Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.8Z: Optimal Detection Time for DFE"

From LNTwww
 
(30 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Entscheidungsrückkopplung}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Decision_Feedback}}
  
[[File:P_ID1454__Dig_Z_3_8.png|right|frame|Tabelle der Grundimpulswerte]]
+
[[File:P_ID1454__Dig_Z_3_8.png|right|frame|Table of  gd(t)  samples  (normalized)]]
Wir betrachten wie in der [[Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter|Aufgabe 3.8]] das bipolare Binärsystem mit Entscheidungsrückkopplung. Im Englischen bezeichnet man diese Konstellation als <i>Decision Feedback Equalization</i> (DFE).
+
As in&nbsp; [[Aufgaben:Exercise_3.8:_Delay_Filter_DFE_Realization|"Exercise 3.8"]],&nbsp; we consider the bipolar binary system with decision feedback equalization&nbsp; $\rm (DFE)$.
  
Der vorentzerrte Grundimpuls gd(t) am Eingang der DFE entspricht der Rechteckantwort eines Gaußtiefpasses mit der Grenzfrequenz fGT=0.25.  
+
The pre-equalized basic pulse &nbsp;gd(t)&nbsp; at the input of the DFE corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency&nbsp;fGT=0.25.  
  
In der Tabelle sind die auf $s_0normiertenAbtastwertevong_d(t)$ angegeben. Auf der Angabenseite zu [[Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter|Aufgabe 3.8]] ist gd(t) skizziert.
+
In the ideal DFE,&nbsp; a compensation pulse &nbsp;$g_w(t)$&nbsp; is formed which is exactly equal to the input pulse &nbsp;gd(t)&nbsp; for all times &nbsp;t &#8805; T_{\rm D} + T_{\rm V},&nbsp; so that the following applies to the corrected basic pulse:
 
 
Bei der idealen DFE wird ein Kompensationsimpuls gw(t) gebildet, der für alle Zeiten t &#8805; T_{\rm D} + T_{\rm V} genau gleich dem Eingangsimpuls gd(t) ist, so dass für den korrigierten Grundimpuls gilt:
 
 
:$$g_k(t) \ = \ g_d(t) - g_w(t) = \ \left\{ \begin{array}{c} g_d(t)
 
:$$g_k(t) \ = \ g_d(t) - g_w(t) = \ \left\{ \begin{array}{c} g_d(t)
 
  \\ 0  \\  \end{array} \right.\quad
 
  \\ 0  \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c} t < T_{\rm D} +  T_{\rm V}, \\  t \ge T_{\rm D} +  T_{\rm V}, \\
 
\begin{array}{*{20}c} t < T_{\rm D} +  T_{\rm V}, \\  t \ge T_{\rm D} +  T_{\rm V}, \\
 
\end{array}$$
 
\end{array}$$
  
Hierbei bezeichnet TD den Detektionszeitpunkt, der eine optimierbare Systemgröße darstellt. TD=0 bedeutet eine Symboldetektion in Impulsmitte.
+
Here &nbsp;TD&nbsp; denotes the detection time,&nbsp; which is a system variable that can be optimized.&nbsp; TD=0&nbsp; denotes symbol detection at the pulse midpoint.
  
Bei einem System mit DFE ist jedoch gk(t) stark unsymmetrisch, so dass ein Detektionszeitpunkt TD<0 günstiger ist. Die Verzögerungszeit TV=T/2 gibt an, dass die DFE erst eine halbe Symboldauer nach der Detektion wirksam wird. Zur Lösung dieser Aufgabe ist TV allerdings nicht relevant.
+
*However,&nbsp; for a system with DFE, &nbsp;gk(t)&nbsp; is strongly asymmetric,&nbsp; so a detection time &nbsp;TD<0&nbsp; is more favorable.
 +
 +
*The delay time &nbsp;TV=T/2&nbsp; indicates that the DFE does not take effect until half a symbol duration after detection.
  
Eine aufwandsgünstige Realisierung der DFE ist mit einem Laufzeitfilter möglich, wobei die Filterordnung bei dem gegebenen Grundimpuls mindestens N=3 betragen muss. Die Filterkoeffizienten sind dabei wie folgt zu wählen:
+
*However, &nbsp;TV&nbsp; is not relevant for solving this exercise.
 +
 
 +
 
 +
A low-effort realization of the DFE is possible with a delay filter,&nbsp; where the filter order must be at least &nbsp;N=3&nbsp; for the given basic pulse.&nbsp; The filter coefficients are to be selected as follows:
 
:$$k_1 = g_d(T_{\rm D} + T),\hspace{0.2cm}k_2 = g_d(T_{\rm D} + 2T),\hspace{0.2cm}k_3 = g_d(T_{\rm D} + 3T)
 
:$$k_1 = g_d(T_{\rm D} + T),\hspace{0.2cm}k_2 = g_d(T_{\rm D} + 2T),\hspace{0.2cm}k_3 = g_d(T_{\rm D} + 3T)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
''Hinweise:''
 
* Die Aufgabe behandelt die theoretischen Grundlagen des Kapitels [[Digitalsignal%C3%BCbertragung/Entscheidungsr%C3%BCckkopplung|Entscheidungsrückkopplung]].
 
* Beachten Sie auch, dass die Entscheidungsrückkopplung nicht mit einer Erhöhung der Rauschleistung verbunden ist, so dass eine Vergrößerung der (halben) Augenöffnung um den Faktor K gleichzeitig einen Störabstandsgewinn von 20lgK zur Folge hat.
 
* Der vorentzerrte Grundimpuls gd(t) am Eingang der DFE entspricht der Rechteckantwort eines Gaußtiefpasses mit der Grenzfrequenz fGT=0.25. In der Tabelle sind die auf s0 normierten Abtastwerte von gd(t) angegeben. Auf der Angabenseite zu [http://en.lntwww.de/Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter| Aufgabe A3.8] ist gd(t) skizziert.
 
  
  
===Fragebogen===
+
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Decision_Feedback|"Decision Feedback"]].
 +
 +
* Note also that decision feedback is not associated with an increase in noise power,&nbsp; so that an increase in&nbsp; (half)&nbsp; eye opening by a factor of &nbsp;K&nbsp; simultaneously results in a signal-to-noise ratio gain of &nbsp;20lgK.&nbsp;
 +
 +
* The pre-equalized basic pulse &nbsp;gd(t)&nbsp; at the DFE input corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency &nbsp;$f_{\rm G} = 0.25/T$.
 +
 +
*The table shows the sample values of &nbsp;gd(t)&nbsp; normalized to &nbsp;s0.&nbsp; The information section for&nbsp; [[Aufgaben:Exercise_3.8:_Delay_Filter_DFE_Realization| "Exercise 3.8"]]&nbsp; shows a sketch of &nbsp;gd(t).&nbsp;
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die halbe Augenöffnung für TD=0 und ideale DFE.
+
{Calculate the half eye opening for &nbsp;TD=0&nbsp; and ideal DFE.
 
|type="{}"}
 
|type="{}"}
100% DFE:¨o(TD=0)/(2s0) = { 0.205 3% }
+
$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0) \ = \ $ { 0.205 3% }
  
{Wie müssen hierzu die Koeffizienten des Laufzeitfilters eingestellt werden?
+
{How must the coefficients of the delay filter be set for this?
 
|type="{}"}
 
|type="{}"}
k1 = { 0.235 3% }
+
$k_1\ = \ $ { 0.235 3% }
k2 = { 0.029 3% }
+
$k_2\ = \ $ { 0.029 3% }
k3 = { 0.001 3% }
+
$k_3\ = \ $ { 0.001 3% }
  
{Es gelte weiter TD=0. Welche (halbe) Augenöffnung ergibt sich, wenn die DFE die Nachläufer nur zu 50% kompensiert?
+
{Let &nbsp;TD=0. What (half) eye opening results if the DFE compensates the trailers only &nbsp;50%?&nbsp;
 
|type="{}"}
 
|type="{}"}
50% DFE:¨o(TD=0)/(2s0) = { 0.072 3% }
+
$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)\ = \ $ { 0.072 3% }
  
{Bestimmen Sie den optimalen Detektionszeitpunkt und die Augenöffnung bei idealer DFE.
+
{Determine the optimal detection time and eye opening with ideal DFE.
 
|type="{}"}
 
|type="{}"}
TD, opt/T = { -0.412--0.388 }
+
$T_{\rm D, \ opt}/T\ = \ $ { -0.412--0.388 }
$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)$ = { 0.205 3% }
+
$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_\text{D, opt})/(2s_0) \ = \ $ { 0.291 3% }
  
{Wie müssen hierzu die Koeffizienten des Laufzeitfilters eingestellt werden?
+
{How must the coefficients of the delay filter be set for this?
 
|type="{}"}
 
|type="{}"}
k1 = { 0.366 3% }
+
$k_1\ = \ $ { 0.366 3% }
k2 = { 0.08 3% }
+
$k_2\ = \ $ { 0.08 3% }
k3 = { 0.004 3% }
+
$k_3\ = \ $ { 0.004 3% }
  
{Wie groß ist die (halbe) Augenöffnung mit TD, opt, wenn die DFE die Nachläufer nur zu 50% kompensiert? Interpretieren Sie das Ergebnis.
+
{How large is the (half) eye opening with &nbsp;TD, opt,&nbsp; if the DFE compensates the trailers only &nbsp;50%?&nbsp; Interpret the result.
 
|type="{}"}
 
|type="{}"}
$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)$ = { 0.066 3% }
+
$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_\text{D, opt})/(2s_0)\ = \ $ { 0.066 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Für den Detektionszeitpunkt TD=0 gilt (wurde bereits in [http://en.lntwww.de/Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter| Aufgabe A3.8] berechnet):
+
'''(1)'''&nbsp; For detection time&nbsp; TD=0,&nbsp; the following holds&nbsp; (already calculated in Exercise 3.8):
 
:$$\frac{\ddot{o}(T_{\rm D})}{
 
:$$\frac{\ddot{o}(T_{\rm D})}{
 
  2} = g_d(0) - g_d(-T)- g_d(-2T)- g_d(-3T)$$
 
  2} = g_d(0) - g_d(-T)- g_d(-2T)- g_d(-3T)$$
:$$\Rightarrow \hspace{0.3cm} \frac{\ddot{o}(T_{\rm D})}{
+
:$$ \Rightarrow \hspace{0.3cm} \frac{\ddot{o}(T_{\rm D})}{
 
  2 \cdot s_0} = 0.470 - 0.235 - 0.029 -0.001 \hspace{0.15cm}\underline {= 0.205}
 
  2 \cdot s_0} = 0.470 - 0.235 - 0.029 -0.001 \hspace{0.15cm}\underline {= 0.205}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Die Koeffizienten sind so zu wählen, dass gk(t) die Nachläufer von gd(t) vollständig kompensiert.
+
'''(2)'''&nbsp; The coefficients should be chosen such that&nbsp; gk(t)&nbsp; fully compensates for the trailer of&nbsp; gd(t):
 
:$$k_1 = g_d( T)\hspace{0.15cm}\underline {= 0.235},\hspace{0.2cm}k_2 = g_d(2T)\hspace{0.15cm}\underline {= 0.029},\hspace{0.2cm}k_3 =
 
:$$k_1 = g_d( T)\hspace{0.15cm}\underline {= 0.235},\hspace{0.2cm}k_2 = g_d(2T)\hspace{0.15cm}\underline {= 0.029},\hspace{0.2cm}k_3 =
 
   g_d(3T)\hspace{0.15cm}\underline {= 0.001}
 
   g_d(3T)\hspace{0.15cm}\underline {= 0.001}
Line 79: Line 88:
  
  
'''(3)'''&nbsp; Ausgehend von dem Ergebnis der Teilaufgabe (1) erhält man:
+
'''(3)'''&nbsp; Based on the result of subtask&nbsp; '''(1)''',&nbsp; we obtain:
 
:$$\frac{\ddot{o}(T_{\rm D})}{
 
:$$\frac{\ddot{o}(T_{\rm D})}{
 
  2 \cdot s_0} = 0.205 - 0.5 \cdot (0.235 + 0.029 + 0.001)\hspace{0.15cm}\underline { = 0.072}
 
  2 \cdot s_0} = 0.205 - 0.5 \cdot (0.235 + 0.029 + 0.001)\hspace{0.15cm}\underline { = 0.072}
Line 85: Line 94:
  
  
'''(4)'''&nbsp; Die Optimierung von TD entsprechend den Einträgen in der Tabelle liefert:
+
'''(4)'''&nbsp; Optimizing&nbsp; TD&nbsp; according to the entries in the table yields:
 
:T_{\rm D}/T = 0: \hspace{0.5cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.470 &ndash; 0.235 &ndash; 0.029 &ndash; 0.001 = 0.205,
 
:T_{\rm D}/T = 0: \hspace{0.5cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.470 &ndash; 0.235 &ndash; 0.029 &ndash; 0.001 = 0.205,
:T_{\rm D}/T = &ndash;0.1: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.466 &ndash; 0.204 &ndash; 0.022 &ndash; 0.001 = 0.240,
+
:$$T_{\rm D}/T = \ &ndash;0.1: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.466 \ &ndash; \ 0.204 \ &ndash; \ 0.022 \ &ndash; \ 0.001 = 0.240,$$
:T_{\rm D}/T = &ndash;0.2: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.456 &ndash; 0.174 &ndash; 0.016 &ndash; 0.001 = 0.266,
+
:$$T_{\rm D}/T = \ &ndash;0.2: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.456 \ &ndash; \ 0.174 \ &ndash; \ 0.016 \ &ndash; \ 0.001 = 0.266,$$
:T_{\rm D}/T = &ndash;0.3: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.441 &ndash; 0.146 &ndash; 0.012 &ndash; 0.001 = 0.283,
+
:$$T_{\rm D}/T = \ &ndash;0.3: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.441 \ &ndash; \ 0.146 \ &ndash; \ 0.012 \ &ndash; \ 0.001 = 0.283,$$
:$$T_{\rm D}/T = &ndash;0.4: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.420 &ndash; 0.121 &ndash; 0.008 &ndash; 0.001 = 0.291,$$
+
:$${\bf {\it T}_{\rm D}/{\it T} = \ &ndash;0.4: \hspace{0.2cm} \ddot{o}({\it T}_{\rm D})/(2 \, {\it s}_0) = 0.420 \ &ndash; \ 0.121 \ &ndash; \ 0.008 \ &ndash; \ 0.001 = 0.291,}$$
:T_{\rm D}/T = &ndash;0.5: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.395 &ndash; 0.099 &ndash; 0.006 &ndash; 0.001 = 0.290,
+
:$$T_{\rm D}/T = \ &ndash;0.5: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.395 \ &ndash; \ 0.099 \ &ndash; \ 0.006 \ &ndash; \ 0.001 = 0.290,$$
:T_{\rm D}/T = &ndash;0.6: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.366 &ndash; 0.080 &ndash; 0.004 &ndash; 0.001 = 0.282,
+
:$$T_{\rm D}/T = \ &ndash;0.6: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.366 \ &ndash; \ 0.080 \ &ndash; \ 0.004 \ &ndash; \ 0.001 = 0.282,$$
 +
*Thus,&nbsp; the optimal detection time is&nbsp; T_{\rm D, \ opt} \ \underline {= \ &ndash;0.4T}&nbsp; (probably slightly larger).
  
 +
* For this,&nbsp; the maximum value (0.291_)&nbsp; was determined for the half eye opening.
  
'''(5)'''&nbsp;
 
  
 +
'''(5)'''&nbsp; With&nbsp; T_{\rm D} = \ &ndash;0.4 \ T,&nbsp; the filter coefficients are:
 +
:$$k_1 = g_d(0.6 T)\hspace{0.15cm}\underline {= 0.366},\hspace{0.2cm}k_2 = g_d(1.6T)\hspace{0.15cm}\underline {= 0.080},\hspace{0.2cm}k_3 =
 +
  g_d(2.6T)\hspace{0.15cm}\underline {= 0.004}
 +
\hspace{0.05cm}.$$
 +
 +
 +
'''(6)'''&nbsp; Using the same procedure as in subtask&nbsp; '''(3)''',&nbsp; we obtain here:
 +
:$$\frac{\ddot{o}(T_{\rm D,\hspace{0.05cm} opt})}{
 +
2 \cdot s_0} = 0.291 - 0.5 \cdot (0.366 + 0.080 + 0.004) \hspace{0.15cm}\underline {= 0.066}
 +
\hspace{0.05cm}.$$
  
'''(6)'''&nbsp;  
+
The results of this exercise can be summarized as follows:
 +
# Optimizing the detection timing ideally increases the eye opening by a factor of&nbsp; 0.291/0.205=1.42,&nbsp; which corresponds to the signal-to-noise ratio gain of&nbsp; 20lg1.423 dB.
 +
# However,&nbsp; if the DFE functions only&nbsp; 50%&nbsp; due to realization inaccuracies,&nbsp; then with&nbsp; T_{\rm D} = \ &ndash;0.4T&nbsp; there is a degradation by the amplitude factor&nbsp; 0.291/0.0664.4&nbsp; compared to the ideal DFE.&nbsp; For&nbsp; TD=0,&nbsp; this factor is much smaller with&nbsp; 2.05/0.0723.
 +
# In fact,&nbsp; the actually worse system&nbsp; (with&nbsp; TD=0)&nbsp; is superior to the actually better system&nbsp; (with&nbsp; T_{\rm D} = \ &ndash;0.4T),&nbsp; if the decision feedback works only&nbsp; 50%.&nbsp; Then there is a SNR loss of&nbsp; 20lg(0.072/0.066)0.75 dB.
 +
# One can generalize these statements: &nbsp; '''The larger the improvement by system optimization'''&nbsp; (here:&nbsp; the optimization of the detection time)&nbsp;''' is in the ideal case,&nbsp; the larger is also the degradation at non-ideal conditions''',&nbsp; e.g.,&nbsp; at tolerance-bounded realization.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.6 Entscheidungsrückkopplung^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.6 Decision Feedback Equalization^]]

Latest revision as of 16:29, 27 June 2022

Table of  gd(t)  samples  (normalized)

As in  "Exercise 3.8",  we consider the bipolar binary system with decision feedback equalization  (DFE).

The pre-equalized basic pulse  gd(t)  at the input of the DFE corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency fGT=0.25.

In the ideal DFE,  a compensation pulse  gw(t)  is formed which is exactly equal to the input pulse  gd(t)  for all times  tTD+TV,  so that the following applies to the corrected basic pulse:

gk(t) = gd(t)gw(t)= {gd(t)0forfort<TD+TV,tTD+TV,

Here  TD  denotes the detection time,  which is a system variable that can be optimized.  TD=0  denotes symbol detection at the pulse midpoint.

  • However,  for a system with DFE,  gk(t)  is strongly asymmetric,  so a detection time  TD<0  is more favorable.
  • The delay time  TV=T/2  indicates that the DFE does not take effect until half a symbol duration after detection.
  • However,  TV  is not relevant for solving this exercise.


A low-effort realization of the DFE is possible with a delay filter,  where the filter order must be at least  N=3  for the given basic pulse.  The filter coefficients are to be selected as follows:

k1=gd(TD+T),k2=gd(TD+2T),k3=gd(TD+3T).


Notes:

  • Note also that decision feedback is not associated with an increase in noise power,  so that an increase in  (half)  eye opening by a factor of  K  simultaneously results in a signal-to-noise ratio gain of  20lgK
  • The pre-equalized basic pulse  gd(t)  at the DFE input corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency  fG=0.25/T.
  • The table shows the sample values of  gd(t)  normalized to  s0.  The information section for  "Exercise 3.8"  shows a sketch of  gd(t)


Questions

1

Calculate the half eye opening for  TD=0  and ideal DFE.

100% DFE:¨o(TD=0)/(2s0) = 

2

How must the coefficients of the delay filter be set for this?

k1 = 

k2 = 

k3 = 

3

Let  TD=0. What (half) eye opening results if the DFE compensates the trailers only  50%

50% DFE:¨o(TD=0)/(2s0) = 

4

Determine the optimal detection time and eye opening with ideal DFE.

TD, opt/T = 

100% DFE:¨o(TD, opt)/(2s0) = 

5

How must the coefficients of the delay filter be set for this?

k1 = 

k2 = 

k3 = 

6

How large is the (half) eye opening with  TD, opt,  if the DFE compensates the trailers only  50%?  Interpret the result.

50% DFE:¨o(TD, opt)/(2s0) = 


Solution

(1)  For detection time  TD=0,  the following holds  (already calculated in Exercise 3.8):

¨o(TD)2=gd(0)gd(T)gd(2T)gd(3T)
¨o(TD)2s0=0.4700.2350.0290.001=0.205_.


(2)  The coefficients should be chosen such that  gk(t)  fully compensates for the trailer of  gd(t):

k1=gd(T)=0.235_,k2=gd(2T)=0.029_,k3=gd(3T)=0.001_.


(3)  Based on the result of subtask  (1),  we obtain:

¨o(TD)2s0=0.2050.5(0.235+0.029+0.001)=0.072_.


(4)  Optimizing  TD  according to the entries in the table yields:

T_{\rm D}/T = 0: \hspace{0.5cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.470 – 0.235 – 0.029 – 0.001 = 0.205,
T_{\rm D}/T = \ –0.1: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.466 \ – \ 0.204 \ – \ 0.022 \ – \ 0.001 = 0.240,
T_{\rm D}/T = \ –0.2: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.456 \ – \ 0.174 \ – \ 0.016 \ – \ 0.001 = 0.266,
T_{\rm D}/T = \ –0.3: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.441 \ – \ 0.146 \ – \ 0.012 \ – \ 0.001 = 0.283,
{\bf {\it T}_{\rm D}/{\it T} = \ –0.4: \hspace{0.2cm} \ddot{o}({\it T}_{\rm D})/(2 \, {\it s}_0) = 0.420 \ – \ 0.121 \ – \ 0.008 \ – \ 0.001 = 0.291,}
T_{\rm D}/T = \ –0.5: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.395 \ – \ 0.099 \ – \ 0.006 \ – \ 0.001 = 0.290,
T_{\rm D}/T = \ –0.6: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.366 \ – \ 0.080 \ – \ 0.004 \ – \ 0.001 = 0.282,
  • Thus,  the optimal detection time is  T_{\rm D, \ opt} \ \underline {= \ –0.4T}  (probably slightly larger).
  • For this,  the maximum value (\underline{0.291})  was determined for the half eye opening.


(5)  With  T_{\rm D} = \ –0.4 \ T,  the filter coefficients are:

k_1 = g_d(0.6 T)\hspace{0.15cm}\underline {= 0.366},\hspace{0.2cm}k_2 = g_d(1.6T)\hspace{0.15cm}\underline {= 0.080},\hspace{0.2cm}k_3 = g_d(2.6T)\hspace{0.15cm}\underline {= 0.004} \hspace{0.05cm}.


(6)  Using the same procedure as in subtask  (3),  we obtain here:

\frac{\ddot{o}(T_{\rm D,\hspace{0.05cm} opt})}{ 2 \cdot s_0} = 0.291 - 0.5 \cdot (0.366 + 0.080 + 0.004) \hspace{0.15cm}\underline {= 0.066} \hspace{0.05cm}.

The results of this exercise can be summarized as follows:

  1. Optimizing the detection timing ideally increases the eye opening by a factor of  0.291/0.205 = 1.42,  which corresponds to the signal-to-noise ratio gain of  20 \cdot {\rm lg} \, 1.42 \approx 3 \ \rm dB.
  2. However,  if the DFE functions only  50\%  due to realization inaccuracies,  then with  T_{\rm D} = \ –0.4T  there is a degradation by the amplitude factor  0.291/0.066 \approx 4.4  compared to the ideal DFE.  For  T_{\rm D} = 0,  this factor is much smaller with  2.05/0.072 \approx 3.
  3. In fact,  the actually worse system  (with  T_{\rm D} = 0)  is superior to the actually better system  (with  T_{\rm D} = \ –0.4T),  if the decision feedback works only  50\%.  Then there is a SNR loss of  20 \cdot {\rm lg} \, (0.072/0.066) \approx 0.75 \ \rm dB.
  4. One can generalize these statements:   The larger the improvement by system optimization  (here:  the optimization of the detection time)  is in the ideal case,  the larger is also the degradation at non-ideal conditions,  e.g.,  at tolerance-bounded realization.