Difference between revisions of "Aufgaben:Exercise 2.4Z: Low-pass Influence with Synchronous Demodulation"

From LNTwww
m
 
(30 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1009__Mod_Z_2_4.png|right|frame|Signale bei ZSB–AM und Synchrondemodulation]]
+
[[File:P_ID1009__Mod_Z_2_4.png|right|frame|Signals for DSB–AM and synchronous demodulation]]
Wir betrachten das gleiche Übertragungssystem wie in [http://en.lntwww.de/Aufgaben:2.4_Frequenz%E2%80%93und_Phasenversatz Aufgabe A2.4]. Es wird nun allerdings stets eine perfekte Frequenz– und Phasensynchronisation des Synchrondemodulators (SD) vorausgesetzt.
+
Let us consider the same communication system as in  [[Aufgaben:Exercise_2.4:_Frequency_and_Phase_Offset|Exercise 2.4]].  But this time, we will assume perfect frequency and phase synchronization for the synchronous demodulator $\rm (SD)$ .
Das Quellensignal $q(t)$, das Sendesignal $s(t)$ sowie das Signal $b(t)$ vor dem Tiefpassfilter innerhalb des Synchrondemodulators sind wie folgt gegeben:
 
$$q(t)  =  q_1(t) + q_2(t)\hspace{0.2cm}{\rm mit }$$
 
$$q_1(t)  =  2\,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
 
$$q_2(t)  =  1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
 
$$s(t)  =  q(t) \cdot \sin(2 \pi \cdot 50\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
 
$$b(t)  = s(t) \cdot 2 \cdot \sin(2 \pi \cdot 50\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$
 
Die Grafik zeigt zunächst die Signale $q(t)$ und $s(t)$. In der letzten Skizze ist das Sinkensignal $υ(t)$ dargestellt (violetter Kurvenverlauf). Dieses stimmt offensichtlich nicht mit dem Quellensignal (blau-gestrichelte Kurve) überein. Der Grund für das unerwünschte Ergebnis $υ(t) ≠ q(t)$ könnte zum Beispiel ein fehlender oder falsch dimensionierter Tiefpass sein.
 
  
In den Teilaufgaben c) und d) wird der sogenannte $\text{Trapeztiefpass}$ verwendet, dessen Frequenzgang wie folgt lautet:
+
The source signal  $q(t)$,  the transmitted signal  $s(t)$  and the signal  $b(t)$  in the synchronous demodulator before the low-pass filter  are given as follows:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1 \\ \frac{f_2 -|f|}{f_2 -f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\hspace{0.94cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_1,} \\ {f_1 \le \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\hspace{0.94cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > f_2.} \\ \end{array}$$
+
:$$q(t) = q_1(t) + q_2(t)\hspace{0.2cm}{\rm with }$$
 +
::$$q_1(t)  =  2\,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
 +
::$$q_2(t)  =  1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
 +
:$$s(t)  =  q(t) \cdot \sin(2 \pi \cdot 50\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
 +
:$$b(t)  = s(t) \cdot 2 \cdot \sin(2 \pi \cdot 50\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$
  
 +
The graph shows the source signal &nbsp;$q(t)$&nbsp; at the top and the transmission signal &nbsp;$s(t)$&nbsp; in the middle.
  
''Hinweise:''
+
The sink signal &nbsp;$v(t)$&nbsp; is shown at the bottom (purple waveform).  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Synchrondemodulation|Synchrondemodulation]].
+
*This obviously does not match the source signal (blue dashed curve).
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Synchrondemodulation#Einfluss_eines_Frequenzversatzes|Einfluss eines Frequenzversatzes]] und [[Modulationsverfahren/Synchrondemodulation#Einfluss_eines_Phasenversatzes|Einfluss eines Phasenversatzes]].
+
*The reason for this undesired result &nbsp;$v(t) ≠ q(t)$&nbsp; could be a missing or wrongly dimensioned low-pass filter.
*Berücksichtigen Sie die folgenden trigonometrischen Umformungen:
 
:$$\cos(\alpha)\cdot \cos(\beta) =  {1}/{2} \cdot \left[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\right] \hspace{0.05cm},$$
 
:$$\sin(\alpha)\cdot \cos(\beta)  =  {1}/{2} \cdot \left[ \sin(\alpha-\beta) + \sin(\alpha+\beta)\right] \hspace{0.05cm},$$
 
:$$\sin(\alpha)\cdot \sin(\beta)  =  {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right] \hspace{0.05cm}.$$
 
  
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil von [http://en.lntwww.de/Modulationsverfahren/Synchrondemodulation Kapitel 2.2]. Im Gegensatz zur Aufgabe A2.4 beschreiben hier f1 und f2 nicht die Signalfrequenzen, sondern beziehen sich auf das Tiefpassfilter.
 
  
 +
In the subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(4)'''&nbsp;, a&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Trapezoidal_low-pass_filters|"trapezoidal low-pass filter"]]&nbsp; is used,&nbsp; whose frequency response is as follows:
 +
:$$H_{\rm E}(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1 \\ \frac{f_2 -|f|}{f_2 -f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\hspace{0.94cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_1,} \\ {f_1 \le \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\hspace{0.94cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > f_2.} \\ \end{array}$$
  
  
===Fragebogen===
+
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter &nbsp; [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 +
*Particular reference is made to the page &nbsp;  [[Modulation_Methods/Synchronous_Demodulation#Block_diagram_and_time_domain_representation|Block diagram and time domain representation]].
 +
*In contrast to &nbsp;[[Aufgaben:Exercise_2.4:_Frequency_and_Phase_Offset|Exercise 2.4]]&nbsp;, &nbsp;$f_1$&nbsp; and &nbsp;$f_2$&nbsp; do not describe signal frequencies, but instead relate to the low-pass filter.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind über das Filter $H_E(f)$ möglich, das zur Gewinnung des auf der Angabenseite dargestellten Sinkensignals benutzt wurde?
+
{What statements can be made about the &nbsp;$H_{\rm E}(f)$&nbsp; filter used to obtain the sink signal shown on the page?  
 
|type="[]"}
 
|type="[]"}
+ Die obere Grenzfrequenz ist zu hoch.
+
+ The upper cutoff frequency is too high.
- Die obere Grenzfrequenz ist zu niedrig.
+
- The upper cutoff frequency is too low.
- Die untere Grenzfrequenz ist ungleich 0.
+
- The lower cutoff frequency is not zero.
  
{Mit welchen der nachfolgend aufgeführten Tiefpassfunktionen ist eine ideale Demodulation – das heißt $υ(t) = q(t)$ – prinzipiell möglich?
+
{With which of the low-pass functions listed below is ideal demodulation - that is, &nbsp; $v(t) = q(t)$&nbsp; possible in principle?
|type="[]"}
+
|type="[]"}  
+ Rechtecktiefpass.
+
+ Rectangular-in-frequency low-pass,
- Gaußtiefpass.
+
- Gaussian low-pass,
+ Trapeztiefpass.
+
+ trapezoidal low-pass,
- Spalttiefpass.
+
- slit low-pass.
  
{Wie ist die untere Eckfrequenz $f_1$ eines Trapeztiefpasses mindestens zu wählen, damit keine Verzerrungen entstehen?
+
{What is the minimum lower corner frequency &nbsp;$f_1$&nbsp; of a trapezoidal low-pass filter one can choose to avoid distortion?  
 
|type="{}"}
 
|type="{}"}
$f_{1, min}$= { 5 3 % } $\text{KHz}$
+
$f_{\text{1, min}} \ = \ $ { 5 3% } $\ \text{kHz}$
  
{Wie groß darf die obere Eckfrequenz $f_2$ des Trapeztiefpasses höchstens sein, damit keine Verzerrungen entstehen?
+
{What is the maximum upper corner frequency &nbsp;$f_2$&nbsp; of the trapezoidal low-pass that avoids distortion?
 
|type="{}"}
 
|type="{}"}
$f_{2,max}$ = { 95 3% } $\text{KHz}$
+
$f_{\text{2, max}} \ = \ $ { 95 3% } $\ \text{kHz}$
  
  
{Welche Grenzfrequenz $f_G$ eines idealen, rechteckförmigen Tiefpasses würden Sie bevorzugen, wenn Rauschstörungen nicht zu vernachlässigen sind?
+
{Which cutoff frequency&nbsp; (German:&nbsp; "Grenzfrequenz" &nbsp; &rArr; &nbsp; subscript&nbsp;"G") &nbsp;$f_{\rm G}$&nbsp; of an ideal rectangular low-pass filter would you choose if distortion is not negligible?
|type="[]"}
+
|type="()"}
- $f_G = 4 kHz,$
+
- $f_{\rm G} = 4 \ \rm kHz$,
+ $f_G = 6 kHz,$
+
+ $f_{\rm G} = 6 \ \rm kHz$,
- $f_G = 10 kHz.$
+
- $f_{\rm G} = 10 \ \rm kHz$.
  
  
Line 64: Line 69:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''Das dargestellte Sinkensignal $υ(t)$ stimmt exakt mit dem als Gleichung gegebenen Signal $b(t)$ überein und enthält somit auch Anteile um die doppelte Trägerfrequenz. Das Filter $H_E(f)$ fehlt entweder ganz oder dessen obere Grenzfrequenz $f_O$ ist zu hoch ⇒ Richtig ist die erste Aussage.
+
'''(1)'''&nbsp; <u>The first statement</u>&nbsp; is correct:
 +
*The sink signal&nbsp; $v(t)$&nbsp; shown in the bottom graphic exactly matches the signal &nbsp; $b(t)$&nbsp; given in the equation and thus also contains components around twice the carrier frequency.  
 +
*The filter &nbsp; $H_{\rm E}(f)$&nbsp; is either missing completely or its upper cutoff frequency&nbsp; $f_2$&nbsp; is too high.
 +
*Regarding the lower cutoff frequency &nbsp; $f_1$,&nbsp; the only statement possible is that it is smaller than the smallest frequency &nbsp; $\text{(2 kHz)}$ occurring in the signal&nbsp; $b(t)$.
 +
*Whether or not a DC component is removed by the filter is unclear,&nbsp; since such a component is not present in the signal &nbsp; $b(t)$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; <u>Answers 1 and 3</u>&nbsp; are correct:
 +
*A prerequisite for distortion-free demodulation is that all spectral components up to a certain frequency &nbsp; $f_1$&nbsp; are transmitted equally and as unattenuated as possible,&nbsp; and all components at frequencies &nbsp; $f > f_2$&nbsp; are completely suppressed.
 +
*The rectangular and trapezoidal low-pass filters satisfy this condition.
  
Bezüglich der unteren Grenzfrequenz $f_U$ ist nur die Aussage möglich, dass diese kleiner ist als die kleinste im Signal $b(t)$ vorkommende Frequenz (2 kHz). Ob ein Gleichanteil durch das Filter entfernt wird oder nicht, ist unklar, da ein solcher im Signal $b(t)$ nicht enthalten ist.
 
  
  
'''2.'''Voraussetzung für eine verzerrungsfreie Demodulation ist, dass bis zu einer bestimmten Frequenz $f_1$ alle Spektralanteile gleich und möglichst ungedämpft übertragen werden und alle Anteile bei Frequenzen $f > f_2$ vollständig unterdrückt werden. Der Rechteck– und der Trapeztiefpass erfüllen diese Bedingung.
+
'''(3)'''&nbsp; It must be ensured that the&nbsp; $\text{5 kHz}$&nbsp; component still lies in the passband:
 +
:$$f_{\text{1, min}}\hspace{0.15cm}\underline{ =5 \ \rm kHz}.$$
  
  
'''3.'''Sichergestellt werden muss, dass der 5 kHz–Anteil noch im Durchlassbereich liegt: $f_{1, min} = 5 kHz$.
 
  
 +
'''(4)'''&nbsp; All spectral components in the vicinity of twice the carrier frequency – more precisely between&nbsp; $\text{95 kHz}$&nbsp; and&nbsp; $\text{ 105 kHz}$&nbsp; – must be completely suppressed:
 +
:$$f_{\text{2, max}}\hspace{0.15cm}\underline{ =95 \ \rm kHz}.$$
 +
*Otherwise nonlinear distortion would arise.
  
'''4.'''Alle Spektralanteile in der Umgebung der doppelten Trägerfrequenz – genauer gesagt zwischen 95 kHz und 105 kHz – müssen vollständig unterdrückt werden: $f_{2, max} = 95 kHz$. Ansonsten würde es zu nichtlinearen Verzerrungen kommen.
 
  
  
'''5.'''Die Grenzfrequenz $f_G = 4 kHz$ hätte (lineare) Verzerrungen zur Folge, da dann der 5 kHz–Anteil abgeschnitten würde. Zu bevorzugen ist der Tiefpass mit $f_G = 6 kHz$, da mit $f_G = 10 kHz$ dem Nutzsignal $υ(t)$ mehr Rauschanteile überlagert wären  ⇒ Lösungsvorschlag 2.
+
'''(5)'''&nbsp; <u>Answer 2</u>&nbsp; is correct:
 +
*The cutoff frequency}&nbsp; $f_{\rm G} = \text{ 4 kHz}$&nbsp; would result in&nbsp; (linear)&nbsp; distortions,&nbsp; since the&nbsp; $\text{5 kHz}$&nbsp; component would be cut off.  
 +
*The low-pass with cutoff frequency&nbsp; $f_{\rm G} = \text{6 kHz}$&nbsp; is preferable,&nbsp; since with&nbsp; $f_{\rm G} = \text{10 kHz}$&nbsp; more noise components would be superimposed on the signal&nbsp; $v(t)$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 86: Line 104:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.2 Synchrondemodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.2 Synchronous Demodulation^]]

Latest revision as of 16:32, 25 March 2022

Signals for DSB–AM and synchronous demodulation

Let us consider the same communication system as in  Exercise 2.4.  But this time, we will assume perfect frequency and phase synchronization for the synchronous demodulator $\rm (SD)$ .

The source signal  $q(t)$,  the transmitted signal  $s(t)$  and the signal  $b(t)$  in the synchronous demodulator before the low-pass filter are given as follows:

$$q(t) = q_1(t) + q_2(t)\hspace{0.2cm}{\rm with }$$
$$q_1(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 2\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
$$q_2(t) = 1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
$$s(t) = q(t) \cdot \sin(2 \pi \cdot 50\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
$$b(t) = s(t) \cdot 2 \cdot \sin(2 \pi \cdot 50\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$

The graph shows the source signal  $q(t)$  at the top and the transmission signal  $s(t)$  in the middle.

The sink signal  $v(t)$  is shown at the bottom (purple waveform).

  • This obviously does not match the source signal (blue dashed curve).
  • The reason for this undesired result  $v(t) ≠ q(t)$  could be a missing or wrongly dimensioned low-pass filter.


In the subtasks  (3)  and  (4) , a  "trapezoidal low-pass filter"  is used,  whose frequency response is as follows:

$$H_{\rm E}(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1 \\ \frac{f_2 -|f|}{f_2 -f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\hspace{0.94cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_1,} \\ {f_1 \le \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\hspace{0.94cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > f_2.} \\ \end{array}$$



Hints:



Questions

1

What statements can be made about the  $H_{\rm E}(f)$  filter used to obtain the sink signal shown on the page?

The upper cutoff frequency is too high.
The upper cutoff frequency is too low.
The lower cutoff frequency is not zero.

2

With which of the low-pass functions listed below is ideal demodulation - that is,   $v(t) = q(t)$  – possible in principle?

Rectangular-in-frequency low-pass,
Gaussian low-pass,
trapezoidal low-pass,
slit low-pass.

3

What is the minimum lower corner frequency  $f_1$  of a trapezoidal low-pass filter one can choose to avoid distortion?

$f_{\text{1, min}} \ = \ $

$\ \text{kHz}$

4

What is the maximum upper corner frequency  $f_2$  of the trapezoidal low-pass that avoids distortion?

$f_{\text{2, max}} \ = \ $

$\ \text{kHz}$

5

Which cutoff frequency  (German:  "Grenzfrequenz"   ⇒   subscript "G")  $f_{\rm G}$  of an ideal rectangular low-pass filter would you choose if distortion is not negligible?

$f_{\rm G} = 4 \ \rm kHz$,
$f_{\rm G} = 6 \ \rm kHz$,
$f_{\rm G} = 10 \ \rm kHz$.


Solution

(1)  The first statement  is correct:

  • The sink signal  $v(t)$  shown in the bottom graphic exactly matches the signal   $b(t)$  given in the equation and thus also contains components around twice the carrier frequency.
  • The filter   $H_{\rm E}(f)$  is either missing completely or its upper cutoff frequency  $f_2$  is too high.
  • Regarding the lower cutoff frequency   $f_1$,  the only statement possible is that it is smaller than the smallest frequency   $\text{(2 kHz)}$ occurring in the signal  $b(t)$.
  • Whether or not a DC component is removed by the filter is unclear,  since such a component is not present in the signal   $b(t)$.


(2)  Answers 1 and 3  are correct:

  • A prerequisite for distortion-free demodulation is that all spectral components up to a certain frequency   $f_1$  are transmitted equally and as unattenuated as possible,  and all components at frequencies   $f > f_2$  are completely suppressed.
  • The rectangular and trapezoidal low-pass filters satisfy this condition.


(3)  It must be ensured that the  $\text{5 kHz}$  component still lies in the passband:

$$f_{\text{1, min}}\hspace{0.15cm}\underline{ =5 \ \rm kHz}.$$


(4)  All spectral components in the vicinity of twice the carrier frequency – more precisely between  $\text{95 kHz}$  and  $\text{ 105 kHz}$  – must be completely suppressed:

$$f_{\text{2, max}}\hspace{0.15cm}\underline{ =95 \ \rm kHz}.$$
  • Otherwise nonlinear distortion would arise.


(5)  Answer 2  is correct:

  • The cutoff frequency}  $f_{\rm G} = \text{ 4 kHz}$  would result in  (linear)  distortions,  since the  $\text{5 kHz}$  component would be cut off.
  • The low-pass with cutoff frequency  $f_{\rm G} = \text{6 kHz}$  is preferable,  since with  $f_{\rm G} = \text{10 kHz}$  more noise components would be superimposed on the signal  $v(t)$.