Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.14Z: Offset QPSK vs. MSK"

From LNTwww
m
 
(18 intermediate revisions by 4 users not shown)
Line 4: Line 4:
  
 
[[File:P_ID1742__Mod_Z_4_13.png|right|frame|Koeffizientenzuordnung bei O-QPSK und MSK]]
 
[[File:P_ID1742__Mod_Z_4_13.png|right|frame|Koeffizientenzuordnung bei O-QPSK und MSK]]
Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK (kurz: O–QPSK), wie aus den [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Realisierung_der_MSK_als_Offset.E2.80.93QPSK|Blockschaltbildern]] im Theorieteil hervorgeht.
+
One possible implementation fordie  $\rm MSK$  is offered by  "Offset–QPSK"  $\rm (O–QPSK)$, as can be seen from the  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|block diagrams]]  in the theory section.
  
Beim normalen Offset–QPSK–Betrieb werden jeweils zwei Bit der Quellensymbolfolge qk einem Bit a_{{\rm I}ν} im Inphasezweig und sowie einem Bit a_{{\rm Q}ν} im Quadraturzweig zugeordnet.
+
In "normal offset QPSK operation", two bits of the source symbol sequence 〈q_k〉 are assigned to one bit 𝑎Iν a_{{\rm I}ν}  in the in-phase branch and one bit  a_{{\rm Q}ν}  in the quadrature branch, respectively.  
  
Die Grafik zeigt diese Seriell–Parallel–Wandlung in den drei oberen Diagrammen für die ersten vier Bit des grün gezeichneten Quellensignals q(t). Dabei ist zu beachten:
+
The graph shows this serial-to-parallel conversion in the top three plots for the first four bits of the source signal  q(t).  It should be noted:
* Die Darstellung der Offset–QPSK gilt für einen rechteckigförmigen Grundimpuls. Die Koeffizienten a_{{\rm I}ν} und a_{{\rm Q}ν} können die Werte ±1 annehmen.
+
* The Offset–QPSK plot is for for a rectangular-shaped fundamental pulse.  The coefficients  a_{{\rm I}ν}  and  a_{{\rm Q}ν}   can take the values  ±1 .
* Durchläuft der Zeitindex der Quellensymbole die Werte k =1, ... , 8, so nimmt die Zeitvariable ν nur die Werte 1, ... , 4 an.
+
* If the time index of the source symbols passes through the values  k =1, ... , 8, then the time variable  ν  only takes on the values  1, ... , 4  an.
* Die Skizze berücksichtigt auch den Zeitversatz (Offset) für den Quadraturzweig.
+
* The sketch also takes the time offset for the quadrature branch into account.
  
  
Bei der MSK–Realisierung mittels Offset–QPSK ist eine Umcodierung erforderlich. Hierbei gilt mit q_k ∈ \{+1, –1\} und a_k ∈ \{+1, –1\}:
+
For a  "MSK–implementation using Offset–QPSK"  a recoding is required.  Here, with  q_k ∈ \{+1, –1\}  and  a_k ∈ \{+1, –1\}, it holds that:
 
:a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.
 
:a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.
Beispielsweise erhält man unter der Annahme a_0 = +1:
+
For example, by assuming  a_0 = +1 one gets:
:$$a_1 =  a_0 \cdot q_1 = +1,\hspace{0.2cm}a_2 = -a_1 \cdot q_2 = +1,$$
+
:$$a_1 =  a_0 \cdot q_1 = +1,\hspace{0.4cm}a_2 = -a_1 \cdot q_2 = +1,\hspace{0.4cm}
:$$a_3  =  a_2 \cdot q_3 = -1,\hspace{0.2cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$
+
a_3  =  a_2 \cdot q_3 = -1,\hspace{0.4cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$
Weiter ist zu berücksichtigen:
+
Additionally, one must take into account:
* Die Koeffizienten a_0 = +1, a_2 = +1, a_4 = -1 sowie die noch zu berechnenden Koeffizienten a_6 und a_8 werden dem Signal s_{\rm I}(t) zugeordnet.
+
* The coefficients  a_0 = +1,  a_2 = +1,  a_4 = -1  and the coefficients  a_6  and  a_8  which are yet to be calculated, are assigned to the signal  s_{\rm I}(t) .
* Dagegen werden die Koeffizienten a_1 = +1 und a_3 = -1 sowie alle weiteren Koeffizienten mit ungeradem Index dem Signal s_{\rm Q}(t) beaufschlagt.
+
* On the other hand, the coefficients  a_1 = +1  and  a_3 = -1  as well as all other coefficients with an odd index are applied to the signal  s_{\rm Q}(t) .
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Nichtlineare_digitale_Modulation|Nichtlineare digitale Modulation]].
 
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Realisierung_der_MSK_als_Offset.E2.80.93QPSK|Realisierung der MSK als Offset-QPSK]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*In [[Aufgaben:4.14_Phasenverlauf_der_MSK |Aufgabe 4.14]] wird die zugehörige Phasenfunktion ϕ(t) ermittelt, wobei ebenfalls der (normierte) MSK–Grundimpuls zugrunde liegt:
 
:g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f:\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}. \\ \end{array}
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
 +
*Particular reference is made to the section  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 +
 +
*The associated phase function  ϕ(t)  is determined in  [[Aufgaben:Exercise_4.14:_Phase_Progression_of_the_MSK |Exercise 4.14]] , and is also based on the  (normalized)  MSK fundamental pulse:
 +
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{otherwise}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm }. \\ \end{array}$$
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Bitdauer T_{\rm B} des Quellensignals?
+
{What is the bit duration &nbsp;T_{\rm B}&nbsp; of the source signal?
 
|type="{}"}
 
|type="{}"}
T_{\rm B} \ = \ { 1 3% } $\ \rm μs$
+
T_{\rm B} \ = \ { 1 3% } $\ \rm &micro; s$
  
  
{Wie groß ist die Symboldauer T der Offset–QPSK?
+
{What is the symbol duration &nbsp;T&nbsp; of the offset QPSK?
 
|type="{}"}
 
|type="{}"}
T \ = \ { 2 3%  } $\ \rm μs$
+
T \ = \ { 2 3%  } $\ \rm &micro; s$
  
{Geben Sie die genannten Amplitudenkoeffizienten der Offset–QPSK an.
+
{Give the above amplitude coefficients of the offset QPSK.
 
|type="{}"}
 
|type="{}"}
 
a_{\rm I3} \hspace{0.25cm} = \ { 1 3% }  
 
a_{\rm I3} \hspace{0.25cm} = \ { 1 3% }  
Line 51: Line 60:
 
a_{\rm Q4} \ = \ { 1 3% }
 
a_{\rm Q4} \ = \ { 1 3% }
  
{Wie groß ist die Symboldauer T der MSK?
+
{What is the symbol duration &nbsp;T&nbsp; of the &nbsp;MSK?
 
|type="{}"}
 
|type="{}"}
T \ = \ { 1 3% } $\ \rm μs$
+
T \ = \ { 1 3% } $\ \rm &micro; s$
  
{Geben Sie die genannten  Amplitudenkoeffizienten der MSK an.
+
{Give the above amplitude coefficients of the MSK.
 
|type="{}"}
 
|type="{}"}
 
a_5 \ = \ { -1.03--0.97 }
 
a_5 \ = \ { -1.03--0.97 }
Line 65: Line 74:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der oberen Skizze kann man $T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm μs}$ ablesen.
+
'''(1)'''&nbsp; It can be seen from the upper plot that &nbsp; $T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm &micro; s}$&nbsp;.
 +
 
  
 +
'''(2)'''&nbsp; For QPSK or offset QPSK , the symbol duration T&nbsp; is twice the bit duration&nbsp;  T_{\rm B} due to serial-to-parallel conversion:
 +
: T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm &micro;  s}} \hspace{0.05cm}.
  
'''(2)'''&nbsp; Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer T doppelt so groß wie die Bitdauer  T_{\rm B}:
 
: T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm \mu s}} \hspace{0.05cm}.
 
  
'''(3)'''&nbsp; Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt:
+
'''(3)'''&nbsp; According to the allocation evident in the plot for the first bits:
 
: a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},
 
: a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},
 
:a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},  
 
:a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},  
Line 79: Line 89:
 
:a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.
 
:a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.
  
'''(4)'''&nbsp; Bei der MSK ist die Symboldauer T gleich der Bitdauer T_{\rm B}:
 
:T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm \mu s}} \hspace{0.05cm}.
 
  
'''(5)'''&nbsp; Entsprechend der angegebenen Umcodiervorschrift gilt mit a_4 = –1:
+
'''(4)'''&nbsp; In MSK, the symbol duration&nbsp; T&nbsp;is equal to the bit duration &nbsp; T_{\rm B}:
 +
:T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm &micro;  s}} \hspace{0.05cm}.
 +
 
 +
 
 +
'''(5)'''&nbsp; According to the given recoding rule, when &nbsp; a_4 = –1, we get:
 
:q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},  
 
:q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},  
 
:q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
 
:q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
Line 92: Line 104:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare digitale Modulation^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 17:49, 21 March 2022

Koeffizientenzuordnung bei O-QPSK und MSK

One possible implementation fordie  \rm MSK  is offered by  "Offset–QPSK"  \rm (O–QPSK), as can be seen from the  block diagrams  in the theory section.

In "normal offset QPSK operation", two bits of the source symbol sequence 〈q_k〉 are assigned to one bit 𝑎Iν a_{{\rm I}ν}  in the in-phase branch and one bit  a_{{\rm Q}ν}  in the quadrature branch, respectively.

The graph shows this serial-to-parallel conversion in the top three plots for the first four bits of the source signal  q(t).  It should be noted:

  • The Offset–QPSK plot is for for a rectangular-shaped fundamental pulse.  The coefficients  a_{{\rm I}ν}  and  a_{{\rm Q}ν}  can take the values  ±1 .
  • If the time index of the source symbols passes through the values  k =1, ... , 8, then the time variable  ν  only takes on the values  1, ... , 4  an.
  • The sketch also takes the time offset for the quadrature branch into account.


For a  "MSK–implementation using Offset–QPSK"  a recoding is required.  Here, with  q_k ∈ \{+1, –1\}  and  a_k ∈ \{+1, –1\}, it holds that:

a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.

For example, by assuming  a_0 = +1 one gets:

a_1 = a_0 \cdot q_1 = +1,\hspace{0.4cm}a_2 = -a_1 \cdot q_2 = +1,\hspace{0.4cm} a_3 = a_2 \cdot q_3 = -1,\hspace{0.4cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.

Additionally, one must take into account:

  • The coefficients  a_0 = +1,  a_2 = +1,  a_4 = -1  and the coefficients  a_6  and  a_8  which are yet to be calculated, are assigned to the signal  s_{\rm I}(t) .
  • On the other hand, the coefficients  a_1 = +1  and  a_3 = -1  as well as all other coefficients with an odd index are applied to the signal  s_{\rm Q}(t) .






Hints:

  • The associated phase function  ϕ(t)  is determined in  Exercise 4.14 , and is also based on the  (normalized)  MSK fundamental pulse:
g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{otherwise}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm }. \\ \end{array}


Questions

1

What is the bit duration  T_{\rm B}  of the source signal?

T_{\rm B} \ = \

\ \rm µ s

2

What is the symbol duration  T  of the offset QPSK?

T \ = \

\ \rm µ s

3

Give the above amplitude coefficients of the offset QPSK.

a_{\rm I3} \hspace{0.25cm} = \

a_{\rm Q3} \ = \

a_{\rm I4} \hspace{0.25cm} = \

a_{\rm Q4} \ = \

4

What is the symbol duration  T  of the  MSK?

T \ = \

\ \rm µ s

5

Give the above amplitude coefficients of the MSK.

a_5 \ = \

a_6 \ = \

a_7 \ = \

a_8 \ = \


Solution

(1)  It can be seen from the upper plot that   T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm µ s} .


(2)  For QPSK or offset QPSK , the symbol duration T  is twice the bit duration  T_{\rm B} due to serial-to-parallel conversion:

T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm µ s}} \hspace{0.05cm}.


(3)  According to the allocation evident in the plot for the first bits:

a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},
a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},
a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},
a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.


(4)  In MSK, the symbol duration  T is equal to the bit duration   T_{\rm B}:

T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm µ s}} \hspace{0.05cm}.


(5)  According to the given recoding rule, when   a_4 = –1, we get:

q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},
q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1},
q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.