the maximum code rate  Rmax , with which the bit error probability  pB0  can be asymptotically achieved with BPSK (or QPSK) with suitable channel coding.

The upper diagram shows the dependence on the parameter  10lg(EB/N0)  in  dB, where  EB  indicates the "energy per information bit".

  • For large  EB/N0 values, the BPSK curve provides the maximum code rate  R1.
  • From the QPSK curve, on the other hand,  R2  can be read.


The capacitance curves for digital input (each with the unit "bit/symbol"),

  • green curve   ⇒   CBPSK(EB/N0)  and
  • blue curve   ⇒   CQPSK(EB/N0)


are to be related in subtask  (3)  to two Shannon limit curves, each valid for a Gaussian input distribution:

C1(EB/N0)=1/2log2(1+2REBN0),
C2(EB/N0)=log2(1+REBN0).

The two curves simultaneously indicate the maximum code rate  Rmax  with which error-free transmission is possible by long channel codes according to the  channel coding theorem .  Of course, different boundary conditions apply to  C1(EB/N0)   or    C2(EB/N0) .  Which ones, you shall find out.

On the other hand, the abscissa in the lower diagram is   10lg(ES/N0)  with the "energy per symbol"  (ES).  Notice that the two limits are not changed from the upper plot::

CBPSK(ES/N0)=CBPSK(EB/N0)=1 bit/symbol,
CQPSK(ES/N0)=CQPSK(EB/N0)=2 bit/symbol.





Hints:


Questions

1

Do QPSK and 4-QAM differ from an information theoretic point of view?

Yes.
No.

2

How can  CQPSK(EB/N0)  be constructed from  CBPSK(EB/N0) ?

By doubling:   CQPSK(EB/N0)=2CBPSK(EB/N0).
Additionally by a shift to the right.
Additionally by a shift to the left.
CQPSK(EB/N0)  cannot be constructed from  CBPSK(EB/N0)  .

3

What is the relation to the Shannon boundary curves?

  CBPSK(EB/N0)C1(EB/N0) holds.
  CBPSK(EB/N0)C2(EB/N0) holds.
  CQPSK(EB/N0)C1(EB/N0) holds.
  CQPSK(EB/N0)C2(EB/N0) holds.

4

How can  CQPSK(ES/N0)  be constructed from  CBPSK(ES/N0) ?

By doubling:   CQPSK(ES/N0)=2CBPSK(ES/N0)  and Additionally by a shift to the right.
By doubling:   CQPSK(ES/N0)=2CBPSK(ES/N0)  and Additionally by a shift to the left.
CQPSK(ES/N0)  cannot be constructed from  CBPSK(ES/N0) .


Solution

QPSK– und 4–QAM–Signalraumkonstellation

(1)  The diagram shows the signal space constellations for

  • Quaternary Phase Shift Keying  (QPSK), and
  • four-level quadrature amplitude modulation  (4–QAM).


The latter is also referred to as  π/4–QPSK .  Both are identical from an information-theoretic point of view   ⇒   answer NO.


(2)  Correct is the proposed solution 1:

  • The 4–QAM can be viewed as two BPSK constellations in orthogonal planes, where the energy per information bit (EB)  is the same in both cases.
  • Since, according to subtask  (1)  the 4–QAM is identical to the QSPK, in fact:
CQPSK(EB/N0)=2CBPSK(EB/N0).


(3)  In the lower graph, the two Shannon boundary curves given are sketched together with  CBPSK(EB/N0)  and  CQPSK(EB/N0) :

C1(EB/N0)=1/2log2(1+2REBN0),
C2(EB/N0)=log2(1+REBN0).
Four capacity curves with different statements

One can see from this sketch:   Proposed solutions 1, 2 and 4 are correct.

  • The green–dashed curve  C1(EB/N0)  is valid for the AWGN channel with Gaussian distributed input. 
  • For code rate  R=1 ,  10lg(EB/N0)=1.76 dB  is required according to this curve.  
  • For  R=2 , on the other hand  10lg(EB/N0)=5.74 dB is required.
  • The blue–dashed curve  C2(EB/N0)  gives the Shannon limit for  K=2  parallel Gaussian channels.  Here one needs  10lg(EB/N0)=0 dB  for  R=1  or  10lg(EB/N0)=1.76 dB  for  R=2.
  • The one–dimensional BPSK is below  C1  in the entire range and thus, of course, below  C2>C1.
  • As expected, the two–dimensional QPSK lies below the  C2 limit curve relevant for it.  However, it is above C1 in the lower range   (up to almost  6 dB) .



(4)  The  CQPSK(EB/N0) curve can also be constructed from  CBPSK(EB/N0), namely

  • on the one hand by doubling:
CBPSK(10lgES/N0)2CBPSK(10lgES/N0),
  • as well as by a shift of  3 dB  to the right:
CQPSK(10lgES/N0)=2CBPSK(10lgES/N03dB).
  • The  proposed solution 1  is correct.  This takes into account that with QPSK the energy in one dimension is only  ES/2.