Difference between revisions of "Aufgaben:Exercise 5.2: Band Spreading and Narrowband Interferer"

From LNTwww
m (Text replacement - "power spectral density" to "power-spectral density")
 
(23 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/PN–Modulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Direct-Sequence_Spread_Spectrum_Modulation
 
}}
 
}}
  
[[File:P_ID1868__Mod_A_5_2.png|right|frame|Betrachtetes Modell der Bandspreizung]]
+
[[File:EN_Mod_A_5_2.png|right|frame|Considered model<br>
Betrachtet wird ein ''Spread Spectrum System'' gemäß der vorliegenden Grafik im äquivalenten Tiefpassbereich:  
+
of band spreading]]
*Das Digitalsignal $q(t)$ besitze das Leistungsdichtespektrum ${\it \Phi}_q(f)$, das als rechteckförmig mit der Bandbreite $B = 1/T = 100\ \rm  kHz$ angenähert werden soll:
+
A spread spectrum system is considered according to the given diagram in the equivalent low-pass range:  
 +
*Let the digital signal &nbsp;$q(t)$&nbsp; possess the power-spectral density &nbsp;${\it \Phi}_q(f)$,&nbsp; which is to be approximated as rectangular with bandwidth&nbsp; $B = 1/T = 100\ \rm  kHz$&nbsp;&nbsp; (a rather unrealistic assumption):
 
:$${\it \Phi}_{q}(f) =
 
:$${\it \Phi}_{q}(f) =
\left\{ \begin{array}{c} {\it \Phi}_{q0} \\
+
\left\{ \begin{array}{c} {\it \Phi}_{0} \\
 
  0 \\  \end{array} \right.
 
  0 \\  \end{array} \right.
\begin{array}{*{10}c}    {\rm{f\ddot{u}r}}
+
\begin{array}{*{10}c}    {\rm{for}}
\\  {\rm{sonst}} \hspace{0.05cm}.  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{otherwise}} \hspace{0.05cm}.  \\ \end{array}\begin{array}{*{20}c}
 
|f| <B/2 \hspace{0.05cm}, \\
 
|f| <B/2 \hspace{0.05cm}, \\
 
  \\
 
  \\
 
\end{array}$$
 
\end{array}$$
*Im Tiefpassbereich ist somit die Bandbreite (nur die Anteile bei positiven Frequenzen) gleich $B/2$ und die Bandbreite im Bandpassbereich ist $B$.
+
*Thus,&nbsp; in the low-pass range,&nbsp; the bandwidth&nbsp; (only the components at positive frequencies)&nbsp; is equal to &nbsp;$B/2$&nbsp; and the bandwidth in the band-pass range is &nbsp;$B$.
*Die Bandspreizung erfolgt durch Multiplikation mit der PN–Sequenz $c(t)$ der Chipdauer $T_c = T/100$ (&bdquo;PN&rdquo; steht dabei für &bdquo;Pseudo Noise&rdquo;). Für die Autokorrelationsfunktion gelte vereinfachend:
+
*The band spreading is done by multiplication with the PN sequence &nbsp;$c(t)$&nbsp; of the chip duration &nbsp;$T_c = T/100$&nbsp; <br>("PN" stands for "pseudo-noise").
:$$ {\it \varphi}_{c}(\tau) = \left\{ \begin{array}{c}1 - |\tau|/T_c \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{sonst}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} -T_c \le \tau \le T_c \hspace{0.05cm}, \\ \\ \end{array}$$
+
*To simplify matters,&nbsp; the following applies to the auto-correlation function:
*Beim Empfänger wird wieder die gleiche Spreizfolge $c(t)$ phasensynchron zugesetzt.
+
:$$ {\it \varphi}_{c}(\tau) = \left\{ \begin{array}{c}1 - |\tau|/T_c \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ {\rm{otherwise}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} -T_c \le \tau \le T_c \hspace{0.05cm}, \\ \\ \end{array}$$
*Das Interferenzsignal $i(t)$ soll zunächst vernachlässigt werden. In der Teilaufgabe (4) bezeichnet $i(t)$ einen schmalbandigen Störer bei der Trägerfrequenz $f_{\rm T} = 30 \ \rm MHz = f_{\rm I}$ mit der Leistung $P_{\rm I}$.  
+
*At the receiver,&nbsp; the same spreading sequence &nbsp;$c(t)$&nbsp; is again added phase-synchronously.
*Der Einfluss des (stets vorhandenen) AWGN–Rauschens $n(t)$ wird in dieser Aufgabe nicht betrachtet.
+
*The interference signal &nbsp;$i(t)$&nbsp; is to be neglected for the time being.
 +
*In subtask&nbsp; '''(4)'''&nbsp; &nbsp;$i(t)$&nbsp; denotes a narrowband interferer at carrier frequency &nbsp;$f_{\rm T} = 30 \ \rm MHz = f_{\rm I}$&nbsp; with power &nbsp;$P_{\rm I}$.  
 +
*The influence of the&nbsp; (always present)&nbsp; AWGN noise &nbsp;$n(t)$&nbsp; is not considered in this exercise.
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/PN–Modulation|PN–Modulation]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
===Fragebogen===
+
Note:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/PN–Modulation|Direct-Sequence Spread Spectrum Modulation]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet das Leistungsdichtespektrum ${\it \Phi}_c(f )$ des Spreizsignals $c(t)$? <br>Welcher Wert ergibt sich bei der Frequenz $f = 0$?
+
{What is the power-spectral density &nbsp;${\it \Phi}_c(f )$&nbsp; of the spreading signal &nbsp;$c(t)$?&nbsp; What value results at the frequency &nbsp;$f = 0$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Phi}_c(f = 0) \ = \ $ { 0.1 3% } $\ \cdot 10^{-6} \ \rm 1/Hz$
 
${\it \Phi}_c(f = 0) \ = \ $ { 0.1 3% } $\ \cdot 10^{-6} \ \rm 1/Hz$
  
{Berechnen Sie die äquivalente Bandbreite $B_c$ des Spreizsignals als Breite des flächengleichen LDS–Rechtecks.
+
{Calculate the equivalent bandwidth &nbsp;$B_c$&nbsp; of the spread signal as the width of the equal-area&nbsp; $\rm PDS$&nbsp; rectangle.
 
|type="{}"}
 
|type="{}"}
 
$B_c \ = \ $ { 10 3% } $\ \rm MHz$
 
$B_c \ = \ $ { 10 3% } $\ \rm MHz$
  
{Welche Aussagen sind für die Bandbreiten der Signale $s(t)$ &nbsp; &rArr; &nbsp; $B_s$ und $b(t)$ &nbsp; &rArr; &nbsp; $B_b$ zutreffend? <br>Die (zweiseitige) Bandbreite von $q(t)$ ist $B$.
+
{Which statements are true for the bandwidths of the signals &nbsp;$s(t)$ &nbsp; &rArr; &nbsp; $B_s$ and &nbsp;$b(t)$ &nbsp; &rArr; &nbsp; $B_b$?&nbsp; The (two-sided) bandwidth of &nbsp;$q(t)$&nbsp; is &nbsp;$B$.
 
|type="[]"}
 
|type="[]"}
- $B_s$ ist exakt gleich $B_c$.
+
- $B_s$&nbsp; is exactly equal to &nbsp;$B_c$.
+ $B_s$ ist näherungsweise gleich $B_c + B$.
+
+ $B_s$&nbsp; is approximately equal to &nbsp;$B_c + B$.
- $B_b$ ist exakt gleich $B_s$.
+
- $B_b$&nbsp; is exactly equal to &nbsp;$B_s$.
- $B_b$ ist gleich $B_s + B_c = 2B_c + B$.
+
- $B_b$&nbsp; is equal to &nbsp;$B_s + B_c = 2B_c + B$.
+ $B_b$ ist exakt gleich B.
+
+ $B_b$&nbsp; is exactly equal to &nbsp;$B$.
  
{Welchen Einfluss hat eine Bandspreizung auf einen schmalbandigen Störer bei der Trägerfrequenz? Es gelte also $f_{\rm I} = f_{\rm T}$.
+
{What is the effect of band spreading on a&nbsp; "narrowband interferer"&nbsp; at the carrier frequency?&nbsp; Let &nbsp;$f_{\rm I} = f_{\rm T}$.
 
|type="[]"}
 
|type="[]"}
+ Der störende Einfluss wird durch Bandspreizung abgeschwächt.
+
+ The interfering influence is weakened by band spreading.
- Die Störleistung ist nur mehr halb so groß.
+
- The interfering power is only half as large.
- Die Störleistung wird durch die Bandspreizung nicht verändert.
+
- The interfering power is not changed by band spreading.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Leistungsdichtesprektrum ${\it \Phi}_c(f)$ ist die Fouriertransformierte der dreieckförmigen AKF, die mit Rechteckfunktionen der Breite $T_c$ wie folgt dargestellt werden kann:
+
'''(1)'''&nbsp; The power-spectral density&nbsp; $\rm (PDS)$&nbsp; ${\it \Phi}_c(f)$&nbsp; is the Fourier transform of the triangular ACF,&nbsp; which can be represented with rectangles of width&nbsp; $T_c$&nbsp; as follows:
:$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \left(\frac{\tau}{T_c} \right ) \star {\rm rect} \left(\frac{\tau}{T_c} \right ) \hspace{0.05cm}.$$
+
:$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \big(\frac{\tau}{T_c} \big ) \star {\rm rect} \big(\frac{\tau}{T_c} \big ) \hspace{0.05cm}.$$
Daraus folgt &nbsp; ${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \left[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \right ] \cdot \left[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \right ] = T_c \cdot {\rm si}^2 \left(\pi f T_c \right ) \hspace{0.05cm}$ mit dem Maximalwert
+
*From this follows &nbsp;${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \big[ T_c \cdot {\rm sinc} \left(f T_c \right ) \big ] \cdot \big[ T_c \cdot {\rm sinc} \left(f T_c \right ) \big ] = T_c \cdot {\rm sinc}^2 \left(f T_c \right ) \hspace{0.05cm}$&nbsp; with maximum value
 
:$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$
 
:$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Gemäß der vorgegebenen Definition gilt mit $T_c = T/100 = 0.1\ \rm  μs$:
+
'''(2)'''&nbsp; By definition,&nbsp; with&nbsp; $T_c = T/100 = 0.1\ \rm  &micro; s$:
:$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm si}^2 \left(\pi f T_c \right )\hspace{0.1cm} {\rm d}f = \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$
+
[[File:P_ID1869__Mod_A_5_2b.png|right|frame|Power density spectrum of the pseudo-noise spread signal]]
Die Grafik verdeutlicht, dass $B_c$ durch die erste Nullstelle der $si^2$–Funktion im äquivalenten Tiefpassbereich vorgegeben wird, aber auch gleichzeitig die äquivalente (flächengleiche) Bandbreite im Bandpassbereich angibt.
+
:$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm sinc}^2 \left(f T_c \right )\hspace{0.1cm} {\rm d}f $$
[[File:P_ID1869__Mod_A_5_2b.png|center|frame|Leistungsdichtespektrum des PN–Spreizsignals]]
+
:$$\Rightarrow \hspace{0.3cm} B_c= \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$
 +
The graph illustrates,
 +
*that&nbsp; $B_c$&nbsp; is given by the first zero of the&nbsp; $\rm sinc^2$ function in the equivalent low-pass range,
 +
*but at the same time also gives the equivalent&nbsp; (equal area)&nbsp; bandwidth in the band-pass region.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; <u>Solutions 2 and 5</u>&nbsp; are correct:
 +
*The PDS&nbsp; ${\it \Phi}_s(f)$&nbsp; results from the convolution of&nbsp; ${\it \Phi}_q(f)$&nbsp; and&nbsp; ${\it \Phi}_c(f)$.&nbsp; This actually gives&nbsp; $B_s = B_c + B$&nbsp; for the bandwidth of the transmitted signal.
 +
*Since the spreading signal&nbsp; $c(t) ∈ \{+1, –1\}$&nbsp; multiplied by itself always gives the value&nbsp; $1$,&nbsp; naturally&nbsp; $b(t) ≡ q(t)$&nbsp; and consequently&nbsp; $B_b = B$.
 +
*Obviously, the bandwidth&nbsp; $B_b$&nbsp; of the band compressed signal is not equal to&nbsp; $2B_c + B$,&nbsp; although the convolution&nbsp; ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$&nbsp; suggests this.
 +
*This is due to the fact that the power density spectra must not be convolved, but the spectral functions&nbsp; (amplitude spectra)&nbsp; $S(f)$&nbsp; and&nbsp; $C(f)$&nbsp; must be assumed, taking into account the phase relations.
 +
*Only then can the PDS&nbsp; $B(f)$&nbsp; be determined from&nbsp; ${\it \Phi}_b(f)$.&nbsp; Clearly,&nbsp; the following is also true: &nbsp; $C(f) ∗ C(f) = δ(f)$.  
 +
 
 +
 
  
'''(3)'''&nbsp; Richtig sind also die <u>Lösungsvorschläge 2 und 5</u>:
+
'''(4)'''&nbsp; Only the&nbsp; <u>first solution</u>&nbsp; is correct.&nbsp; The solution shall be clarified by the diagram at the end of the page:
*Das LDS ${\it \Phi}_s(f)$ ergibt sich aus der Faltung von $Φ_q(f)$ und $Φ_c(f)$. Damit ergibt sich für die Bandbreite des Sendesignals tatsächlich $B_s = B_c + B$.
+
*In the upper diagram the PDS&nbsp; ${\it \Phi}_i(f)$&nbsp; of the narrowband interferer is approximated by two Dirac delta functions at&nbsp; $±f_{\rm T}$&nbsp; with weights&nbsp; $P_{\rm I}/2$.&nbsp;&nbsp; Also plotted is the bandwidth&nbsp; $B = 0.1 \ \rm MHz$&nbsp; (not quite true to scale).
*Da das Spreizsignal $c(t) ∈ \{+1, –1\}$ mit sich selbst multipliziert immer den Wert $1$ ergibt, ist natürlich $b(t) ≡ q(t)$ und demzufolge $B_b = B$.
 
*Offensichtlich ist, dass die Bandbreite $B_b$ des bandgestauchten Signals ungleich $2B_c + B$ ist, obwohl die Faltung ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$ dies suggeriert.  
 
*Dies hängt damit zusammen, dass nicht die Leistungsdichtespektren gefaltet werden dürfen, sondern von den Spektralfunktionen (Amplitudenspektren) $S(f)$ und $C(f)$ unter Berücksichtigung der Phasenbeziehungen auszugehen ist. Erst danach kann aus $B(f)$ das LDS ${\it \Phi}_b(f)$ bestimmt werden. Es gilt offensichtlich auch: $C(f) ∗ C(f) = δ(f)$.  
 
  
 +
*The receiver-side multiplication with&nbsp; $c(t)$&nbsp; – actually with the function of the band compression,&nbsp; at least with respect to the useful part of&nbsp; $r(t)$ –&nbsp; causes a band spreading with respect to the interference signal&nbsp; $i(t)$.&nbsp; Without considering the useful signal,&nbsp; $b(t) = n(t) = i(t) · c(t)$.&nbsp; It follows:
 +
:$${\it \Phi}_{n}(f)  =  {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) =  \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm sinc}^2 \left(  (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm sinc}^2 \left( (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
 +
[[File:P_ID1870__Mod_A_5_2c.png|right|frame|Power density spectra before and after band spreading]]
  
'''(4)'''&nbsp; Richtig ist der <u>erste Lösungsvorschlag</u>:
+
*Note that&nbsp; $n(t)$&nbsp; is used here only as an abbreviation and does not denote AWGN noise. &nbsp;
*Die Lösung soll anhand einer Skizze verdeutlicht werden. Im oberen Diagramm ist das LDS ${\it \Phi}_i(f)$ des Schmalbandstörers durch zwei Diracfunktionen bei $±f_{\rm T}$ mit Gewichten $P_{\rm I}/2$ angenähert. Eingezeichnet ist auch die Bandbreite $B = 0.1 \ \rm MHz$ (nicht ganz maßstäblich).
+
*In a narrow range around the carrier frequency&nbsp; $f_{\rm T} = 30 \ \rm MHz$,&nbsp; the PDS&nbsp; ${\it \Phi}_n(f)$&nbsp; is almost constant.&nbsp; Thus,&nbsp; the interference power after band spreading is:
[[File:P_ID1870__Mod_A_5_2c.png|center|frame|Leistungsdichtespektren vor und nach der Bandspreizung]]
 
*Die empfängerseitige Multiplikation mit $c(t)$ – eigentlich mit der Funktion der Bandstauchung, zumindest bezüglich des Nutzanteils von $r(t)$ – bewirkt hinsichtlich des Störsignals $i(t)$ eine Bandspreizung. Ohne Berücksichtigung des Nutzsignals ist $b(t) = n(t) = i(t) · c(t)$. Daraus folgt:
 
:$${\it \Phi}_{n}(f)  =  {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) =  \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
 
*Anzumerken ist, dass $n(t)$ hier nur als Abkürzung verwendet wird und nicht AWGN–Rauschen bezeichnet. In einem engen Bereich um die Trägerfrequenz $f_{\rm T} = 30 \ \rm MHz$ ist das LDS ${\it \Phi}_n(f)$ nahezu konstant. Damit gilt für die Störleistung nach der Bandspreizung:
 
 
:$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
 
:$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
*Das bedeutet: Die Störleistung wird durch Bandspreizung um den Faktor $J = T/T_c$ herabgesetzt, weshalb $J$ häufig auch als Spreizgewinn bezeichnet wird. Ein solcher Spreizgewinn ist allerdings nur bei einem Schmalbandstörer gegeben.
+
*This means: &nbsp; The interference power is reduced by the factor&nbsp; $J = T/T_c$&nbsp; by band spreading,&nbsp; which is why&nbsp; $J$&nbsp; is often called&nbsp; "spreading gain".
 
+
*However,&nbsp; such a&nbsp; "spreading gain"&nbsp; is only given for a narrowband interferer.
  
  
Line 87: Line 102:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.2 PN–Modulation^]]
+
[[Category:Modulation Methods: Exercises|^5.2 PN Modulation^]]

Latest revision as of 12:41, 17 February 2022

Considered model
of band spreading

A spread spectrum system is considered according to the given diagram in the equivalent low-pass range:

  • Let the digital signal  $q(t)$  possess the power-spectral density  ${\it \Phi}_q(f)$,  which is to be approximated as rectangular with bandwidth  $B = 1/T = 100\ \rm kHz$   (a rather unrealistic assumption):
$${\it \Phi}_{q}(f) = \left\{ \begin{array}{c} {\it \Phi}_{0} \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ {\rm{otherwise}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} |f| <B/2 \hspace{0.05cm}, \\ \\ \end{array}$$
  • Thus,  in the low-pass range,  the bandwidth  (only the components at positive frequencies)  is equal to  $B/2$  and the bandwidth in the band-pass range is  $B$.
  • The band spreading is done by multiplication with the PN sequence  $c(t)$  of the chip duration  $T_c = T/100$ 
    ("PN" stands for "pseudo-noise").
  • To simplify matters,  the following applies to the auto-correlation function:
$$ {\it \varphi}_{c}(\tau) = \left\{ \begin{array}{c}1 - |\tau|/T_c \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ {\rm{otherwise}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} -T_c \le \tau \le T_c \hspace{0.05cm}, \\ \\ \end{array}$$
  • At the receiver,  the same spreading sequence  $c(t)$  is again added phase-synchronously.
  • The interference signal  $i(t)$  is to be neglected for the time being.
  • In subtask  (4)   $i(t)$  denotes a narrowband interferer at carrier frequency  $f_{\rm T} = 30 \ \rm MHz = f_{\rm I}$  with power  $P_{\rm I}$.
  • The influence of the  (always present)  AWGN noise  $n(t)$  is not considered in this exercise.



Note:


Questions

1

What is the power-spectral density  ${\it \Phi}_c(f )$  of the spreading signal  $c(t)$?  What value results at the frequency  $f = 0$?

${\it \Phi}_c(f = 0) \ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$

2

Calculate the equivalent bandwidth  $B_c$  of the spread signal as the width of the equal-area  $\rm PDS$  rectangle.

$B_c \ = \ $

$\ \rm MHz$

3

Which statements are true for the bandwidths of the signals  $s(t)$   ⇒   $B_s$ and  $b(t)$   ⇒   $B_b$?  The (two-sided) bandwidth of  $q(t)$  is  $B$.

$B_s$  is exactly equal to  $B_c$.
$B_s$  is approximately equal to  $B_c + B$.
$B_b$  is exactly equal to  $B_s$.
$B_b$  is equal to  $B_s + B_c = 2B_c + B$.
$B_b$  is exactly equal to  $B$.

4

What is the effect of band spreading on a  "narrowband interferer"  at the carrier frequency?  Let  $f_{\rm I} = f_{\rm T}$.

The interfering influence is weakened by band spreading.
The interfering power is only half as large.
The interfering power is not changed by band spreading.


Solution

(1)  The power-spectral density  $\rm (PDS)$  ${\it \Phi}_c(f)$  is the Fourier transform of the triangular ACF,  which can be represented with rectangles of width  $T_c$  as follows:

$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \big(\frac{\tau}{T_c} \big ) \star {\rm rect} \big(\frac{\tau}{T_c} \big ) \hspace{0.05cm}.$$
  • From this follows  ${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \big[ T_c \cdot {\rm sinc} \left(f T_c \right ) \big ] \cdot \big[ T_c \cdot {\rm sinc} \left(f T_c \right ) \big ] = T_c \cdot {\rm sinc}^2 \left(f T_c \right ) \hspace{0.05cm}$  with maximum value
$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$

(2)  By definition,  with  $T_c = T/100 = 0.1\ \rm µ s$:

Power density spectrum of the pseudo-noise spread signal
$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm sinc}^2 \left(f T_c \right )\hspace{0.1cm} {\rm d}f $$
$$\Rightarrow \hspace{0.3cm} B_c= \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$

The graph illustrates,

  • that  $B_c$  is given by the first zero of the  $\rm sinc^2$ function in the equivalent low-pass range,
  • but at the same time also gives the equivalent  (equal area)  bandwidth in the band-pass region.


(3)  Solutions 2 and 5  are correct:

  • The PDS  ${\it \Phi}_s(f)$  results from the convolution of  ${\it \Phi}_q(f)$  and  ${\it \Phi}_c(f)$.  This actually gives  $B_s = B_c + B$  for the bandwidth of the transmitted signal.
  • Since the spreading signal  $c(t) ∈ \{+1, –1\}$  multiplied by itself always gives the value  $1$,  naturally  $b(t) ≡ q(t)$  and consequently  $B_b = B$.
  • Obviously, the bandwidth  $B_b$  of the band compressed signal is not equal to  $2B_c + B$,  although the convolution  ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$  suggests this.
  • This is due to the fact that the power density spectra must not be convolved, but the spectral functions  (amplitude spectra)  $S(f)$  and  $C(f)$  must be assumed, taking into account the phase relations.
  • Only then can the PDS  $B(f)$  be determined from  ${\it \Phi}_b(f)$.  Clearly,  the following is also true:   $C(f) ∗ C(f) = δ(f)$.


(4)  Only the  first solution  is correct.  The solution shall be clarified by the diagram at the end of the page:

  • In the upper diagram the PDS  ${\it \Phi}_i(f)$  of the narrowband interferer is approximated by two Dirac delta functions at  $±f_{\rm T}$  with weights  $P_{\rm I}/2$.   Also plotted is the bandwidth  $B = 0.1 \ \rm MHz$  (not quite true to scale).
  • The receiver-side multiplication with  $c(t)$  – actually with the function of the band compression,  at least with respect to the useful part of  $r(t)$ –  causes a band spreading with respect to the interference signal  $i(t)$.  Without considering the useful signal,  $b(t) = n(t) = i(t) · c(t)$.  It follows:
$${\it \Phi}_{n}(f) = {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) = \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm sinc}^2 \left( (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm sinc}^2 \left( (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
Power density spectra before and after band spreading
  • Note that  $n(t)$  is used here only as an abbreviation and does not denote AWGN noise.  
  • In a narrow range around the carrier frequency  $f_{\rm T} = 30 \ \rm MHz$,  the PDS  ${\it \Phi}_n(f)$  is almost constant.  Thus,  the interference power after band spreading is:
$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
  • This means:   The interference power is reduced by the factor  $J = T/T_c$  by band spreading,  which is why  $J$  is often called  "spreading gain".
  • However,  such a  "spreading gain"  is only given for a narrowband interferer.