Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Digital Signal Transmission/Optimal Receiver Strategies"

From LNTwww
 
(28 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Impulsinterferenzen und Entzerrungsverfahren
+
|Untermenü=Intersymbol Interfering and Equalization Methods
 
|Vorherige Seite=Entscheidungsrückkopplung
 
|Vorherige Seite=Entscheidungsrückkopplung
 
|Nächste Seite=Viterbi–Empfänger
 
|Nächste Seite=Viterbi–Empfänger
 
}}
 
}}
  
== Betrachtetes Szenario und Voraussetzungen==
+
== Considered scenario and prerequisites==
 
<br>
 
<br>
Alle bisher beschriebenen Digitalempfänger treffen stets symbolweise Entscheidungen. Werden dagegen mehrere Symbole gleichzeitig entschieden, so können bei der Detektion statistische Bindungen zwischen den Empfangssignalabtastwerten berücksichtigt werden, was eine geringere Fehlerwahrscheinlichkeit zur Folge hat &ndash; allerdings auf Kosten einer zusätzlichen Laufzeit.<br>
+
All digital receivers described so far always make symbol-wise decisions.&nbsp; If,&nbsp; on the other hand,&nbsp; several symbols are decided simultaneously,&nbsp; statistical bindings between the received signal samples can be taken into account during detection,&nbsp; which results in a lower error probability &ndash; but at the cost of an additional delay time.<br>
  
In diesem &ndash; teilweise auch im nächsten Kapitel &ndash; wird von folgendem Übertragungsmodell ausgegangen:<br>
+
In this&nbsp; (partly also in the next chapter)&nbsp; the following transmission model is assumed.&nbsp; Compared to the last two chapters,&nbsp; the following differences arise: <br>
  
[[File:P ID1455 Dig T 3 7 S1 version1.png|center|frame|Übertragungssystem mit optimalem Empfänger|class=fit]]
+
[[File:EN_Dig_T_3_7_S1.png|right|frame|Transmission system with optimal receiver|class=fit]]
  
Gegenüber den letzten beiden Kapiteln ergeben sich folgende Unterschiede:
+
*Q{Qi}&nbsp; with&nbsp; i=0, ... , M1&nbsp; denotes a time-constrained source symbol sequence &nbsp;qν whose symbols are to be jointly decided by the receiver.<br>
*Q{Qi} mit i=0, ... , M1 bezeichnet eine zeitlich begrenzte Quellensymbolfolge qν, deren Symbole vom optimalen Empfänger gemeinsam entschieden werden sollen.<br>
 
  
*Beschreibt Q eine Folge von N redundanzfreien Binärsymbolen, so ist M=2N zu setzen. Dagegen gibt M bei symbolweiser Entscheidung die Stufenzahl der digitalen Quelle an.<br>
+
*If the source &nbsp;Q&nbsp; describes a sequence of &nbsp;N&nbsp; redundancy-free binary symbols, set &nbsp;M=2N.&nbsp; On the other hand,&nbsp; if the decision is symbol-wise, &nbsp;M&nbsp; specifies the level number of the digital source.<br>
  
*Im obigen Modell werden eventuelle Kanalverzerrungen dem Sender hinzugefügt und sind somit bereits im Grundimpuls gs(t) und im Signal s(t) enthalten. Diese Maßnahme dient lediglich einer einfacheren Darstellung und stellt keine Einschränkung dar.<br>
+
*In this model,&nbsp; any channel distortions are added to the transmitter and are thus already included in the basic transmission pulse &nbsp;gs(t)&nbsp; and the signal &nbsp;s(t).&nbsp; This measure is only for a simpler representation and is not a restriction.<br>
  
*Der optimale Empfänger sucht unter Kenntnis des aktuell anliegenden Empfangssignals $s(t)$ aus der Menge {Q0, ... , QM1} der möglichen Quellensymbolfolgen die am wahrscheinlichsten gesendete Folge Qj und gibt diese als Sinkensymbolfolge V aus.<br>
+
*Knowing the currently applied received signal &nbsp;$r(t)$,&nbsp; the optimal receiver searches from the set &nbsp;{Q0, ... , QM1}&nbsp; of the possible source symbol sequences, the receiver searches for the most likely transmitted sequence &nbsp;Qj&nbsp; and outputs this as a sink symbol sequence &nbsp;V.&nbsp; <br>
  
*Vor dem eigentlichen Entscheidungsalgorithmus muss durch eine geeignete Signalvorverarbeitung aus dem Empfangssignal r(t) für jede mögliche Folge Qi ein Zahlenwert Wi abgeleitet werden. Je größer Wi ist, desto größer ist die Rückschlusswahrscheinlichkeit, dass Qi gesendet wurde.<br>
+
*Before the actual decision algorithm,&nbsp; a numerical value &nbsp;Wi&nbsp; must be derived from the received signal &nbsp;r(t)&nbsp; for each possible sequence &nbsp;Qi&nbsp; by suitable signal preprocessing.&nbsp; The larger &nbsp;Wi&nbsp; is,&nbsp; the greater the inference probability that &nbsp;Qi&nbsp; was transmitted.<br>
  
*Die Signalvorverarbeitung muss für die erforderliche Rauschleistungsbegrenzung und &ndash; bei starken Kanalverzerrungen &ndash; für eine ausreichende Vorentzerrung der entstandenen Impulsinterferenzen sorgen. Außerdem beinhaltet die Vorverarbeitung auch die Abtastung zur Zeitdiskretisierung.<br>
+
*Signal preprocessing must provide for the necessary noise power limitation and &ndash; in the case of strong channel distortions &ndash; for sufficient pre-equalization of the resulting intersymbol interferences.&nbsp; In addition,&nbsp; preprocessing also includes sampling for time discretization.<br>
  
== MAP– und Maximum–Likelihood–Entscheidungsregel==
+
== Maximum-a-posteriori and maximum–likelihood decision rule==
 
<br>
 
<br>
Man bezeichnet den (uneingeschränkt) optimalen Empfänger als MAP&ndash;Empfänger, wobei &bdquo;MAP&rdquo; für &bdquo;Maximum&ndash;a&ndash;posteriori&rdquo; steht.<br>
+
The&nbsp; (unconstrained)&nbsp; optimal receiver is called the&nbsp; "MAP receiver",&nbsp; where&nbsp; "MAP"&nbsp; stands for&nbsp; "maximum&ndash;a&ndash;posteriori".<br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Definition:&nbsp; Der '''MAP&ndash;Empfänger''' ermittelt die M Rückschlusswahrscheinlichkeiten Pr[Qi|r(t)] und setzt seine Ausgangsfolge V gemäß der Entscheidungsregel, wobei für den Index gilt: &nbsp; i=0, ..., M1 sowie ij:
+
Definition:&nbsp; The&nbsp; '''maximum&ndash;a&ndash;posteriori receiver'''&nbsp; (abbreviated&nbsp; MAP)&nbsp; determines the &nbsp;M&nbsp; inference probabilities &nbsp;${\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm}r(t)\big]$,&nbsp; and sets the output sequence &nbsp;V&nbsp; according to the decision rule,&nbsp; where the index is &nbsp; i=0, ... , M1&nbsp; as well as &nbsp;ij:
:$${\rm Pr}[Q_j \hspace{0.05cm}\vert \hspace{0.05cm} r(t)] > {\rm Pr}[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)]
+
:$${\rm Pr}\big[Q_j \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big] > {\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big]
 
  \hspace{0.05cm}.$$}}<br>
 
  \hspace{0.05cm}.$$}}<br>
  
Die [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit#R.C3.BCckschlusswahrscheinlichkeit|Rückschlusswahrscheinlichkeit]] Pr[Qi|r(t)] gibt an, mit welcher Wahrscheinlichkeit die Folge Qi gesendet wurde, wenn das Empfangssignal r(t) am Entscheider anliegt. Mit dem [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit#Bedingte_Wahrscheinlichkeit|Satz von Bayes]] kann diese Wahrscheinlichkeit wie folgt berechnet werden:
+
*The &nbsp;[[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Inference_probability|"inference probability"]]&nbsp; ${\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big]$&nbsp; indicates the probability with which the sequence &nbsp;Qi&nbsp; was sent when the received signal &nbsp;r(t)&nbsp; is present at the decision.&nbsp; Using &nbsp;[[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability|"Bayes' theorem"]],&nbsp; this probability can be calculated as follows:
:$${\rm Pr}[Q_i \hspace{0.05cm}|\hspace{0.05cm} r(t)] = \frac{ {\rm Pr}[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
+
:$${\rm Pr}\big[Q_i \hspace{0.05cm}|\hspace{0.05cm} r(t)\big] = \frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
  Q_i] \cdot {\rm Pr}[Q_i]}{{\rm Pr}[r(t)]}
+
  Q_i \big] \cdot {\rm Pr}\big[Q_i]}{{\rm Pr}[r(t)\big]}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Die MAP&ndash;Entscheidungsregel lässt sich somit wie folgt umformulieren bzw. vereinfachen:
+
*The MAP decision rule can thus be reformulated or simplified as follows: &nbsp; Let the sink symbol sequence &nbsp;V=Qj,&nbsp; if for all &nbsp;ij&nbsp; holds:
 +
:$$\frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_j \big] \cdot {\rm Pr}\big[Q_j)}{{\rm Pr}\big[r(t)\big]} > \frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_i\big] \cdot {\rm Pr}\big[Q_i\big]}{{\rm Pr}\big[r(t)\big]}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}  {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_j\big] \cdot {\rm Pr}\big[Q_j\big]> {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_i \big] \cdot {\rm Pr}\big[Q_i\big] \hspace{0.05cm}.$$
  
<br>Man setze die Sinkensymbolfolge V=Qj, falls für alle ij gilt:
+
A further simplification of this MAP decision rule leads to the&nbsp; "ML receiver",&nbsp; where&nbsp; "ML"&nbsp; stands for&nbsp; "maximum likelihood".<br>
:$$\frac{ {\rm Pr}[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 
Q_j] \cdot {\rm Pr}[Q_j)}{{\rm Pr}(r(t)]} > \frac{ {\rm Pr}[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 
Q_i] \cdot {\rm Pr}[Q_i]}{{\rm Pr}[r(t)]}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}  {\rm Pr}[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 
Q_j] \cdot {\rm Pr}[Q_j]> {\rm Pr}[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 
Q_i] \cdot {\rm Pr}[Q_i] \hspace{0.05cm}.$$
 
  
Eine weitere Vereinfachung dieser MAP&ndash;Entscheidungsregel führt zum ML&ndash;Empfänger, wobei &bdquo;ML&rdquo; für &bdquo;Maximum&ndash;Likelihood&rdquo; steht.<br>
+
{{BlaueBox|TEXT= 
 +
Definition:&nbsp; The &nbsp;'''maximum likelihood receiver'''&nbsp; (abbreviated&nbsp; $\rm ML)$ &nbsp; decides according to the conditional forward probabilities &nbsp;Pr[r(t)|Qi],&nbsp; and sets the output sequence &nbsp;V=Qj,&nbsp; if for all &nbsp;ij&nbsp; holds:
 +
:$${\rm Pr}\big[ r(t)\hspace{0.05cm} \vert\hspace{0.05cm}
 +
Q_j \big] > {\rm Pr}\big[ r(t)\hspace{0.05cm} \vert \hspace{0.05cm}
 +
Q_i\big]  \hspace{0.05cm}.$$}}<br>
  
{{BlaueBox|TEXT= 
+
A comparison of these two definitions shows:
Definition:&nbsp; Der '''Maximum&ndash;Likelihood&ndash;Empfänger''' &ndash; abgekürzt ML &ndash; entscheidet nach den bedingten Vorwärtswahrscheinlichkeiten ${\rm Pr}[r(t)\hspace{0.05cm} \vert \hspace{0.05cm}Q_i]undsetztdieFolgeV = Q_j$, falls für alle ij gilt:
+
* For equally probable source symbols,&nbsp; the&nbsp; "ML receiver"&nbsp; and the&nbsp; "MAP receiver"&nbsp; use the same decision rules.&nbsp; Thus,&nbsp; they are equivalent.
:$${\rm Pr}[ r(t)\hspace{0.05cm} \vert\hspace{0.05cm}
 
Q_j] > {\rm Pr}[ r(t)\hspace{0.05cm} \vert \hspace{0.05cm}
 
Q_i]  \hspace{0.05cm}.$$}}<br>
 
  
Ein Vergleich dieser beiden Definitionen zeigt:
+
*For symbols that are not equally probable,&nbsp; the&nbsp; "ML receiver"&nbsp; is inferior to the&nbsp; "MAP receiver"&nbsp; because it does not use all the available information for detection.<br>
* Bei gleichwahrscheinlichen Quellensymbolen  verwenden der ML&ndash;Empfänger und der MAP&ndash;Empfänger gleiche Entscheidungsregeln  und sind somit äquivalent.
 
*Bei nicht gleichwahrscheinlichen Symbolen ist der ML&ndash;Empfänger dem MAP&ndash;Empfänger unterlegen, da er für die Detektion nicht alle zur Verfügung stehenden Informationen nutzt.<br>
 
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Zur Verdeutlichung von ML&ndash; und MAP&ndash;Entscheidungsregel konstruieren wir nun ein sehr einfaches Beispiel mit nur zwei Quellensymbolen (M=2).  
+
$\text{Example 1:}$&nbsp; To illustrate the&nbsp; "ML"&nbsp; and the&nbsp; "MAP"&nbsp; decision rule,&nbsp; we now construct a very simple example with only two source symbols &nbsp;(M=2).
*Die beiden möglichen Symbole Q0 und Q1 werden durch die Sendesignale s=0 bzw. s=1 dargestellt.  
+
[[File:EN_Dig_T_3_7_S2.png|right|frame|For clarification of MAP and ML receiver|class=fit]]
*Das Empfangssignal kann &ndash; warum auch immer &ndash; drei verschiedene Werte annehmen, nämlich r=0, r=1 und zusätzlich r=0.5.
+
<br><br>&rArr; &nbsp; The two possible symbols &nbsp;Q0&nbsp; and &nbsp;Q1&nbsp; are represented by the transmitted signals &nbsp;s=0&nbsp; and &nbsp;s=1.
 
+
<br><br>
[[File:P ID1461 Dig T 3 7 S2 version1.png|center|frame|Zur Verdeutlichung von MAP- und ML-Empfänger|class=fit]]
+
&rArr; &nbsp; The received signal can &ndash; for whatever reason &ndash; take three different values, namely &nbsp;r=0, &nbsp;r=1&nbsp; and additionally &nbsp;r=0.5.
 +
<br><br>
 +
<u>Note:</u>
 +
*The received values &nbsp;r=0&nbsp; and &nbsp;r=1&nbsp; will be assigned to the transmitter values &nbsp;s=0 (Q0)&nbsp; resp. &nbsp;s=1 (Q1),&nbsp;  by both,&nbsp; the ML and MAP decisions.
  
Die Empfangswerte r=0 und r=1 werden sowohl vom ML&ndash; als auch vom MAP&ndash;Entscheider den Senderwerten  s=0 (Q0) bzw. s=1 (Q1) zugeordnet. Dagegen werden die Entscheider bezüglich des Empfangswertes r=0.5 ein anderes Ergebnis liefern:
+
*In contrast, the decisions will give a different result with respect to the received value &nbsp;r=0.5:&nbsp;
  
*Die Maximum&ndash;Likelihood&ndash;Entscheidungsregel führt zum Quellensymbol Q0, wegen
+
:*The maximum likelihood&nbsp; (ML)&nbsp; decision rule leads to the source symbol &nbsp;Q0,&nbsp; because of:
:$${\rm Pr}( r= 0.5\hspace{0.05cm}\vert\hspace{0.05cm}
+
::$${\rm Pr}\big [ r= 0.5\hspace{0.05cm}\vert\hspace{0.05cm}
  Q_0) = 0.4 > {\rm Pr}( r= 0.5\hspace{0.05cm} \vert \hspace{0.05cm}
+
  Q_0\big ] = 0.4 > {\rm Pr}\big [ r= 0.5\hspace{0.05cm} \vert \hspace{0.05cm}
  Q_1) = 0.2 \hspace{0.05cm}.$$
+
  Q_1\big ] = 0.2 \hspace{0.05cm}.$$
  
*Die MAP&ndash;Entscheidung führt dagegen zum Quellensymbol Q1, da entsprechend der Grafik gilt:
+
:*The maximum&ndash;a&ndash;posteriori&nbsp; $\rm (MAP)$&nbsp; decision rule leads to the source symbol &nbsp;Q1,&nbsp; since according to the incidental calculation in the graph:
:$${\rm Pr}(Q_1 \hspace{0.05cm}\vert\hspace{0.05cm}
+
::$${\rm Pr}\big [Q_1 \hspace{0.05cm}\vert\hspace{0.05cm}
  r= 0.5) = 0.6 > {\rm Pr}(Q_0 \hspace{0.05cm}\vert\hspace{0.05cm}
+
  r= 0.5\big ] = 0.6 > {\rm Pr}\big [Q_0 \hspace{0.05cm}\vert\hspace{0.05cm}
  r= 0.5) = 0.4 \hspace{0.05cm}.$$}}<br>
+
  r= 0.5\big ] = 0.4 \hspace{0.05cm}.$$}}<br>
  
== Maximum&ndash;Likelihood&ndash;Entscheidung bei Gaußscher Störung ==
+
== Maximum likelihood decision for Gaussian noise ==
 
<br>
 
<br>
Wir setzen nun voraus, dass sich das Empfangssignal r(t) additiv aus einem Nutzsignal s(t) und einem Störanteil n(t) zusammensetzt, wobei die Störung als gaußverteilt und weiß angenommen wird &nbsp; &rArr; &nbsp; [[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#.C3.9Cbertragungskanal_und_St.C3.B6rungen|AWGN&ndash;Rauschen]]:
+
We now assume that the received signal &nbsp;r(t)&nbsp; is additively composed of a useful component &nbsp;s(t)&nbsp; and a noise component &nbsp;n(t),&nbsp; where the noise is assumed to be Gaussian distributed and white &nbsp; &rArr; &nbsp; &nbsp;[[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Transmission_channel_and_interference|"AWGN noise"]]:
 
:r(t)=s(t)+n(t).
 
:r(t)=s(t)+n(t).
  
Eventuelle Kanalverzerrungen werden zur Vereinfachung bereits dem Signal s(t) beaufschlagt.<br>
+
Any channel distortions are already applied to the signal &nbsp;s(t)&nbsp; for simplicity.<br>
  
Die notwendige Rauschleistungsbegrenzung wird durch einen Integrator realisiert; dies entspricht einer Mittelung der Rauschwerte im Zeitbereich. Begrenzt man das Integrationsintervall auf den Bereich t1 bis t2, so kann man für jede Quellensymbolfolge $Q_i$ eine Größe $W_i$ ableiten, die ein Maß für die bedingte Wahrscheinlichkeit ${\rm Pr}[ r(t)\hspace{0.05cm} \vert \hspace{0.05cm}
+
The necessary noise power limitation is realized by an integrator;&nbsp; this corresponds to an averaging of the noise values in the time domain.&nbsp; If one limits the integration interval to the range &nbsp;t1&nbsp; to &nbsp;t2,&nbsp; one can derive a quantity &nbsp;$W_i$&nbsp; for each source symbol sequence &nbsp;$Q_i$,&nbsp; which is a measure for the conditional probability &nbsp;${\rm Pr}\big [ r(t)\hspace{0.05cm} \vert \hspace{0.05cm}
  Q_i] $ darstellt:
+
  Q_i\big ] $:&nbsp;
 
:$$W_i  =  \int_{t_1}^{t_2} r(t) \cdot s_i(t) \,{\rm d} t -
 
:$$W_i  =  \int_{t_1}^{t_2} r(t) \cdot s_i(t) \,{\rm d} t -
 
{1}/{2} \cdot \int_{t_1}^{t_2} s_i^2(t) \,{\rm d} t=
 
{1}/{2} \cdot \int_{t_1}^{t_2} s_i^2(t) \,{\rm d} t=
 
I_i - {E_i}/{2} \hspace{0.05cm}.$$
 
I_i - {E_i}/{2} \hspace{0.05cm}.$$
  
Diese Entscheidungsgröße Wi kann über die k&ndash;dimensioniale [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen#Verbundwahrscheinlichkeitsdichtefunktion|Verbundwahrscheinlichkeitsdichte]] der Störungen (mit k) und einigen Grenzübergängen hergeleitet werden.  
+
This decision variable &nbsp;Wi&nbsp; can be derived using the &nbsp;k&ndash;dimensionial&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Joint_probability_density_function|"joint probability density"]]&nbsp; of the noise&nbsp; $($with &nbsp;$k \to \infty)$&nbsp; and some boundary crossings.&nbsp; The result can be interpreted as follows:
 +
*Integration is used for noise power reduction by averaging.&nbsp; If &nbsp;N&nbsp; binary symbols are decided simultaneously by the maximum likelihood detector,&nbsp; set &nbsp;t1=0&nbsp; and &nbsp;t2=NT&nbsp; for distortion-free channel.
  
Das Ergebnis lässt sich wie folgt interpretieren:
+
*The first term of the above decision variable &nbsp;Wi&nbsp; is equal to the&nbsp; [[Theory_of_Stochastic_Signals/Cross-Correlation_Function_and_Cross_Power-Spectral_Density#Definition_of_the_cross-correlation_function| "energy cross-correlation function"]]&nbsp; formed over the finite time interval &nbsp;NT&nbsp; between &nbsp;r(t)&nbsp; and &nbsp;si(t)&nbsp; at the time point &nbsp;τ=0:
*Die Integration dient der Rauschleistungsbegrenzung. Werden vom ML&ndash;Detektor N Binärsymbole gleichzeitig entschieden, so ist bei verzerrungsfreiem Kanal t1=0 und t2=NT zu setzen.
+
:$$I_i  = \varphi_{r, \hspace{0.08cm}s_i} (\tau = 0) =  \int_{0}^{N \cdot T}r(t) \cdot s_i(t) \,{\rm d} t
*Der erste Term der obigen Entscheidungsgröße Wi ist gleich der über das endliche Zeitintervall NT  gebildeten [[Stochastische_Signaltheorie/Kreuzkorrelationsfunktion_und_Kreuzleistungsdichte#Definition_der_Kreuzkorrelationsfunktion| Energie&ndash;Kreuzkorrelationsfunktion]] zwischen r(t) und si(t) an der Stelle τ=0:
 
:$$I_i  = \varphi_{r, \hspace{0.05cm}s_i} (\tau = 0) =  \int_{0}^{N \cdot T}r(t) \cdot s_i(t) \,{\rm d} t
 
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Der zweite Term gibt die halbe Energie des betrachteten Nutzsignals si(t) an, die zu subtrahieren ist. Die Energie ist gleich der AKF des Nutzsignals an der Stelle τ=0:
+
*The second term gives half the energy of the considered useful signal &nbsp;si(t)&nbsp; to be subtracted.&nbsp; The energy is equal to the auto-correlation function&nbsp; (ACF)&nbsp; of &nbsp;si(t)&nbsp; at the time point &nbsp;τ=0:
  
 
::<math>E_i  =  \varphi_{s_i} (\tau = 0) = \int_{0}^{N \cdot T}
 
::<math>E_i  =  \varphi_{s_i} (\tau = 0) = \int_{0}^{N \cdot T}
 
s_i^2(t) \,{\rm d} t \hspace{0.05cm}.</math>
 
s_i^2(t) \,{\rm d} t \hspace{0.05cm}.</math>
  
*Bei verzerrendem Kanal ist die Impulsantwort hK(t) nicht diracförmig, sondern beispielsweise auf den Bereich  TKt+TK ausgedehnt. In diesem Fall muss für die beiden Integrationsgrenzen t1=TK und t2=NT+TK eingesetzt werden.<br>
+
*In the case of a distorting channel,&nbsp; the channel impulse response &nbsp;hK(t)&nbsp; is not Dirac-shaped,&nbsp; but for example extended to the range &nbsp;TKt+TK.&nbsp; In this case,&nbsp; t1=TK&nbsp; and &nbsp;t2=NT+TK&nbsp; must be used for the integration limits.<br>
  
== Matched&ndash;Filter&ndash;Empfänger vs. Korrelationsempfänger ==
+
== Matched filter receiver vs. correlation receiver ==
 
<br>
 
<br>
Es gibt verschiedene schaltungstechnische Implementierungen des Maximum&ndash;Likelihood&ndash;Empfängers.  
+
There are various circuit implementations of the maximum likelihood&nbsp; (ML)&nbsp; receiver.
  
Beispielsweise können die erforderlichen Integrale durch lineare Filterung und anschließender Abtastung gewonnen werden. Man bezeichnet diese Realisierungsform als '''Matched&ndash;Filter&ndash;Empfänger''', da hier die Impulsantworten der M parallelen Filter formgleich mit den Nutzsignalen s0(t), ... , sM1(t) sind.<br>
+
&rArr; &nbsp; For example,&nbsp; the required integrals can be obtained by linear filtering and subsequent sampling.&nbsp; This realization form is called&nbsp; '''matched filter receiver''',&nbsp; because here the impulse responses of the &nbsp;M&nbsp; parallel filters have the same shape as the useful signals &nbsp;s0(t), ... , sM1(t).&nbsp; <br>
*Die M Entscheidungsgrößen Ii sind dann gleich den Faltungsprodukten r(t)si(t) zum Zeitpunkt t=0.  
+
*The&nbsp; M&nbsp; decision variables &nbsp;Ii&nbsp; are then equal to the convolution products &nbsp;r(t)si(t)&nbsp; at time &nbsp;t=0.  
*Beispielsweise erlaubt der im Kapitel [[Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Voraussetzungen_und_Optimierungskriterium|Optimierung der Basisband&ndash;Übertragungssysteme]] ausführlich beschriebene &bdquo;optimale Binärempfänger&rdquo; eine Maximum&ndash;Likelihood&ndash;Entscheidung mit den ML&ndash;Parametern M=2 und N=1.<br>
+
*For example,&nbsp; the&nbsp; "optimal binary receiver"&nbsp; described in detail in the chapter&nbsp; [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Prerequisites_and_optimization_criterion|"Optimization of Baseband Transmission Systems"]]&nbsp; allows a maximum likelihood&nbsp; (ML)&nbsp; decision with parameters &nbsp;M=2&nbsp; and &nbsp;N=1.<br>
  
  
Eine zweite Realisierungsform bietet der '''Korrelationsempfänger''' entsprechend der folgenden Grafik.  
+
&rArr; &nbsp; A second realization form is provided by the &nbsp;'''correlation receiver'''&nbsp; according to the following graph.&nbsp; One recognizes from this block diagram for the indicated parameters:
 +
[[File:EN_Dig_T_3_7_S4.png|right|frame|Correlation receiver for &nbsp;N=3, &nbsp;t1=0, &nbsp;t2=3T &nbsp; and &nbsp; M=23=8 |class=fit]]
  
[[File:P ID1457 Dig T 3 7 S4 version1.png|center|frame|Korrelationsempfänger für <i>N</i> = 3, <i>t</i><sub>1</sub> = 0, <i>t</i><sub>2</sub> = 3<i>T</i> sowie <i>M</i> = 2<sup>3</sup> = 8 |class=fit]]
+
*The drawn correlation receiver forms a total of &nbsp;M=8&nbsp; cross-correlation functions between the received signal &nbsp;$r(t) = s_k(t) + n(t)&nbsp; and the possible transmitted signals &nbsp;s_i(t), \ i = 0$, ... , M1. The following description assumes that the useful signal &nbsp;$s_k(t)$&nbsp; has been transmitted.<br>
  
Man erkennt aus diesem Blockschaltbild für die angegebenen Parameter:
+
*This receiver searches for the maximum value &nbsp;$W_j$&nbsp; of all correlation values and outputs the corresponding sequence &nbsp;$Q_j$&nbsp; as sink symbol sequence &nbsp;$V$.&nbsp; Formally,&nbsp; the&nbsp; $\rm ML$&nbsp; decision rule can be expressed as follows:
*Dieser Korrelationsempfänger bildet insgesamt $M = 8$ Kreuzkorrelationsfunktionen zwischen dem Empfangssignal $r(t) = s_k(t) + n(t)$ und den möglichen Sendesignalen $s_i(t), \ i = 0$, ... , M1. Vorausgesetzt ist für diese Beschreibung, dass das Nutzsignal $s_k(t)$ gesendet wurde.<br>
+
:$$V = Q_j, \hspace{0.2cm}{\rm if}\hspace{0.2cm} W_i < W_j
 +
\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\rm
 +
all}\hspace{0.2cm} i \ne j \hspace{0.05cm}.$$
  
*Der Korrelationsempfänger sucht nun den maximalen Wert Wj aller Korrelationswerte und gibt die dazugehörige Folge Qj als Sinkensymbolfolge V aus. Formal lässt sich die ML&ndash;Entscheidungsregel wie folgt ausdrücken:
+
*If we further assume that all transmitted signals &nbsp;si(t)&nbsp; have same energy,&nbsp; we can dispense with the subtraction of &nbsp;Ei/2&nbsp; in all branches.&nbsp; In this case,&nbsp; the following correlation values are compared &nbsp;(i=0, ... , M1):
:$$V = Q_j, \hspace{0.2cm}{\rm falls}\hspace{0.2cm} W_j > W_i
 
\hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\rm
 
alle}\hspace{0.2cm} i \ne j \hspace{0.05cm}.$$
 
 
 
*Setzt man weiter voraus, dass alle Sendesignale si(t) die genau gleiche Energie besitzen, so kann man auf die Subtraktion von Ei/2 in allen Zweigen verzichten. In diesem Fall werden folgende Korrelationswerte miteinander verglichen (i=0, ... , M1):
 
 
::<math>I_i  =  \int_{0}^{NT} s_j(t) \cdot s_i(t) \,{\rm d} t +
 
::<math>I_i  =  \int_{0}^{NT} s_j(t) \cdot s_i(t) \,{\rm d} t +
 
\int_{0}^{NT} n(t) \cdot s_i(t) \,{\rm d} t
 
\int_{0}^{NT} n(t) \cdot s_i(t) \,{\rm d} t
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*Mit großer Wahrscheinlichkeit ist Ij=Ik größer als alle anderen Vergleichswerte $i_{j \ne k}$. Ist das Rauschen $nt)$ allerdings zu groß, so kann auch der Korrelationsempfänger eine Fehlentscheidung treffen.<br>
+
*With high probability, &nbsp;Ij=Ik&nbsp; is larger than all other comparison values&nbsp; $I_{j \ne k}$ &nbsp; &rArr; &nbsp;  right decision.&nbsp; However,&nbsp; if the noise &nbsp;$n(t)$&nbsp; is too large,&nbsp; also the correlation receiver will make wrong decisions.<br>
  
== Darstellung des Korrelationsempfängers im Baumdiagramm==
+
== Representation of the correlation receiver in the tree diagram==
 
<br>
 
<br>
Verdeutlichen wir uns die Funktionsweise des Korrelationsempfängers im Baumdiagramm, wobei die 23=8 möglichen Quellensymbolfolgen Qi der Länge N=3 durch bipolare rechteckförmige Sendesignale si(t) repräsentiert werden:
+
Let us illustrate  the correlation receiver operation in the tree diagram,&nbsp; where the &nbsp;23=8&nbsp; possible source symbol sequences &nbsp;Qi&nbsp; of length &nbsp;N=3&nbsp; are represented by bipolar rectangular transmitted signals &nbsp;si(t).
  
[[File:P ID1458 Dig T 3 7 S5a version1.png|center|frame|Mögliche bipolare Sendesignale für <i>N</i> = 3|class=fit]]
+
[[File:P ID1458 Dig T 3 7 S5a version1.png|right|frame|All&nbsp; 23=8&nbsp; possible bipolar transmitted signals&nbsp; si(t)&nbsp; for &nbsp;$N = 3$|class=fit]]
 +
The possible symbol sequences &nbsp;Q0=LLL, ... , Q7=HHH&nbsp; and the associated transmitted signals &nbsp;s0(t), ... , s7(t)&nbsp; are listed below.
  
Die möglichen Symbolfolgen Q0=LLL, ... , Q7=HHH und die zugehörigen Sendesignale s0(t), ... , s7(t) sind oben aufgeführt.
+
*Due to bipolar amplitude coefficients and the rectangular shape &nbsp; &rArr; &nbsp; all signal energies are equal:&nbsp; E0=...=E7=NEB, where &nbsp;EB&nbsp; indicates the energy of a single pulse of duration T.
*Aufgrund der bipolaren Amplitudenkoeffizienten und der Rechteckform sind alle Signalenergien gleich: E0=...=E7=NEB, wobei EB die Energie eines Einzelimpulses der Dauer T angibt.  
+
*Deshalb kann auf die Subtraktion des Terms Ei/2 in allen Zweigen verzichtet werden &nbsp; &rArr; &nbsp; eine auf den Korrelationswerten Ii basierende Entscheidung liefert ebenso zuverlässige Ergebnisse wie die Maximierung der korrigierten Werte Wi.<br>
+
*Therefore,&nbsp; the subtraction of the &nbsp;Ei/2&nbsp; term in all branches can be omitted &nbsp; &rArr; &nbsp; the decision based on the correlation values &nbsp;Ii&nbsp; gives equally reliable results as maximizing the corrected values &nbsp;Wi.
 +
<br clear=all>
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; In der Grafik sind die fortlaufenden Integralwerte dargestellt, wobei vom tatsächlich gesendeten Signal s5(t) und dem rauschfreien Fall ausgegangen wird. Für diesen Fall gilt für die zeitabhängigen Integralwerte und die Integralendwerte:  
+
$\text{Example 2:}$&nbsp; The graph shows the continuous-valued integral values,&nbsp; assuming the actually transmitted signal &nbsp;s5(t)&nbsp; and the noise-free case.&nbsp; For this case,&nbsp; the time-dependent integral values and the integral end values:
[[File:Dig_T_3_7_S5B_version2.png|right|frame|Korrelationsempfänger: Baumdiagramm im rauschfreien Fall|class=fit]]
+
[[File:EN_Dig_T_3_7_S5b.png|right|frame|Tree diagram of the correlation receiver in the noise-free case|class=fit]]
 
:$$i_i(t)  =  \int_{0}^{t} r(\tau) \cdot s_i(\tau) \,{\rm d}
 
:$$i_i(t)  =  \int_{0}^{t} r(\tau) \cdot s_i(\tau) \,{\rm d}
 
\tau =  \int_{0}^{t} s_5(\tau) \cdot s_i(\tau) \,{\rm d}
 
\tau =  \int_{0}^{t} s_5(\tau) \cdot s_i(\tau) \,{\rm d}
 
\tau \hspace{0.3cm}
 
\tau \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}I_i = i_i(3T). $$
 
\Rightarrow \hspace{0.3cm}I_i = i_i(3T). $$
Die Grafik kann wie folgt interpretiert werden::
+
The graph can be interpreted as follows:
*Wegen der Rechteckform der Signale si(t) sind alle Funktionsverläufe ii(t) geradlinig. Die auf $3T$ normierten Endwerte sind +3, +1, 1 und 3.<br>
+
*Because of the rectangular shape of the signals &nbsp;si(t),&nbsp; all function curves &nbsp;ii(t)&nbsp; are rectilinear.&nbsp; The end values normalized to &nbsp;$E_{\rm B}$&nbsp; are &nbsp;+3, &nbsp;+1, &nbsp;1&nbsp; and &nbsp;3.<br>
*Der maximale Endwert ist I5=3EB (roter Kurvenverlauf), da tatsächlich das Signal s5(t) gesendet wurde. Ohne Rauschen trifft der Korrelationsempfänger somit natürlich immer die richtige Entscheidung.<br>
+
 
*Der blaue Kurvenzug i1(t) führt zum Endwert $I_5 = -E_{\rm B} + E_{\rm B}+ E_{\rm B} = E_{\rm B}$, da sich s1(t) von s5(t) nur im ersten Bit unterscheidet. Die Vergleichswerte I4 und I7 sind ebenfalls gleich EB.<br>
+
*The maximum final value is &nbsp;I5=3EB&nbsp; (red waveform),&nbsp; since signal &nbsp;s5(t)&nbsp; was actually sent.&nbsp; Without noise,&nbsp; the correlation receiver thus naturally always makes the correct decision.<br>
*Da sich s0(t), s3(t) und s6(t) vom gesendeten s5(t) in zwei Bit unterscheiden, gilt I0=I3=I6=EB. Die grüne Kurve zeigt s6(t), das zunächst ansteigt (erstes Bit stimmt überein) und dann über zwei Bit abfällt.<br
+
 
*Die violette Kurve führt zum Endwert I2=3EB. Das zugehörige Signal s2(t) unterscheidet sich von s5(t) in allen drei Symbolen und es gilt s2(t)=s5(t).}}<br><br>
+
*The blue curve &nbsp;i1(t)&nbsp; leads to the final value &nbsp;$I_1 = -E_{\rm B} + E_{\rm B}+ E_{\rm B} = E_{\rm B}$,&nbsp; since &nbsp;s1(t)&nbsp; differs from &nbsp;s5(t)&nbsp; only in the first bit.&nbsp; The comparison values &nbsp;I4&nbsp; and &nbsp;I7&nbsp; are also equal to &nbsp;EB.<br>
 +
 
 +
*Since &nbsp;s0(t), &nbsp;s3(t)&nbsp; and &nbsp;s6(t)&nbsp; differ from the transmitted &nbsp;s5(t)&nbsp; in two bits, &nbsp;I0=I3=I6=EB.&nbsp; The green curve shows &nbsp;s6(t) initially increasing&nbsp; (first bit matches)&nbsp; and then decreasing over two bits.
 +
 
 +
*The purple curve leads to the final value &nbsp;I2=3EB.&nbsp; The corresponding signal &nbsp;s2(t)&nbsp; differs from &nbsp;s5(t)&nbsp; in all three symbols and &nbsp;s2(t)=s5(t)&nbsp; holds.}}<br><br>
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Die Grafik zu diesem Beispiel beschreibt den gleichen Sachverhalt wie das Beispiel 2, doch es wird nun vom Empfangssignal  r(t)=s5(t)+n(t) ausgegangen. Die Varianz des AWGN&ndash;Rauschens n(t) beträgt hierbei  σ2n=4EB/T.
+
$\text{Example 3:}$&nbsp; The graph describes the same situation as &nbsp;$\text{Example 2}$,&nbsp; but now the received signal &nbsp;r(t)=s5(t)+n(t)&nbsp; is assumed.&nbsp; The variance of the AWGN noise &nbsp;n(t)&nbsp; here is &nbsp;σ2n=4EB/T.
[[File:Dig_T_3_7_S5C_version2.png|right|frame|Korrelationsempfänger: Baumdiagramm mit Rauschen |class=fit]]
+
[[File:EN_Dig_T_3_7_S5c_neu.png|right|frame|Tree diagram of the correlation receiver with noise &nbsp; (σ2n=4EB/T) |class=fit]]
Man erkennt aus dieser Grafik im Vergleich zum rauschfreien Fall:
+
<br><br><br>One can see from this graph compared to the noise-free case:
*Die Funktionsverläufe sind aufgrund des Rauschanteils n(t) nicht mehr gerade und es ergeben sich auch etwas andere Endwerte als ohne Rauschen.  
+
*The curves are now no longer straight due to the noise component &nbsp;n(t)&nbsp; and there are also slightly different final values than without noise.
*Im betrachteten Beispiel entscheidet der Korrelationsempfänger aber mit großer Wahrscheinlichkeit richtig, da die Differenz zwischen I5 und dem zweitgrößeren Wert I7 mit 1.65EB verhältnismäßig groß ist.<br>
+
 
*Die Fehlerwahrscheinlichkeit ist in dem hier betrachteten Beispiel allerdings nicht besser als die des Matched&ndash;Filter&ndash;Empfängers mit symbolweiser Entscheidung. Entsprechend dem Kapitel [[Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Voraussetzungen_und_Optimierungskriterium|Optimierung der Basisband&ndash;Übertragungssysteme]]  gilt auch hier:
+
*In the considered example,&nbsp;  the correlation receiver decides correctly with high probability,&nbsp; since the difference between &nbsp;I5&nbsp; and the next value &nbsp;I7&nbsp; is relatively large: &nbsp;1.65EB.&nbsp; <br>
 +
 
 +
*The error probability in this example  is not better than that of the matched filter receiver with symbol-wise decision.&nbsp; In accordance with the chapter&nbsp;  [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Prerequisites_and_optimization_criterion|"Optimization of Baseband Transmission Systems"]],&nbsp; the following also applies here:
 
:$$p_{\rm S} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)
 
:$$p_{\rm S} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)
 
  = {1}/{2} \cdot {\rm erfc} \left( \sqrt{ { E_{\rm B} }/{N_0} }\right) \hspace{0.05cm}.$$}}  
 
  = {1}/{2} \cdot {\rm erfc} \left( \sqrt{ { E_{\rm B} }/{N_0} }\right) \hspace{0.05cm}.$$}}  
Line 176: Line 182:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusions:}$&nbsp;  
*Weist das Eingangssignal keine statistischen Bindungen auf wie im letzten Beispiel , so ist durch die gemeinsame Entscheidung von $N$ Symbolen gegenüber der symbolweisen Entscheidung keine Verbesserung zu erzielen.
+
#If the input signal does not have statistical bindings &nbsp;$\text{(Example 2)}$,&nbsp; there is no improvement by joint decision of &nbsp;N&nbsp; symbols over symbol-wise decision &nbsp; <br>&rArr; &nbsp; pS=Q(2EB/N0).
*Bei Vorhandensein solcher statistischen Bindungen  wird durch die gemeinsame Entscheidung von N Symbolen die Fehlerwahrscheinlichkeit  gegenüber pS=Q(2EB/N0) (gültig für symbolweise Entscheidung) merklich verringert, da der Maximum&ndash;Likelihood&ndash;Empfänger dies berücksichtigt.  
+
#In the presence of statistical bindings &nbsp;$\text{(Example 3)}$,&nbsp; the joint decision of &nbsp;N&nbsp; symbols noticeably reduces the error probability,&nbsp; since the maximum likelihood receiver takes the bindings into account.
*Solche Bindungen können entweder durch sendeseitige Codierung bewusst erzeugt werden (siehe LNTwww-Buch [[Kanalcodierung]] oder durch (lineare) Kanalverzerrungen ungewollt entstehen.<br>
+
#Such bindings can be either deliberately created by transmission-side coding&nbsp; $(see the &nbsp;\rm LNTwww$ book&nbsp; [[Channel_Coding|"Channel Coding"]])&nbsp; or unintentionally caused by&nbsp; (linear)&nbsp; channel distortions.<br>
*Bei Vorhandensein solcher Impulsinterferenzen ist die Berechnung der Fehlerwahrscheinlichkeit deutlich schwieriger. Es können jedoch vergleichbare Näherungen wie beim Viterbi&ndash;Empfänger angegeben werden, die am [[Digitalsignalübertragung/Viterbi–Empfänger#Fehlerwahrscheinlichkeit_bei_Maximum.E2.80.93Likelihood.E2.80.93Entscheidung|Ende des nächsten Kapitels ]] angegeben sind.}}<br>
+
#In the presence of such&nbsp; "intersymbol interferences",&nbsp; the calculation of the error probability is much more difficult.&nbsp; However,&nbsp; comparable approximations as for the Viterbi receiver can be used,&nbsp; which are given at the &nbsp;[[Digital_Signal_Transmission/Viterbi_Receiver#Bit_error_probability_with_maximum_likelihood_decision|end of the next chapter]].&nbsp; }}<br>
  
== Korrelationsempfänger bei unipolarer Signalisierung ==
+
== Correlation receiver with unipolar signaling ==
 
<br>
 
<br>
Bisher sind wir bei der Beschreibung des Korrelationsempfänger stets von binärer ''bipolarer'' Signalisierung ausgegangen:
+
So far,&nbsp; we have always assumed binary&nbsp; '''bipolar'''&nbsp; signaling when describing the correlation receiver:
 
:$$a_\nu  =  \left\{ \begin{array}{c} +1  \\
 
:$$a_\nu  =  \left\{ \begin{array}{c} +1  \\
 
  -1 \\  \end{array} \right.\quad
 
  -1 \\  \end{array} \right.\quad
 
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
 
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
\end{array}$$
 
\end{array}$$
Nun betrachten wir den Fall der binären ''unipolaren'' Digitalsignalübertragung gilt:
+
Now we consider the case of binary&nbsp; '''unipolar'''&nbsp; digital signaling holds:
 
:$$a_\nu  =  \left\{ \begin{array}{c} 1  \\
 
:$$a_\nu  =  \left\{ \begin{array}{c} 1  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
+
\begin{array}{*{1}c} {\rm{for}}
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 
\end{array}$$
 
\end{array}$$
 +
[[File:P ID1462 Dig T 3 7 S5c version1.png|right|frame|Possible unipolar transmitted signals for &nbsp;N=3|class=fit]]
 +
The &nbsp;23=8&nbsp; possible source symbol sequences &nbsp;Qi&nbsp; of length &nbsp;N=3&nbsp; are now represented by unipolar rectangular transmitted signals &nbsp;si(t).&nbsp;
  
Die 23=8 möglichen Quellensymbolfolgen Qi der Länge $N = 3$ werden nun durch unipolare rechteckförmige Sendesignale si(t) repräsentiert. Nachfolgend  aufgeführt sind die Symbolfolgen $Q_0 = \rm LLL$, ... , $Q_7 = \rm HHH$ und die  Sendesignale $s_0(t)$, ... , $s_7(t)$.
+
Listed on the right are the eight symbol sequences and the transmitted signals 
 +
:$$Q_0 = \rm LLL, \text{ ... },\ Q_7 = \rm HHH,$$
 +
:$$s_0(t), \text{ ... },\ s_7(t).$$  
  
[[File:P ID1462 Dig T 3 7 S5c version1.png|center|frame|Mögliche unipolare Sendesignale für <i>N</i> = 3|class=fit]]
+
By comparing with the &nbsp;[[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Representation_of_the_correlation_receiver_in_the_tree_diagram|"corresponding table"]]&nbsp; for bipolar signaling,&nbsp; one can see:
 
+
*Due to the unipolar amplitude coefficients,&nbsp; the signal energies &nbsp;Ei&nbsp; are now different,&nbsp; e.g. &nbsp;E0=0&nbsp; and &nbsp;E7=3EB.
Durch Vergleich mit der [[Digitalsignalübertragung/Optimale_Empfängerstrategien#Darstellung_des_Korrelationsempf.C3.A4ngers_im_Baumdiagramm|entsprechenden Tabelle]] für bipolare Signalisierung erkennt man:
+
*Aufgrund der unipolaren Amplitudenkoeffizienten sind nun die Signalenergien Ei unterschiedlich, zum Beispiel gilt E0=0 und E7=3EB.  
+
*Here the decision based on the integral values &nbsp;Ii&nbsp; does not lead to the correct result.&nbsp; Instead,&nbsp; the corrected comparison values &nbsp;Wi=IiEi/2&nbsp; must now be used.<br>
*Hier führt die auf den Integralendwerten Ii basierende Entscheidung nicht zum richtigen Ergebnis.  
 
*Vielmehr muss nun auf die korrigierten Vergleichswerte Wi=IiEi/2 zurückgegriffen werden.<br>
 
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp; In der Grafik sind die fortlaufenden Integralwerte dargestellt, wobei vom tatsächlich gesendeten Signal s5(t) und dem rauschfreien Fall ausgegangen wird. Das entsprechende bipolare Äquivalent wurde im Beispiel 2 betrachtet.  
+
$\text{Example 4:}$&nbsp; The graph shows the integral values&nbsp; Ii,&nbsp; again assuming the actual transmitted signal &nbsp;s5(t)&nbsp; and the noise-free case.&nbsp; The corresponding bipolar equivalent was considered in&nbsp; [[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Representation_of_the_correlation_receiver_in_the_tree_diagram|Example 2]].  
  
[[File:Dig_T_3_7_S5D_version2.png|right|frame|Baumdiagramm des Korrelationsempfängers (unipolar)|class=fit]]
+
[[File:EN_Dig_T_3_7_S5d.png|right|frame|Tree diagram of the correlation receiver&nbsp; (unipolar signaling)|class=fit]]
Für dieses Beispiel ergeben sich folgende Vergleichswerte, jeweils normiert auf EB:
+
For this example,&nbsp; the following comparison values result,&nbsp; each normalized to &nbsp;EB:
 
:$$I_5 = I_7 = 2, \hspace{0.2cm}I_1 = I_3 = I_4= I_6 = 1 \hspace{0.2cm},
 
:$$I_5 = I_7 = 2, \hspace{0.2cm}I_1 = I_3 = I_4= I_6 = 1 \hspace{0.2cm},
 
  \hspace{0.2cm}I_0 = I_2 = 0
 
  \hspace{0.2cm}I_0 = I_2 = 0
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
:$$W_5 = 1, \hspace{0.2cm}W_1 = W_4 = W_7 = 0.5, $$
+
:$$W_5 = 1, \hspace{0.2cm}W_1 = W_4 = W_7 = 0.5, \hspace{0.2cm}
:$$W_0 = W_3 =W_6 =0, \hspace{0.2cm}W_2 = -0.5
+
W_0 = W_3 =W_6 =0, \hspace{0.2cm}W_2 = -0.5
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Das bedeutet:
+
This means:
*Bei einem Vergleich hinsichtlich der maximalen Ii&ndash;Werte wären die Quellensymbolfolgen Q5 und Q7 gleichwertig.  
+
*When compared in terms of maximum &nbsp;Ii values,&nbsp; the source symbol sequences &nbsp;Q5&nbsp; and &nbsp;Q7&nbsp; would be equivalent.
*Bei Berücksichtigung der unterschiedlichen Energien(E5=2, E7=3) ist dagegen W5>W7.
+
 
*Der Korrelationsempfänger gemäß Wi=IiEi/2 entscheidet also auch bei unipolarer Signalisierung richtig auf s(t)=s5(t). }}<br>
+
*On the other hand,&nbsp; if the different energies &nbsp;(E5=2, E7=3)&nbsp; are taken into account,&nbsp; the decision is clearly in favor of the sequence &nbsp;Q5&nbsp; because of &nbsp;W5>W7.&nbsp;
 +
 
 +
*The correlation receiver according to &nbsp;Wi=IiEi/2&nbsp; therefore decides correctly on&nbsp; s(t)=s5(t)&nbsp; even with unipolar signaling. }}<br>
  
== Aufgaben zum Kapitel==
+
== Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:3.9 Korrelationsempfänger - unipolar|A3.9 Korrelationsempfänger - unipolar]]
+
[[Aufgaben:Exercise_3.09:_Correlation_Receiver_for_Unipolar_Signaling|Exercise 3.09: Correlation Receiver for Unipolar Signaling]]
  
[[Aufgaben:3.10 ML-Baumdiagramm|A3.10 ML-Baumdiagramm]]
+
[[Aufgaben:Exercise_3.10:_Maximum_Likelihood_Tree_Diagram|Exercise 3.10: Maximum Likelihood Tree Diagram]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 14:16, 11 July 2022

Considered scenario and prerequisites


All digital receivers described so far always make symbol-wise decisions.  If,  on the other hand,  several symbols are decided simultaneously,  statistical bindings between the received signal samples can be taken into account during detection,  which results in a lower error probability – but at the cost of an additional delay time.

In this  (partly also in the next chapter)  the following transmission model is assumed.  Compared to the last two chapters,  the following differences arise:

Transmission system with optimal receiver
  • Q{Qi}  with  i=0, ... , M1  denotes a time-constrained source symbol sequence  qν whose symbols are to be jointly decided by the receiver.
  • If the source  Q  describes a sequence of  N  redundancy-free binary symbols, set  M=2N.  On the other hand,  if the decision is symbol-wise,  M  specifies the level number of the digital source.
  • In this model,  any channel distortions are added to the transmitter and are thus already included in the basic transmission pulse  gs(t)  and the signal  s(t).  This measure is only for a simpler representation and is not a restriction.
  • Knowing the currently applied received signal  r(t),  the optimal receiver searches from the set  {Q0, ... , QM1}  of the possible source symbol sequences, the receiver searches for the most likely transmitted sequence  Qj  and outputs this as a sink symbol sequence  V
  • Before the actual decision algorithm,  a numerical value  Wi  must be derived from the received signal  r(t)  for each possible sequence  Qi  by suitable signal preprocessing.  The larger  Wi  is,  the greater the inference probability that  Qi  was transmitted.
  • Signal preprocessing must provide for the necessary noise power limitation and – in the case of strong channel distortions – for sufficient pre-equalization of the resulting intersymbol interferences.  In addition,  preprocessing also includes sampling for time discretization.

Maximum-a-posteriori and maximum–likelihood decision rule


The  (unconstrained)  optimal receiver is called the  "MAP receiver",  where  "MAP"  stands for  "maximum–a–posteriori".

Definition:  The  maximum–a–posteriori receiver  (abbreviated  MAP)  determines the  M  inference probabilities  Pr[Qi|r(t)],  and sets the output sequence  V  according to the decision rule,  where the index is   i=0, ... , M1  as well as  ij:

Pr[Qj|r(t)]>Pr[Qi|r(t)].


  • The  "inference probability"  Pr[Qi|r(t)]  indicates the probability with which the sequence  Qi  was sent when the received signal  r(t)  is present at the decision.  Using  "Bayes' theorem",  this probability can be calculated as follows:
Pr[Qi|r(t)]=Pr[r(t)|Qi]Pr[Qi]Pr[r(t)].
  • The MAP decision rule can thus be reformulated or simplified as follows:   Let the sink symbol sequence  V=Qj,  if for all  ij  holds:
Pr[r(t)|Qj]Pr[Qj)Pr[r(t)]>Pr[r(t)|Qi]Pr[Qi]Pr[r(t)]Pr[r(t)|Qj]Pr[Qj]>Pr[r(t)|Qi]Pr[Qi].

A further simplification of this MAP decision rule leads to the  "ML receiver",  where  "ML"  stands for  "maximum likelihood".

Definition:  The  maximum likelihood receiver  (abbreviated  ML)   decides according to the conditional forward probabilities  Pr[r(t)|Qi],  and sets the output sequence  V=Qj,  if for all  ij  holds:

Pr[r(t)|Qj]>Pr[r(t)|Qi].


A comparison of these two definitions shows:

  • For equally probable source symbols,  the  "ML receiver"  and the  "MAP receiver"  use the same decision rules.  Thus,  they are equivalent.
  • For symbols that are not equally probable,  the  "ML receiver"  is inferior to the  "MAP receiver"  because it does not use all the available information for detection.


Example 1:  To illustrate the  "ML"  and the  "MAP"  decision rule,  we now construct a very simple example with only two source symbols  (M=2).

For clarification of MAP and ML receiver



⇒   The two possible symbols  Q0  and  Q1  are represented by the transmitted signals  s=0  and  s=1.

⇒   The received signal can – for whatever reason – take three different values, namely  r=0,  r=1  and additionally  r=0.5.

Note:

  • The received values  r=0  and  r=1  will be assigned to the transmitter values  s=0 (Q0)  resp.  s=1 (Q1),  by both,  the ML and MAP decisions.
  • In contrast, the decisions will give a different result with respect to the received value  r=0.5
  • The maximum likelihood  (ML)  decision rule leads to the source symbol  Q0,  because of:
Pr[r=0.5|Q0]=0.4>Pr[r=0.5|Q1]=0.2.
  • The maximum–a–posteriori  (MAP)  decision rule leads to the source symbol  Q1,  since according to the incidental calculation in the graph:
Pr[Q1|r=0.5]=0.6>Pr[Q0|r=0.5]=0.4.


Maximum likelihood decision for Gaussian noise


We now assume that the received signal  r(t)  is additively composed of a useful component  s(t)  and a noise component  n(t),  where the noise is assumed to be Gaussian distributed and white   ⇒    "AWGN noise":

r(t)=s(t)+n(t).

Any channel distortions are already applied to the signal  s(t)  for simplicity.

The necessary noise power limitation is realized by an integrator;  this corresponds to an averaging of the noise values in the time domain.  If one limits the integration interval to the range  t1  to  t2,  one can derive a quantity  Wi  for each source symbol sequence  Qi,  which is a measure for the conditional probability  Pr[r(t)|Qi]

Wi=t2t1r(t)si(t)dt1/2t2t1s2i(t)dt=IiEi/2.

This decision variable  Wi  can be derived using the  k–dimensionial  "joint probability density"  of the noise  (with  k)  and some boundary crossings.  The result can be interpreted as follows:

  • Integration is used for noise power reduction by averaging.  If  N  binary symbols are decided simultaneously by the maximum likelihood detector,  set  t1=0  and  t2=NT  for distortion-free channel.
  • The first term of the above decision variable  Wi  is equal to the  "energy cross-correlation function"  formed over the finite time interval  NT  between  r(t)  and  si(t)  at the time point  τ=0:
Ii=φr,si(τ=0)=NT0r(t)si(t)dt.
  • The second term gives half the energy of the considered useful signal  si(t)  to be subtracted.  The energy is equal to the auto-correlation function  (ACF)  of  si(t)  at the time point  τ=0:
Ei=φsi(τ=0)=NT0s2i(t)dt.
  • In the case of a distorting channel,  the channel impulse response  hK(t)  is not Dirac-shaped,  but for example extended to the range  TKt+TK.  In this case,  t1=TK  and  t2=NT+TK  must be used for the integration limits.

Matched filter receiver vs. correlation receiver


There are various circuit implementations of the maximum likelihood  (ML)  receiver.

⇒   For example,  the required integrals can be obtained by linear filtering and subsequent sampling.  This realization form is called  matched filter receiver,  because here the impulse responses of the  M  parallel filters have the same shape as the useful signals  s0(t), ... , sM1(t)

  • The  M  decision variables  Ii  are then equal to the convolution products  r(t)si(t)  at time  t=0.
  • For example,  the  "optimal binary receiver"  described in detail in the chapter  "Optimization of Baseband Transmission Systems"  allows a maximum likelihood  (ML)  decision with parameters  M=2  and  N=1.


⇒   A second realization form is provided by the  correlation receiver  according to the following graph.  One recognizes from this block diagram for the indicated parameters:

Correlation receiver for  N=3,  t1=0,  t2=3T   and   M=23=8
  • The drawn correlation receiver forms a total of  M=8  cross-correlation functions between the received signal  r(t)=sk(t)+n(t)  and the possible transmitted signals  si(t), i=0, ... , M1. The following description assumes that the useful signal  sk(t)  has been transmitted.
  • This receiver searches for the maximum value  Wj  of all correlation values and outputs the corresponding sequence  Qj  as sink symbol sequence  V.  Formally,  the  ML  decision rule can be expressed as follows:
V=Qj,ifWi<Wjforallij.
  • If we further assume that all transmitted signals  si(t)  have same energy,  we can dispense with the subtraction of  Ei/2  in all branches.  In this case,  the following correlation values are compared  (i=0, ... , M1):
Ii=NT0sj(t)si(t)dt+NT0n(t)si(t)dt.
  • With high probability,  Ij=Ik  is larger than all other comparison values  Ijk   ⇒   right decision.  However,  if the noise  n(t)  is too large,  also the correlation receiver will make wrong decisions.

Representation of the correlation receiver in the tree diagram


Let us illustrate the correlation receiver operation in the tree diagram,  where the  23=8  possible source symbol sequences  Qi  of length  N=3  are represented by bipolar rectangular transmitted signals  si(t).

All  23=8  possible bipolar transmitted signals  si(t)  for  N=3

The possible symbol sequences  Q0=LLL, ... , Q7=HHH  and the associated transmitted signals  s0(t), ... , s7(t)  are listed below.

  • Due to bipolar amplitude coefficients and the rectangular shape   ⇒   all signal energies are equal:  E0=...=E7=NEB, where  EB  indicates the energy of a single pulse of duration T.
  • Therefore,  the subtraction of the  Ei/2  term in all branches can be omitted   ⇒   the decision based on the correlation values  Ii  gives equally reliable results as maximizing the corrected values  Wi.



Example 2:  The graph shows the continuous-valued integral values,  assuming the actually transmitted signal  s5(t)  and the noise-free case.  For this case,  the time-dependent integral values and the integral end values:

Tree diagram of the correlation receiver in the noise-free case
ii(t)=t0r(τ)si(τ)dτ=t0s5(τ)si(τ)dτIi=ii(3T).

The graph can be interpreted as follows:

  • Because of the rectangular shape of the signals  si(t),  all function curves  ii(t)  are rectilinear.  The end values normalized to  EB  are  +3,  +1,  1  and  3.
  • The maximum final value is  I5=3EB  (red waveform),  since signal  s5(t)  was actually sent.  Without noise,  the correlation receiver thus naturally always makes the correct decision.
  • The blue curve  i1(t)  leads to the final value  I1=EB+EB+EB=EB,  since  s1(t)  differs from  s5(t)  only in the first bit.  The comparison values  I4  and  I7  are also equal to  EB.
  • Since  s0(t),  s3(t)  and  s6(t)  differ from the transmitted  s5(t)  in two bits,  I0=I3=I6=EB.  The green curve shows  s6(t) initially increasing  (first bit matches)  and then decreasing over two bits.
  • The purple curve leads to the final value  I2=3EB.  The corresponding signal  s2(t)  differs from  s5(t)  in all three symbols and  s2(t)=s5(t)  holds.



Example 3:  The graph describes the same situation as  Example 2,  but now the received signal  r(t)=s5(t)+n(t)  is assumed.  The variance of the AWGN noise  n(t)  here is  σ2n=4EB/T.

Tree diagram of the correlation receiver with noise   (σ2n=4EB/T)




One can see from this graph compared to the noise-free case:

  • The curves are now no longer straight due to the noise component  n(t)  and there are also slightly different final values than without noise.
  • In the considered example,  the correlation receiver decides correctly with high probability,  since the difference between  I5  and the next value  I7  is relatively large:  1.65EB
  • The error probability in this example is not better than that of the matched filter receiver with symbol-wise decision.  In accordance with the chapter  "Optimization of Baseband Transmission Systems",  the following also applies here:
pS=Q(2EB/N0)=1/2erfc(EB/N0).


Conclusions: 

  1. If the input signal does not have statistical bindings  (Example 2),  there is no improvement by joint decision of  N  symbols over symbol-wise decision  
    ⇒   pS=Q(2EB/N0).
  2. In the presence of statistical bindings  (Example 3),  the joint decision of  N  symbols noticeably reduces the error probability,  since the maximum likelihood receiver takes the bindings into account.
  3. Such bindings can be either deliberately created by transmission-side coding  (see the  LNTwww book  "Channel Coding")  or unintentionally caused by  (linear)  channel distortions.
  4. In the presence of such  "intersymbol interferences",  the calculation of the error probability is much more difficult.  However,  comparable approximations as for the Viterbi receiver can be used,  which are given at the  end of the next chapter


Correlation receiver with unipolar signaling


So far,  we have always assumed binary  bipolar  signaling when describing the correlation receiver:

aν={+11f¨urforqν=H,qν=L.

Now we consider the case of binary  unipolar  digital signaling holds:

aν={10forforqν=H,qν=L.
Possible unipolar transmitted signals for  N=3

The  23=8  possible source symbol sequences  Qi  of length  N=3  are now represented by unipolar rectangular transmitted signals  si(t)

Listed on the right are the eight symbol sequences and the transmitted signals

Q0=LLL, ... , Q7=HHH,
s0(t), ... , s7(t).

By comparing with the  "corresponding table"  for bipolar signaling,  one can see:

  • Due to the unipolar amplitude coefficients,  the signal energies  Ei  are now different,  e.g.  E0=0  and  E7=3EB.
  • Here the decision based on the integral values  Ii  does not lead to the correct result.  Instead,  the corrected comparison values  Wi=IiEi/2  must now be used.


Example 4:  The graph shows the integral values  Ii,  again assuming the actual transmitted signal  s5(t)  and the noise-free case.  The corresponding bipolar equivalent was considered in  Example 2.

Tree diagram of the correlation receiver  (unipolar signaling)

For this example,  the following comparison values result,  each normalized to  EB:

I5=I7=2,I1=I3=I4=I6=1,I0=I2=0,
W5=1,W1=W4=W7=0.5,W0=W3=W6=0,W2=0.5.

This means:

  • When compared in terms of maximum  Ii values,  the source symbol sequences  Q5  and  Q7  would be equivalent.
  • On the other hand,  if the different energies  (E5=2, E7=3)  are taken into account,  the decision is clearly in favor of the sequence  Q5  because of  W5>W7
  • The correlation receiver according to  Wi=IiEi/2  therefore decides correctly on  s(t)=s5(t)  even with unipolar signaling.


Exercises for the chapter


Exercise 3.09: Correlation Receiver for Unipolar Signaling

Exercise 3.10: Maximum Likelihood Tree Diagram