Difference between revisions of "Signal Representation/Calculating with Complex Numbers"

From LNTwww
 
(75 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Grundbegriffe der Nachrichtenübertragung
+
|Untermenü=Basic Terms of Communications Engineering
|Vorherige Seite=Klassifizierung von Signalen
+
|Vorherige Seite=Signal Classification
|Nächste Seite=Allgemeine Beschreibung
+
|Nächste Seite=General Description
 
}}
 
}}
  
  
==Reelle Zahlenmengen==  
+
==The set of real numbers==
In den folgenden Kapiteln dieses Buches spielen komplexe Größen stets eine wichtige Rolle. Obwohl das Rechnen mit komplexen Zahlen bereits in der Schulmathematik behandelt und geübt wird, haben unsere Erfahrungen gezeigt, dass auch Studierende von naturwissenschaftlichen und technischen Fachgebieten damit durchaus Probleme haben. Deshalb werden am Ende dieses Grundlagenkapitels die Rechenregeln für komplexe Zahlen kurz zusammengefasst.
+
<br>  
Vielleicht hängen diese Schwierigkeiten auch damit zusammen, dass „komplex” im Alltag oft als Synonym für „kompliziert” verwendet wird, während „reell” laut Duden für „zuverlässig, ehrlich und redlich” steht.
+
In the following chapters of this book,&nbsp; complex quantities always play an important role.&nbsp; Although calculating with complex numbers is already treated and practiced in school mathematics,&nbsp; our experience has shown that even students of natural sciences and technical subjects have problems with it.&nbsp; Perhaps these difficulties are also related to the fact that&nbsp; "complex"&nbsp; is often used as a synonym for&nbsp; "complicated"&nbsp; in everyday life,&nbsp; while&nbsp; "real"&nbsp; stands for&nbsp; "reliable, honest and truthful".
Zunächst folgen einige Anmerkungen über die reellen Zahlenmengen, für die im strengen mathematischen Sinne die Bezeichnung „Zahlenkörper” richtiger wäre. Hierzu gehören:
 
*Natürliche Zahlen $\mathbb{N} = \{1, 2, 3, ...\}$. Mit diesen Zahlen sind die Rechenoperationen Addition, Multiplikation und „$x^y$” möglich. Das jeweilige Ergebnis ist wieder eine :natürliche Zahl.
 
*Ganze Zahlen $\mathbb{Z} = \{... , –3, –2, –1, 0, +1, +2, +3, ...\}$. Diese Zahlenmenge ist eine Erweiterung der natürlichen Zahlen $\mathbb{N}$. Die Einführung der Menge $\mathbb{Z}$ war notwendig, um die Ergebnismenge einer Substraktion zu erfassen, zum Beispiel 5 – 7 = –2.
 
*Rationale Zahlen $\mathbb{Q} = \{z/n\}$ mit $z \in \mathbb{Z}$, $n \in \mathbb{N}$. Mit dieser auch als Bruchzahlen bekannten Zahlenmenge liegt auch für jede Division ein definiertes Ergebnis vor. Schreibt man eine rationale Zahl in Dezimalschreibweise, so treten ab einer gewissen Dezimalstelle nur Nullen auf (zum Beispiel –2/5 = –0.400...) oder es sind Periodizitäten zu erkennen (z.B. 2/7 = 0.285714285...). Da $n = 1$ erlaubt ist, sind die ganzen Zahlen eine Teilmenge der rationalen Zahlen: $\mathbb{Z} \subset \mathbb{Q}$.
 
*Irrationale Zahlen \$\mathbb{Q} \neq {z/n} mit $z \in \mathbb{Z}$, $n \in \mathbb{N}$. Obwohl es unendlich viele rationale Zahlen gibt, verbleiben ebenfalls unendlich viele Zahlen, die nicht als Bruch dargestellt werden können. Beispiele hierfür sind die Zahl $\pi$ = 3.141592654.... (wobei es auch bei mehr Dezimalstellen keine Perioden gibt) oder das Ergebnis der folgenden Gleichung:
 
: <math>a^{2}=2\Rightarrow a=\pm \sqrt{2}=\pm 1.414213562...</math>
 
  
 +
Therefore,&nbsp; the calculation rules for complex numbers are briefly summarized here at the end of this first basic chapter.
  
[[File:P_ID821_Sig_T_1_3_S1_rah.png |right|Zahlenstrahl]]
+
First there are some remarks about real quantities of numbers,&nbsp; for which in the strict mathematical sense the term&nbsp; &raquo;number fields&laquo; would be more correct.&nbsp; These include:
Auch diese Zahl ist irrational, was bereits Euklid in der Antike bewiesen hat.
 
Reelle Zahlen $\mathbb{R} = \mathbb{Q}  \cup \\\mathbb{Q}$. Die Gesamtheit aller rationalen und irrationalen Zahlen ergibt die Menge der reellen Zahlen. Diese können entsprechend ihren Zahlenwerten geordnet und auf dem so genannten Zahlenstrahl eingezeichnet werden.
 
  
 +
{{BlaueBox|TEXT=
 +
$\text{Definitions:}$&nbsp;
 +
*&raquo;'''Natural Numbers'''&laquo;&nbsp; $\mathbb{N} = \{1, 2, 3, \text{...}\hspace{0.05cm} \}$. &nbsp; Using these numbers, for&nbsp; $n, \ k \in \mathbb{N}$&nbsp; the arithmetic operations&nbsp; &raquo;addition&laquo;&nbsp; $(m = n +k)$,&nbsp; &raquo;multiplication&laquo;&nbsp; $(m = n \cdot k)$&nbsp; and&nbsp; &raquo;potency formation&laquo;&nbsp; $(m = n^k)$&nbsp; are possible.&nbsp; The respective result of a calculation is again a natural number: &nbsp; $m \in \mathbb{N}$.
  
==Imaginäre und Komplexe Zahlen==
 
Mit der Einführung der irrationalen Zahlen war die Lösung der Gleichung $a^2-2=0$ möglich, nicht jedoch von $a^2+1=0$. Der Mathematiker Leonhard Euler löste dieses Problem, indem er den Körper der reellen Zahlen um die imaginären Zahlen erweiterte. Er definierte dazu die imaginäre Einheit
 
  
<math>j=\sqrt{-1} \Rightarrow j^{2}=-1</math>
+
*&raquo;'''Integer Numbers'''&laquo;&nbsp; $\mathbb{Z} = \{\text{...}\hspace{0.05cm} , -3, -2, -1, \ 0, +1, +2, +3, \text{...}\hspace{0.05cm}\}$. &nbsp; This set of numbers is an extension of the natural numbers&nbsp; $\mathbb{N}$.&nbsp; The introduction of the set&nbsp; $\mathbb{Z}$&nbsp; was necessary to capture the result set of a subtraction&nbsp; $(m = n -k$,&nbsp; for example&nbsp; $5 - 7 = - 2)$.
 +
 
 +
 
 +
*&raquo;'''Rational Numbers'''&laquo;&nbsp; $\mathbb{Q} = \{z/n\}$&nbsp; with&nbsp; $z \in \mathbb{Z}$&nbsp; and&nbsp; $n \in \mathbb{N}$. &nbsp; With this set of numbers, also known as fractions, there is a defined result for each division.&nbsp; If you write a rational number in decimal notation, only zeros appear after a certain decimal place&nbsp; $($Example:&nbsp; $-2/5 = -0.400\text{...}\hspace{0.05cm})$&nbsp; or periodicities&nbsp; $($Example:&nbsp; $2/7 = 0.285714285\text{...}\hspace{0.05cm})$.&nbsp; Since&nbsp; $n = 1$&nbsp; is allowed,&nbsp; the integers are a subset of the rational numbers: &nbsp; $\mathbb{Z} \subset \mathbb{Q}$.
 +
 
 +
 
 +
*&raquo;'''Irrational Numbers'''&laquo;&nbsp; $\mathbb{I} \neq {z/n}$&nbsp; mit&nbsp; $z \in \mathbb{Z}$, $n \in \mathbb{N}$. &nbsp; Although there are infinite rational numbers, there are still infinite numbers which cannot be represented as a fraction.&nbsp; Examples are the number&nbsp;  $\pi = 3.141592654\text{...}\hspace{0.05cm}$&nbsp;  $($where there are no periods even with more decimal places$)$&nbsp; or the result of the equation &nbsp; $a^{2}=2 \,\,\Rightarrow \;\;a=\pm \sqrt{2}=\pm1.414213562\text{...}\hspace{0.05cm}$.&nbsp; This result is also irrational, which has already been proved by&nbsp; [https://en.wikipedia.org/wiki/Euclid $\text{Euclid}$]&nbsp; in antiquity.
 +
[[File:EN_Sig_T_1_3_S1.png |right|frame|Real numbers on the number line]]
 +
 
 +
 
 +
*&raquo;'''Real Numbers'''&laquo;&nbsp; $\mathbb{R} = \mathbb{Q}  \cup  \mathbb{I}$ as the sum of all rational and irrational numbers.
 +
:These can be ordered according to their numerical values and can be drawn on the so-called&nbsp; "number line"&nbsp; as shown in the adjacent graph.}}
 +
 
 +
 
 +
 
 +
 
 +
==Imaginary and complex numbers==
 +
<br>
 +
With the introduction of the irrational numbers the solution of the equation&nbsp; $a^2-2=0$&nbsp; was possible,&nbsp; but not the solution of the equation&nbsp; $a^2+1=0$.&nbsp; The mathematician&nbsp; [https://en.wikipedia.org/wiki/Leonhard_Euler $\text{Leonhard Euler}$]&nbsp; solved this problem by extending the set of real numbers by the&nbsp; &raquo;imaginary numbers&laquo;&nbsp;. He defined the&nbsp; &raquo;'''imaginary unit'''&laquo;&nbsp; as follows:
 +
 
 +
:$${\rm j}=\sqrt{-1} \ \Rightarrow \ {\rm j}^{2}=-1.$$
 
   
 
   
Anzumerken ist, dass Euler diese Größe mit „i” bezeichnet hat und dies auch heute noch in der Mathematik so üblich ist. In der Elektrotechnik hat sich dagegen die Bezeichnung „j” durchgesetzt, da „i” bereits mit dem zeitabhängigen Strom belegt ist.
+
It should be noted that Euler called this quantity&nbsp; "$\rm i$"&nbsp; and this is still common in mathematics today.&nbsp; In Electrical Engineering,&nbsp; on the other hand,&nbsp; the designation&nbsp; "$\rm j$"&nbsp; has become generally accepted since&nbsp; "$\rm i$"&nbsp; is already occupied by the time-dependent current.
 +
 
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp;
 +
The&nbsp; &raquo;'''complex number'''&laquo;&nbsp; $z$&nbsp; is generally the sum of a real number&nbsp; $x$&nbsp; and an imaginary number&nbsp; ${\rm j} \cdot y$:
 +
 
 +
:$$z=x+{\rm j}\cdot y.$$
 +
 
 +
*$x$&nbsp; and&nbsp; $y$&nbsp; are derived from the quantity&nbsp; $\mathbb{R}$&nbsp; from the real numbers.
 +
 
 +
*The set of all possible complex numbers is called the body&nbsp; $\mathbb{C}$&nbsp; of the complex numbers.}}
 +
 
  
{{Definition}}
+
The number line of real numbers now becomes the complex plane,&nbsp; which is spanned by two number lines twisted by &nbsp; $90^\circ$&nbsp; for real part and imaginary part.
Die komplexe Zahl $z$ ist im allgemeinen die Summe einer reellen Zahl $x$ und einer imaginären Zahl j ·$y$:
 
  
<math>z=x+j \cdot y</math>
+
{{GraueBox|TEXT=
 +
$\text{Example 1:}$&nbsp;
 +
[[File:P_ID823_Sig_T_1_3_S2_neu.png|right|frame|Numbers in the complex plane]]
  
x und y entstammen hierbei der Menge $\mathbb{R}$ der reellen Zahlen. Die Menge aller möglichen komplexen Zahlen bezeichnet man als den Körper $\mathbb{C}$ der komplexen Zahlen.
+
*The complex number&nbsp; $z_1 = 2 \cdot {\rm j}$&nbsp; is one of two possible solutions of the equation&nbsp; $z^2+4=0$. The other solution is&nbsp;
{{end}}
+
:$$z_2 = -2 \cdot {\rm j}.$$
  
 +
*In contrast&nbsp; $z_3 = 2 + {\rm j}$&nbsp; and&nbsp; $z_4 = 2 -{\rm j}$&nbsp; give the two solutions to the following equation:&nbsp;
  
Aus dem Zahlenstrahl der reellen Zahlen wird nun die komplexe Ebene, die durch zwei um 90° verdrehte Zahlenstränge für Real- und Imaginärteil aufgespannt wird.
+
:$$(z-2- {\rm j})(z-2+ {\rm j}) = 0 \; \ \Rightarrow \;\ z^{2}-4 \cdot z+5=0.$$
  
{{Beispiel}}
+
: $z_4 = z_3^\ast$&nbsp; is also called the&nbsp; &raquo;complex conjugate&laquo;&nbsp; of&nbsp; $z_3$.  
[[File:P_ID823_Sig_T_1_3_S2_neu.png|right|180px|Zahlen in der komplexen Ebene]]
+
*The sum&nbsp; $z_3 + z_4$&nbsp; is real:&nbsp;
Die komplexe Zahl $z_1$ = 2j ist eine der zwei möglichen Lösungen der Gleichung $z^2+4=0$. Eine andere Lösung ist $z_2$ = –2j.
 
Dagegen geben $z_3$ = 2 + j und $z_4$ = 2 – j die beiden Lösungen zu folgender Gleichung an:
 
  
<math>(z-2-j)(z-2+j) = 0 \Rightarrow z^{2}-4 \cdot z+5=0</math>
+
:$$z_3 + z_4 = 2 \cdot {\rm Re}[z_3]=2 \cdot {\rm Re}[z_4].$$
  
Man bezeichnet $z_4 = z_3^\ast$ auch als die Konjugiert-Komplexe von $z_3$. Die Summe $z_3 + z_4$ ist rein reell:
+
*The difference&nbsp; $z_3 - z_4$&nbsp; is purely imaginary:&nbsp;
  
<math>z_3 + z_4 = 2 \cdot Re[z_3]=2 \cdot Re[z_4]</math>
+
:$$z_3 - z_4 = {\rm j} \cdot \big [2 \cdot {\rm Im}[z_3] \big ] ={\rm j} \cdot \big [-2 \cdot {\rm Im}[z_4] \big ].$$}}
{{end}}
 
  
  
Anmerkung: In der Literatur werden komplexe Größen oftmals durch eine Unterstreichung gekennzeichnet. Darauf wird in den Büchern von LNTwww verzichtet.
+
<u>Note</u>: &nbsp; In the literature,&nbsp; complex quantities are often marked by underlining.&nbsp; This is not used in the&nbsp; $\rm LNTwww$&nbsp; books.
  
 
   
 
   
==Darstellung nach Betrag und Phase==  
+
== Representation by magnitude and phase==  
 +
<br>
 +
A complex number&nbsp; $z$&nbsp; can be described not only by the real part&nbsp; $x$&nbsp; and the imaginary part&nbsp; $y$&nbsp; but also by its magnitude&nbsp; $|z|$&nbsp; and the phase&nbsp; $\phi$&nbsp;.
 +
 
 +
[[File:P_ID1246__Sig_T_1_3_S3_neu.png|right|frame|Complex conjugate <br>of a number]]
 +
*The following conversions apply:
  
Eine komplexe Zahl $z$ kann außer durch den Realteil $x$ und den Imaginärteil $y$ auch durch ihren Betrag $|z|$ und die Phase $\Phi$ beschrieben werden. Es gelten folgende Umrechnungen:
+
:$$\left | z \right | = \sqrt{x^{2}+y^{2}},  \hspace{0.6cm}\phi = \arctan ({y}/{x}),$$
 
<math>\left | z \right | = \sqrt{x^{2}+y^{2}},  \phi = arctan \frac{y}{x}</math>
 
  
<math>x = |z| \cdot cos(\phi), y = |z| \cdot sin(\phi )</math>
+
:$$x = |z| \cdot \cos(\phi), \hspace{0.6cm} y = |z| \cdot \sin(\phi ).$$
 
   
 
   
Somit kann die komplexe Größe $z$ auch in folgender Form dargestellt werden:
+
*Thus the complex quantity&nbsp; $z$&nbsp; can also be displayed in the following form:
 
   
 
   
<math>z = |z| \cdot cos(\phi )+j \cdot |z| \cdot sin(\phi ) = |z| \cdot e^{j \cdot \phi }.</math>
+
:$$z = |z| \cdot \cos (\phi) + {\rm j} \cdot |z| \cdot \sin (\phi) = |z| \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}.$$
  
Hier ist der Satz von Euler verwendet, der unten bewiesen wird. Dieser besagt, dass die komplexe Größe exp(j$\Phi$) den Realteil cos($\Phi$) und den Imaginärteil sin($\Phi$) aufweist.
+
*Here,&nbsp; the&nbsp; $\text{Euler's theorem}$&nbsp; was used,&nbsp; which is proved below. &nbsp;<br>This states that the complex quantity&nbsp; $ {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}$&nbsp;exhibits the real part&nbsp; $\cos(\phi)$&nbsp; and the imaginary part&nbsp; $\sin(\phi)$&nbsp;.
Weiter erkennt man aus der nebenstehenden Grafik, dass für die Konjugiert-Komplexe von $z = x + \text{j} \cdot y$ gilt:
 
  
<math>z^{\ast} = x - j \cdot y = |z| \cdot e^{-j \cdot \phi}</math>
+
*Further one recognizes from the diagram that for the&nbsp; &raquo;complex conjugates&laquo;&nbsp; of&nbsp; $z = x + {\rm j}\cdot y$&nbsp; applies:
  
{{Beweis}}
+
:$$z^{\star} = x - {\rm j} \cdot y = |z| \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi}.$$
Der Beweis des Eulerschen Satzes basiert auf dem Vergleich von Potenzreihenentwicklungen. Die Reihenentwicklung der Exponentialfunktion lautet:
+
 
 +
{{BlaueBox|TEXT=
 +
$\text{Proof of the Euler theorem:}$&nbsp; This is based on the comparison of power series developments.  
 +
*The series development of the exponential function is:&nbsp;
 
   
 
   
<math>e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + ...</math>
+
:$${\rm e}^{x} = 1 + \frac{x}{1!}+ \frac{x^2}{2!}+ \frac{x^3}{3!}
 +
+ \frac{x^4}{4!} +\text{ ...} \hspace{0.15cm}.$$
  
Mit imaginärem Argument kann hierfür auch geschrieben werden:
+
*With an imaginary argument you can also write:&nbsp;
 
   
 
   
<math>e^{jx} = 1 + j \cdot \frac{x}{1!} + j^{2} \cdot \frac{x^{2}}{2!} + j^{3} \cdot \frac{x^{3}}{3!} + + j^{4} \cdot \frac{x^{4}}{4!} + ...</math>
+
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = 1 + {\rm j} \cdot \frac{x}{1!}+ {\rm j}^2 \cdot \frac{x^2}{2!}+ {\rm j}^3 \cdot \frac{x^3}{3!}
 +
+ {\rm j}^4 \cdot \frac{x^4}{4!} + \text{ ...}  \hspace{0.15cm}.$$
  
Berücksichtigt man <math>j^{2}=-1, j^{3} = -j, j^{4} = 1, j^{5} = j</math>, usw. und fasst die reellen und die imaginären Terme zusammen, so erhält man
+
*Considering&nbsp; <math>{\rm j}^{2}=-1, \ \ {\rm j}^{3} = -{\rm j},\ \ {\rm j}^{4} = 1, \ \ {\rm j}^{5} = {\rm j},  \text{ ...} \hspace{0.15cm}</math>&nbsp; and combining the real and the imaginary terms,&nbsp; one obtains
  
<math>e^{jx} = A(x) + j \cdot B(x)</math>, wobei
+
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = A(x) + {\rm j}\cdot B(x).$$
  
<math>A(x) = 1 - \frac{x^{2}}{2!}  + \frac{x^{4}}{4!}  - \frac{x^{6}}{6!} + ... = cos(x)</math>
+
* The following applies to both series:
 
+
:$$A(x) = 1 - \frac{x^2}{2!}
<math>B(x) =  \frac{x}{1!}  - \frac{x^{3}}{3!}  + \frac{x^{5}}{5!}  - \frac{x^{7}}{7!} + ... = sin(x)</math>
+
+ \frac{x^4}{4!} - \frac{x^6}{6!}+
 +
\text{ ...} \hspace{0.1cm}=
 +
\cos(x),\hspace{0.5cm}
 +
B(x) =  \frac{x}{1!}- \frac{x^3}{3!}
 +
+ \frac{x^5}{5!} - \frac{x^7}{7!}+
 +
\text{ ...}=
 +
\sin(x).$$
 
   
 
   
Daraus folgt direkt der Satz von Euler:
+
*From this the&nbsp; $\text{Euler Theorem}$&nbsp; follows directly:  
 
   
 
   
$$e^{jx} = cos(x) + j \cdot sin(x)$$.
+
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = \cos (x) + {\rm j} \cdot \sin (x) \hspace{2cm}                                           
{{end}}
+
\rm q.e.d.$$}}
 +
 
  
 +
==Calculation laws for complex numbers==
 +
<br>
 +
The arithmetic laws for two complex numbers
 +
 +
:$$z_1 = x_1 + {\rm j} \cdot y_1 = |z_1| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot
 +
\hspace {0.05cm} \phi_1},$$
 +
:$$z_2 = x_2 + {\rm j} \cdot y_2 = |z_2| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
 +
\hspace {0.05cm} \phi_2}$$
  
==Rechenregeln für komplexe Zahlen==
+
are defined in such a way,&nbsp; that for the special case of a vanishing imaginary part,&nbsp; the calculation rules for real numbers are given.&nbsp; This is called&nbsp; "principle of permanence".&nbsp; The following rules apply to the basic arithmetic operations:&nbsp;
 +
*The sum of two complex numbers&nbsp; $($resp. their difference$)$&nbsp; is made by adding&nbsp; $($resp. subtracting$)$&nbsp; their real and imaginary parts :
  
Die Rechengesetze für zwei komplexe Zahlen
+
::<math>z_3 = z_1 + z_2 = (x_1+x_2) + {\rm j}\cdot (y_1 + y_2),</math>
 
   
 
   
<math>z_1 = x_1 + j \cdot y_1 = |z_1| \cdot e^{j \cdot \phi_1} , \quad z_2 = x_2 + j \cdot y_2 = |z_2| \cdot e^{j \cdot \phi_2}</math>
+
::<math>z_4 = z_1 - z_2 = (x_1-x_2) + {\rm j}\cdot (y_1 - y_2).</math>  
  
sind derart definiert, dass sich für den Sonderfall eines verschwindenden Imaginärteils die Rechenregeln der reellen Zahlen ergeben. Man spricht vom so genannten Permanenzprinzip.
+
*The product of two complex numbers can be formed in the real part and imaginary part description by multiplication considering&nbsp; <math>{\rm j}^{2}=-1</math>.&nbsp; <br>However,&nbsp; multiplication is simpler if&nbsp; <math>z_1</math>&nbsp; and&nbsp; <math>z_2</math>&nbsp; are written with magnitude and phase:&nbsp;
Für die Grundrechenarten gelten folgende Regeln:
+
*Die Summe zweier komplexer Zahlen (bzw. deren Differenz) wird gebildet, indem man ihre Real- und Imaginärteile addiert (bzw. subtrahiert):
+
::<math>z_5 = z_1 \cdot z_2 = (x_1\cdot x_2 - y_1\cdot y_2) + {\rm j}\cdot (x_1\cdot y_2 + x_2\cdot y_1),</math>
  
:<math>z_3 = z_1 + z_2 = (x_1 + x_2) + j \cdot (y_1 + y_2)</math>  
+
::<math>z_5 = |z_1| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
 +
\hspace {0.05cm} \phi_1}
 +
\cdot |z_2| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot
 +
\hspace {0.05cm} \phi_2}= |z_5| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
 +
\hspace {0.05cm} \phi_5}
 +
\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} |z_5|  = |z_1|  \cdot |z_2| , \hspace{0.3cm}\phi_5 = \phi_1 + \phi_2 .</math>
 
   
 
   
:<math>z_4 = z_1 - z_2 = (x_1 - x_2) + j \cdot (y_1 - y_2)</math>  
+
*The division is also more manageable in the exponential notation.&nbsp; The two magnitudes are divided and the phases are subtracted in the exponent:&nbsp;
 +
 
 +
::<math>z_6 = \frac{z_1}{z_2} = |z_6| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
 +
\hspace {0.05cm} \phi_6}
 +
\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} |z_6| =  \frac{|z_1|}{|z_2|}, \hspace{0.3cm}\phi_6 = \phi_1 - \phi_2 .</math>
  
*Das Produkt zweier komplexer Zahlen kann in der Realteil- und Imaginärteildarstellung durch Ausmultiplizieren unter Berücksichtigung von <math>j^{2}=-1</math> gebildet werden. Einfacher gestaltet sich die Multiplikation allerdings, wenn <math>z_1</math> und <math>z_2</math> mit Betrag und Phase geschrieben werden:
+
{{GraueBox|TEXT=
+
[[File:P_ID825_Sig_T_1_3_S4_neu.png|right|frame|Some operations with complex numbers]]
:<math>z_5 = z_1 \cdot z_2 = (x_1 \cdot x_2 - y_1 \cdot y_2) + j \cdot (x_1 \cdot y_2 + x_2 \cdot y_1)</math>
+
 
 +
$\text{Example 2:}$&nbsp;
 +
In the graphic are shown as points within the complex plane:
 +
 
 +
*The complex number&nbsp; <math>z=0.75 + {\rm j} = 1.25 \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm} \cdot \hspace{0.05cm}53.1^{\circ} }</math>,
  
:<math>z_5 = |z_1| \cdot e^{j \cdot \phi_1} \cdot |z_2| \cdot e^{j \cdot \phi_2} = |z_5| \cdot e^{\phi_5} \quad \Rightarrow \quad |z_5| = |z_1| \cdot |z_2|, \quad \phi_5 = \phi_1 + \phi_2</math>
+
*its complex conjugate&nbsp; <math>z^{\ast} = 0.75 - {\rm j} = 1.25 \cdot {\rm e}^{ - {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}53.1^{\circ} }</math>,
 
   
 
   
*Die Division ist in der Exponentialschreibweise ebenfalls überschaubarer. Hier werden die beiden Beträge dividiert und die Phasen im Exponenten subtrahiert:
+
*the sum&nbsp; <math>s=z+z^{\ast}=1.5</math>&nbsp; $($purely real$)$,
  
:<math>z_6 = \frac{z_1}{z_2} = |z_6| \cdot e^{j \cdot \phi 6} \quad \Rightarrow \quad |z_6| = \frac{|z_1|}{|z_2|}, \quad \phi_6 = \phi_1 - \phi_2</math>
+
*the difference&nbsp; <math>d=z-z^{\ast}=2 \cdot {\rm j}</math>&nbsp; $($purely imaginary$)$,
  
 +
*the product&nbsp; <math>p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625</math>&nbsp; $($purely real$)$,
  
{{Beispiel}}
+
*the division&nbsp; <math>q= {z}/{z^{\ast} }={\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}106.2^{\circ} }</math>&nbsp;with magnitude &nbsp; $1$&nbsp; and the double phase angle of&nbsp; $z$.}}
[[File:P_ID825_Sig_T_1_3_S4_neu.png|right|150px]]
 
Die komplexe Zahl <math>z=0.75 + j = 1.25 \cdot e^{j \cdot 53.1^{\circ}}</math> sowie deren Konjugiert-Komplexe <math>z^{\ast} = 0.75 - j = 1.25 \cdot e^{-j \cdot 53.1^{\circ}}</math> sind in der Grafik als Punkte innerhalb der komplexen Ebene dargestellt, zusätzlich die Summe <math>s=z+z^{\ast}=1.5</math> (rein reell) und die Differenz <math>d=z-z^{\ast}=2j</math> (rein imaginär).
 
  
Das Produkt <math>p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625</math> ist in diesem Fall ebenfalls rein reell, während der Quotient <math>q= \frac{z}{z^{\ast}}=e^{j \cdot 106.2^{\circ}}</math> den Betrag 1 und den doppelten Phasenwinkel wie z aufweist.
 
{{end}}
 
  
 +
The following&nbsp;  $($German language$)$&nbsp; learning video summarizes the topic of this chapter in a compact way:<br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|&raquo;Rechnen mit komplexen Zahlen&laquo;]] &nbsp; &rArr; &nbsp; "Arithmetic operations involving complex numbers".
  
Die Thematik von Kapitel 1.3 wird auch in folgendem Lernvideo behandelt:
 
[http://{{SERVERNAME}}/mediawiki/swf_files/Buch1/komplex.swf Rechnen mit komplexen Zahlen (Dauer 11:52)]
 
  
 
   
 
   
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_1.3:_Calculating_With_Complex_Numbers|Exercise 1.3: Calculating with Complex Numbers]]
  
 
+
[[Aufgaben:Exercise_1.3Z:_Calculating_with_Complex_Numbers_II|Exercise 1.3Z: Calculating with Complex Numbers II]]
===Aufgaben zu Kapitel 1.3===
 
[[Aufgaben:1.3 Rechnen mit komplexen Zahlen]]
 
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:45, 7 June 2023


The set of real numbers


In the following chapters of this book,  complex quantities always play an important role.  Although calculating with complex numbers is already treated and practiced in school mathematics,  our experience has shown that even students of natural sciences and technical subjects have problems with it.  Perhaps these difficulties are also related to the fact that  "complex"  is often used as a synonym for  "complicated"  in everyday life,  while  "real"  stands for  "reliable, honest and truthful".

Therefore,  the calculation rules for complex numbers are briefly summarized here at the end of this first basic chapter.

First there are some remarks about real quantities of numbers,  for which in the strict mathematical sense the term  »number fields« would be more correct.  These include:

$\text{Definitions:}$ 

  • »Natural Numbers«  $\mathbb{N} = \{1, 2, 3, \text{...}\hspace{0.05cm} \}$.   Using these numbers, for  $n, \ k \in \mathbb{N}$  the arithmetic operations  »addition«  $(m = n +k)$,  »multiplication«  $(m = n \cdot k)$  and  »potency formation«  $(m = n^k)$  are possible.  The respective result of a calculation is again a natural number:   $m \in \mathbb{N}$.


  • »Integer Numbers«  $\mathbb{Z} = \{\text{...}\hspace{0.05cm} , -3, -2, -1, \ 0, +1, +2, +3, \text{...}\hspace{0.05cm}\}$.   This set of numbers is an extension of the natural numbers  $\mathbb{N}$.  The introduction of the set  $\mathbb{Z}$  was necessary to capture the result set of a subtraction  $(m = n -k$,  for example  $5 - 7 = - 2)$.


  • »Rational Numbers«  $\mathbb{Q} = \{z/n\}$  with  $z \in \mathbb{Z}$  and  $n \in \mathbb{N}$.   With this set of numbers, also known as fractions, there is a defined result for each division.  If you write a rational number in decimal notation, only zeros appear after a certain decimal place  $($Example:  $-2/5 = -0.400\text{...}\hspace{0.05cm})$  or periodicities  $($Example:  $2/7 = 0.285714285\text{...}\hspace{0.05cm})$.  Since  $n = 1$  is allowed,  the integers are a subset of the rational numbers:   $\mathbb{Z} \subset \mathbb{Q}$.


  • »Irrational Numbers«  $\mathbb{I} \neq {z/n}$  mit  $z \in \mathbb{Z}$, $n \in \mathbb{N}$.   Although there are infinite rational numbers, there are still infinite numbers which cannot be represented as a fraction.  Examples are the number  $\pi = 3.141592654\text{...}\hspace{0.05cm}$  $($where there are no periods even with more decimal places$)$  or the result of the equation   $a^{2}=2 \,\,\Rightarrow \;\;a=\pm \sqrt{2}=\pm1.414213562\text{...}\hspace{0.05cm}$.  This result is also irrational, which has already been proved by  $\text{Euclid}$  in antiquity.
Real numbers on the number line


  • »Real Numbers«  $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$ as the sum of all rational and irrational numbers.
These can be ordered according to their numerical values and can be drawn on the so-called  "number line"  as shown in the adjacent graph.



Imaginary and complex numbers


With the introduction of the irrational numbers the solution of the equation  $a^2-2=0$  was possible,  but not the solution of the equation  $a^2+1=0$.  The mathematician  $\text{Leonhard Euler}$  solved this problem by extending the set of real numbers by the  »imaginary numbers« . He defined the  »imaginary unit«  as follows:

$${\rm j}=\sqrt{-1} \ \Rightarrow \ {\rm j}^{2}=-1.$$

It should be noted that Euler called this quantity  "$\rm i$"  and this is still common in mathematics today.  In Electrical Engineering,  on the other hand,  the designation  "$\rm j$"  has become generally accepted since  "$\rm i$"  is already occupied by the time-dependent current.

$\text{Definition:}$  The  »complex number«  $z$  is generally the sum of a real number  $x$  and an imaginary number  ${\rm j} \cdot y$:

$$z=x+{\rm j}\cdot y.$$
  • $x$  and  $y$  are derived from the quantity  $\mathbb{R}$  from the real numbers.
  • The set of all possible complex numbers is called the body  $\mathbb{C}$  of the complex numbers.


The number line of real numbers now becomes the complex plane,  which is spanned by two number lines twisted by   $90^\circ$  for real part and imaginary part.

$\text{Example 1:}$ 

Numbers in the complex plane
  • The complex number  $z_1 = 2 \cdot {\rm j}$  is one of two possible solutions of the equation  $z^2+4=0$. The other solution is 
$$z_2 = -2 \cdot {\rm j}.$$
  • In contrast  $z_3 = 2 + {\rm j}$  and  $z_4 = 2 -{\rm j}$  give the two solutions to the following equation: 
$$(z-2- {\rm j})(z-2+ {\rm j}) = 0 \; \ \Rightarrow \;\ z^{2}-4 \cdot z+5=0.$$
$z_4 = z_3^\ast$  is also called the  »complex conjugate«  of  $z_3$.
  • The sum  $z_3 + z_4$  is real: 
$$z_3 + z_4 = 2 \cdot {\rm Re}[z_3]=2 \cdot {\rm Re}[z_4].$$
  • The difference  $z_3 - z_4$  is purely imaginary: 
$$z_3 - z_4 = {\rm j} \cdot \big [2 \cdot {\rm Im}[z_3] \big ] ={\rm j} \cdot \big [-2 \cdot {\rm Im}[z_4] \big ].$$


Note:   In the literature,  complex quantities are often marked by underlining.  This is not used in the  $\rm LNTwww$  books.


Representation by magnitude and phase


A complex number  $z$  can be described not only by the real part  $x$  and the imaginary part  $y$  but also by its magnitude  $|z|$  and the phase  $\phi$ .

Complex conjugate
of a number
  • The following conversions apply:
$$\left | z \right | = \sqrt{x^{2}+y^{2}}, \hspace{0.6cm}\phi = \arctan ({y}/{x}),$$
$$x = |z| \cdot \cos(\phi), \hspace{0.6cm} y = |z| \cdot \sin(\phi ).$$
  • Thus the complex quantity  $z$  can also be displayed in the following form:
$$z = |z| \cdot \cos (\phi) + {\rm j} \cdot |z| \cdot \sin (\phi) = |z| \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}.$$
  • Here,  the  $\text{Euler's theorem}$  was used,  which is proved below.  
    This states that the complex quantity  $ {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}$ exhibits the real part  $\cos(\phi)$  and the imaginary part  $\sin(\phi)$ .
  • Further one recognizes from the diagram that for the  »complex conjugates«  of  $z = x + {\rm j}\cdot y$  applies:
$$z^{\star} = x - {\rm j} \cdot y = |z| \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi}.$$

$\text{Proof of the Euler theorem:}$  This is based on the comparison of power series developments.

  • The series development of the exponential function is: 
$${\rm e}^{x} = 1 + \frac{x}{1!}+ \frac{x^2}{2!}+ \frac{x^3}{3!} + \frac{x^4}{4!} +\text{ ...} \hspace{0.15cm}.$$
  • With an imaginary argument you can also write: 
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = 1 + {\rm j} \cdot \frac{x}{1!}+ {\rm j}^2 \cdot \frac{x^2}{2!}+ {\rm j}^3 \cdot \frac{x^3}{3!} + {\rm j}^4 \cdot \frac{x^4}{4!} + \text{ ...} \hspace{0.15cm}.$$
  • Considering  \({\rm j}^{2}=-1, \ \ {\rm j}^{3} = -{\rm j},\ \ {\rm j}^{4} = 1, \ \ {\rm j}^{5} = {\rm j}, \text{ ...} \hspace{0.15cm}\)  and combining the real and the imaginary terms,  one obtains
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = A(x) + {\rm j}\cdot B(x).$$
  • The following applies to both series:
$$A(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}+ \text{ ...} \hspace{0.1cm}= \cos(x),\hspace{0.5cm} B(x) = \frac{x}{1!}- \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}+ \text{ ...}= \sin(x).$$
  • From this the  $\text{Euler Theorem}$  follows directly:
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = \cos (x) + {\rm j} \cdot \sin (x) \hspace{2cm} \rm q.e.d.$$


Calculation laws for complex numbers


The arithmetic laws for two complex numbers

$$z_1 = x_1 + {\rm j} \cdot y_1 = |z_1| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot \hspace {0.05cm} \phi_1},$$
$$z_2 = x_2 + {\rm j} \cdot y_2 = |z_2| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_2}$$

are defined in such a way,  that for the special case of a vanishing imaginary part,  the calculation rules for real numbers are given.  This is called  "principle of permanence".  The following rules apply to the basic arithmetic operations: 

  • The sum of two complex numbers  $($resp. their difference$)$  is made by adding  $($resp. subtracting$)$  their real and imaginary parts :
\[z_3 = z_1 + z_2 = (x_1+x_2) + {\rm j}\cdot (y_1 + y_2),\]
\[z_4 = z_1 - z_2 = (x_1-x_2) + {\rm j}\cdot (y_1 - y_2).\]
  • The product of two complex numbers can be formed in the real part and imaginary part description by multiplication considering  \({\rm j}^{2}=-1\). 
    However,  multiplication is simpler if  \(z_1\)  and  \(z_2\)  are written with magnitude and phase: 
\[z_5 = z_1 \cdot z_2 = (x_1\cdot x_2 - y_1\cdot y_2) + {\rm j}\cdot (x_1\cdot y_2 + x_2\cdot y_1),\]
\[z_5 = |z_1| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_1} \cdot |z_2| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot \hspace {0.05cm} \phi_2}= |z_5| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_5} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} |z_5| = |z_1| \cdot |z_2| , \hspace{0.3cm}\phi_5 = \phi_1 + \phi_2 .\]
  • The division is also more manageable in the exponential notation.  The two magnitudes are divided and the phases are subtracted in the exponent: 
\[z_6 = \frac{z_1}{z_2} = |z_6| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_6} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} |z_6| = \frac{|z_1|}{|z_2|}, \hspace{0.3cm}\phi_6 = \phi_1 - \phi_2 .\]
Some operations with complex numbers

$\text{Example 2:}$  In the graphic are shown as points within the complex plane:

  • The complex number  \(z=0.75 + {\rm j} = 1.25 \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm} \cdot \hspace{0.05cm}53.1^{\circ} }\),
  • its complex conjugate  \(z^{\ast} = 0.75 - {\rm j} = 1.25 \cdot {\rm e}^{ - {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}53.1^{\circ} }\),
  • the sum  \(s=z+z^{\ast}=1.5\)  $($purely real$)$,
  • the difference  \(d=z-z^{\ast}=2 \cdot {\rm j}\)  $($purely imaginary$)$,
  • the product  \(p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625\)  $($purely real$)$,
  • the division  \(q= {z}/{z^{\ast} }={\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}106.2^{\circ} }\) with magnitude   $1$  and the double phase angle of  $z$.


The following  $($German language$)$  learning video summarizes the topic of this chapter in a compact way:
         »Rechnen mit komplexen Zahlen«   ⇒   "Arithmetic operations involving complex numbers".


Exercises for the chapter


Exercise 1.3: Calculating with Complex Numbers

Exercise 1.3Z: Calculating with Complex Numbers II