Difference between revisions of "Aufgaben:Exercise 3.1Z: Frequency Response of the Coaxial Cable"
(17 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference |
}} | }} | ||
− | [[File:P_ID1371__Dig_Z_3_1.png|right|frame| | + | [[File:P_ID1371__Dig_Z_3_1.png|right|frame|Some coaxial cable types]] |
− | + | A so-called "standard coaxial cable" | |
+ | *with core diameter $2.6 \ \rm mm$, | ||
+ | *outer diameter $9.5 \ \rm mm$ and | ||
+ | *length $l$ | ||
+ | |||
+ | |||
+ | has the following frequency response: | ||
:$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot | :$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot | ||
{\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot | {\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot | ||
Line 12: | Line 18: | ||
\sqrt{f}} \hspace{0.05cm}.$$ | \sqrt{f}} \hspace{0.05cm}.$$ | ||
− | + | The attenuation parameters $\alpha_0$, $\alpha_1$ and $\alpha_2$ are to be entered in "Neper" $(\rm Np)$, the phase parameters $\beta_1$ and $\beta_2$ in "radian" $(\rm rad)$. | |
− | + | The following numerical values apply: | |
:$$\alpha_0 = 0.00162 \hspace{0.15cm}\frac{\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm} | :$$\alpha_0 = 0.00162 \hspace{0.15cm}\frac{\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm} | ||
\alpha_1 = 0.000435 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot{\rm MHz}} \hspace{0.05cm}, | \alpha_1 = 0.000435 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot{\rm MHz}} \hspace{0.05cm}, | ||
Line 19: | Line 25: | ||
\alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot\sqrt{\rm MHz}} \hspace{0.05cm}.$$ | \alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot\sqrt{\rm MHz}} \hspace{0.05cm}.$$ | ||
− | + | Often, to describe a [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich|"linear time-invariant system"]] $\rm (LTI)$ in terms of system theory, one uses | |
− | * | + | * the attenuation function $($in $\rm Np$ or $\rm dB)$: |
:$$a_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| | :$$a_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | * | + | * the phase function $($in $\rm rad$ or $\rm degrees)$: |
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) | :$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | In | + | In practice one often uses the approximation |
:$$H_{\rm K}(f) = | :$$H_{\rm K}(f) = | ||
{\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
\sqrt{f}} \cdot | \sqrt{f}} \cdot | ||
{\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
− | \sqrt{f}} | + | \sqrt{f}}$$ |
+ | :$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot | ||
\sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot | \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot | ||
\frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$ | \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$ | ||
− | + | This is allowed because $\alpha_2$ and $\beta_2$ have exactly the same numerical value – just different pseudo units. | |
+ | |||
+ | Using the definition of the '''characteristic cable attenuation''' (in Neper or decibels) | ||
:$$a_{\rm * (Np)} = a_{\rm K}(f = {R_{\rm B}}/{2}) = 0.1151 \cdot a_{\rm * (dB)}$$ | :$$a_{\rm * (Np)} = a_{\rm K}(f = {R_{\rm B}}/{2}) = 0.1151 \cdot a_{\rm * (dB)}$$ | ||
− | + | digital systems with different bit rate $R_{\rm B}$ and cable length $l$ can be treated uniformly. | |
+ | |||
− | |||
− | |||
− | |||
− | |||
+ | Notes: | ||
+ | *The exercise belongs to the chapter [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|"Causes and Effects of Intersymbol Interference"]]. | ||
+ | *Reference is made in particular to the section [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]]. | ||
+ | |||
− | === | + | |
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which terms of $H_{\rm K}(f)$ do not lead to distortions? The |
|type="[]"} | |type="[]"} | ||
− | + $\alpha_0$– | + | + $\alpha_0$–term, |
− | - $\alpha_1$– | + | - $\alpha_1$–term, |
− | - $\alpha_2$– | + | - $\alpha_2$–term, |
− | + $\beta_1$– | + | + $\beta_1$–term, |
− | - $\beta_2$– | + | - $\beta_2$–term. |
− | { | + | {What length $l_{\rm max}$ could such a cable have to attenuate a DC signal by no more than $1\%$? |
|type="{}"} | |type="{}"} | ||
$l_{\rm max} \ = \ $ { 6.173 3% } $\ {\rm km} $ | $l_{\rm max} \ = \ $ { 6.173 3% } $\ {\rm km} $ | ||
− | { | + | {What is the attenuation $($in $\rm Np)$ at the frequency $f = 70\,{\rm MHz}$, if the cable length is $l = 2\,{\rm km}$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 4.619 3% } $\ {\rm Np} $ |
− | { | + | {All other things being equal, what attenuation results when only the $\alpha_2$–term is considered? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 4.555 3% } $\ {\rm Np} $ |
− | { | + | {What is the formula for the conversion between $\rm Np$ and $\rm dB$? What is the $\rm dB$–value for the attenuation calculated in subtask '''(4)'''? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 39.57 3% } $\ {\rm dB} $ |
− | { | + | {Which of the statements are true provided that one restricts oneself to the $\alpha_2$–value with respect to the attenuation function? |
|type="[]"} | |type="[]"} | ||
− | + | + | + One can also do without the phase term $\beta_1$. |
− | - | + | - One can also do without the phase term $\beta_2$. |
− | - $a_* ≈ 40\,{\rm dB}$ | + | - $a_* ≈ 40\,{\rm dB}$ is valid for a system with $R_{\rm B} = 70\,{\rm Mbit/s}$ and $l = 2\,{\rm km}$. |
− | + $a_* ≈ 40\,{\rm dB}$ | + | + $a_* ≈ 40\,{\rm dB}$ is valid for a system with $R_{\rm B} = 140\,{\rm Mbit/s}$ and $l = 2\,{\rm km}$. |
− | + $a_* ≈ 40\,{\rm dB}$ | + | + $a_* ≈ 40\,{\rm dB}$ is valid for a system with $R_{\rm B} = 560\,{\rm Mbit/s}$ and $l = 1\,{\rm km}$. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Solutions 1 and 4</u> are correct: |
+ | *The $\alpha_0$–term causes only frequency-independent attenuation and the $\beta_1$–term (linear phase) causes frequency-independent delay. | ||
+ | *All other terms contribute to the (linear) distortions. | ||
− | '''(2)''' | + | |
+ | '''(2)''' With $a_0 = \alpha_0 \cdot l$, the following equation must be satisfied: | ||
:$${\rm e}^{- a_0 } \ge 0.99 | :$${\rm e}^{- a_0 } \ge 0.99 | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_0 < {\rm ln} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_0 < {\rm ln} | ||
Line 96: | Line 110: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *This gives the following for the maximum cable length: | |
:$$l_{\rm max} = \frac{a_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline {\approx 6.173\,\,{\rm km}} | :$$l_{\rm max} = \frac{a_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline {\approx 6.173\,\,{\rm km}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' For the attenuation curve, considering all terms: |
− | :$$a_{\rm K}(f) \ = \ [\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot | + | :$$a_{\rm K}(f) \ = \ \big[\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot |
− | \sqrt{f}\hspace{0.05cm}] \cdot l | + | \sqrt{f}\hspace{0.05cm}\big] \cdot l = \big [0.00162 + 0.000435 \cdot 70 + 0.2722 \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \hspace{0.15cm}\underline {= 4.619\, {\rm Np}}\hspace{0.05cm}.$$ |
− | |||
− | |||
− | '''(4)''' | + | '''(4)''' According to the calculation at point '''(3)''', the attenuation value $\underline {4.555\,{\rm Np}}$ is obtained here. |
− | '''(5)''' | + | '''(5)''' For any positive quantity $x$ holds: |
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} | :$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} | ||
= \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot | = \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot | ||
− | (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} | + | (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.686 \cdot x_{\rm |
− | |||
Np}\hspace{0.05cm}.$$ | Np}\hspace{0.05cm}.$$ | ||
+ | *Thus, the attenuation value $4.555\,{\rm Np}$ is identical to $\underline{39.57\,{\rm dB} }$. | ||
− | |||
− | + | '''(6)''' <u>Solutions 1, 4 and 5</u> are correct: | |
− | '''(6)''' | + | *With the restriction to the attenuation term with $\alpha_2$, the following holds for the frequency response: |
:$$H_{\rm K}(f) = | :$$H_{\rm K}(f) = | ||
{\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
Line 128: | Line 139: | ||
{\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
\sqrt{f}} \hspace{0.05cm}.$$ | \sqrt{f}} \hspace{0.05cm}.$$ | ||
− | + | *If we omit the $\beta_1$ phase term, nothing changes with respect to the distortions. Only the phase and group delay would become smaller (both equal) by the value $\tau_1 = (\beta_1 \cdot l)/2\pi$. | |
− | + | *On the other hand, if the $\beta_2$–term is omitted, completely different ratios result: | |
− | + | # The frequency response $H_{\rm K}(f)$ now no longer satisfies the requirement of a causal system; for such a system $H_{\rm K}(f)$ must be minimum-phase. | |
− | + | # The impulse response $h_{\rm K}(t)$ is symmetrical about $t = 0$ with real frequency response, which does not correspond to the conditions. | |
− | + | *Therefore as an approximation for the coaxial cable frequency response is allowed: | |
− | |||
− | |||
− | |||
:$$a_{\rm K}(f) = \alpha_2 \cdot l \cdot | :$$a_{\rm K}(f) = \alpha_2 \cdot l \cdot | ||
\sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot | \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot | ||
\frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$ | \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$ | ||
− | + | *That means: $a_{\rm K}(f)$ and $b_{\rm K}(f)$ of a coaxial cable are identical in form and differ only in their units. | |
− | + | *For a digital system with bit rate $R_{\rm B} = 140\,{\rm Mbit/s}$ ⇒ $R_{\rm B}/2 = 70\,{\rm Mbit/s}$ and cable length $l = 2\,{\rm km}$: <br> $a_* ≈ 40\,{\rm dB}$ is indeed valid – see solution to subtask '''(5)'''. | |
− | + | *A system with four times the bit rate $(R_{\rm B}/2 = 280\,{\rm Mbit/s})$ and half the length $(l = 1\,{\rm km})$ results in the same characteristic cable attenuation. | |
+ | *In contrast, for a system with $R_{\rm B}/2 = 35\,{\rm Mbit/s}$ and $l = 2\,{\rm km}$ holds: | ||
:$$a_{\rm dB} = 0.2722 \frac{\rm Np}{\rm km\cdot \sqrt{\rm MHz}} \cdot 2 \ \rm km \cdot \sqrt{35 \ \rm MHz} \cdot 8.6859 \frac{\rm dB}{\rm Np} ≈ 28 \ \rm dB.$$ | :$$a_{\rm dB} = 0.2722 \frac{\rm Np}{\rm km\cdot \sqrt{\rm MHz}} \cdot 2 \ \rm km \cdot \sqrt{35 \ \rm MHz} \cdot 8.6859 \frac{\rm dB}{\rm Np} ≈ 28 \ \rm dB.$$ | ||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
{{Display}} | {{Display}} | ||
− | [[Category: | + | [[Category:Digital Signal Transmission: Exercises|^3.1 Intersymbol Interference^]] |
Latest revision as of 15:14, 31 May 2022
A so-called "standard coaxial cable"
- with core diameter $2.6 \ \rm mm$,
- outer diameter $9.5 \ \rm mm$ and
- length $l$
has the following frequency response:
- $$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$
The attenuation parameters $\alpha_0$, $\alpha_1$ and $\alpha_2$ are to be entered in "Neper" $(\rm Np)$, the phase parameters $\beta_1$ and $\beta_2$ in "radian" $(\rm rad)$. The following numerical values apply:
- $$\alpha_0 = 0.00162 \hspace{0.15cm}\frac{\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm} \alpha_1 = 0.000435 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot{\rm MHz}} \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot\sqrt{\rm MHz}} \hspace{0.05cm}.$$
Often, to describe a "linear time-invariant system" $\rm (LTI)$ in terms of system theory, one uses
- the attenuation function $($in $\rm Np$ or $\rm dB)$:
- $$a_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| \hspace{0.05cm},$$
- the phase function $($in $\rm rad$ or $\rm degrees)$:
- $$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) \hspace{0.05cm}.$$
In practice one often uses the approximation
- $$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}}$$
- $$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
This is allowed because $\alpha_2$ and $\beta_2$ have exactly the same numerical value – just different pseudo units.
Using the definition of the characteristic cable attenuation (in Neper or decibels)
- $$a_{\rm * (Np)} = a_{\rm K}(f = {R_{\rm B}}/{2}) = 0.1151 \cdot a_{\rm * (dB)}$$
digital systems with different bit rate $R_{\rm B}$ and cable length $l$ can be treated uniformly.
Notes:
- The exercise belongs to the chapter "Causes and Effects of Intersymbol Interference".
- Reference is made in particular to the section "Signals, Basis Functions and Vector Spaces".
Questions
Solution
- The $\alpha_0$–term causes only frequency-independent attenuation and the $\beta_1$–term (linear phase) causes frequency-independent delay.
- All other terms contribute to the (linear) distortions.
(2) With $a_0 = \alpha_0 \cdot l$, the following equation must be satisfied:
- $${\rm e}^{- a_0 } \ge 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_0 < {\rm ln} \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} \hspace{0.05cm}.$$
- This gives the following for the maximum cable length:
- $$l_{\rm max} = \frac{a_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline {\approx 6.173\,\,{\rm km}} \hspace{0.05cm}.$$
(3) For the attenuation curve, considering all terms:
- $$a_{\rm K}(f) \ = \ \big[\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt{f}\hspace{0.05cm}\big] \cdot l = \big [0.00162 + 0.000435 \cdot 70 + 0.2722 \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \hspace{0.15cm}\underline {= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
(4) According to the calculation at point (3), the attenuation value $\underline {4.555\,{\rm Np}}$ is obtained here.
(5) For any positive quantity $x$ holds:
- $$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} = \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.686 \cdot x_{\rm Np}\hspace{0.05cm}.$$
- Thus, the attenuation value $4.555\,{\rm Np}$ is identical to $\underline{39.57\,{\rm dB} }$.
(6) Solutions 1, 4 and 5 are correct:
- With the restriction to the attenuation term with $\alpha_2$, the following holds for the frequency response:
- $$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$
- If we omit the $\beta_1$ phase term, nothing changes with respect to the distortions. Only the phase and group delay would become smaller (both equal) by the value $\tau_1 = (\beta_1 \cdot l)/2\pi$.
- On the other hand, if the $\beta_2$–term is omitted, completely different ratios result:
- The frequency response $H_{\rm K}(f)$ now no longer satisfies the requirement of a causal system; for such a system $H_{\rm K}(f)$ must be minimum-phase.
- The impulse response $h_{\rm K}(t)$ is symmetrical about $t = 0$ with real frequency response, which does not correspond to the conditions.
- Therefore as an approximation for the coaxial cable frequency response is allowed:
- $$a_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
- That means: $a_{\rm K}(f)$ and $b_{\rm K}(f)$ of a coaxial cable are identical in form and differ only in their units.
- For a digital system with bit rate $R_{\rm B} = 140\,{\rm Mbit/s}$ ⇒ $R_{\rm B}/2 = 70\,{\rm Mbit/s}$ and cable length $l = 2\,{\rm km}$:
$a_* ≈ 40\,{\rm dB}$ is indeed valid – see solution to subtask (5). - A system with four times the bit rate $(R_{\rm B}/2 = 280\,{\rm Mbit/s})$ and half the length $(l = 1\,{\rm km})$ results in the same characteristic cable attenuation.
- In contrast, for a system with $R_{\rm B}/2 = 35\,{\rm Mbit/s}$ and $l = 2\,{\rm km}$ holds:
- $$a_{\rm dB} = 0.2722 \frac{\rm Np}{\rm km\cdot \sqrt{\rm MHz}} \cdot 2 \ \rm km \cdot \sqrt{35 \ \rm MHz} \cdot 8.6859 \frac{\rm dB}{\rm Np} ≈ 28 \ \rm dB.$$