Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.8Z: Optimal Detection Time for DFE"

From LNTwww
 
(16 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Entscheidungsrückkopplung}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Decision_Feedback}}
  
[[File:P_ID1454__Dig_Z_3_8.png|right|frame|Tabelle der Grundimpulswerte]]
+
[[File:P_ID1454__Dig_Z_3_8.png|right|frame|Table of  gd(t)  samples  (normalized)]]
Wir betrachten wie in der [[Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter|Aufgabe 3.8]] das bipolare Binärsystem mit Entscheidungsrückkopplung. Im Englischen bezeichnet man diese Konstellation als <i>Decision Feedback Equalization</i> (DFE).
+
As in&nbsp; [[Aufgaben:Exercise_3.8:_Delay_Filter_DFE_Realization|"Exercise 3.8"]],&nbsp; we consider the bipolar binary system with decision feedback equalization&nbsp; $\rm (DFE)$.
  
Der vorentzerrte Grundimpuls gd(t) am Eingang der DFE entspricht der Rechteckantwort eines Gaußtiefpasses mit der Grenzfrequenz fGT=0.25.  
+
The pre-equalized basic pulse &nbsp;gd(t)&nbsp; at the input of the DFE corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency&nbsp;fGT=0.25.  
  
In der Tabelle sind die auf $s_0normiertenAbtastwertevong_d(t)$ angegeben. Auf der Angabenseite zu [[Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter|Aufgabe 3.8]] ist gd(t) skizziert.
+
In the ideal DFE,&nbsp; a compensation pulse &nbsp;$g_w(t)$&nbsp; is formed which is exactly equal to the input pulse &nbsp;gd(t)&nbsp; for all times &nbsp;t &#8805; T_{\rm D} + T_{\rm V},&nbsp; so that the following applies to the corrected basic pulse:
 
 
Bei der idealen DFE wird ein Kompensationsimpuls gw(t) gebildet, der für alle Zeiten t &#8805; T_{\rm D} + T_{\rm V} genau gleich dem Eingangsimpuls gd(t) ist, so dass für den korrigierten Grundimpuls gilt:
 
 
:$$g_k(t) \ = \ g_d(t) - g_w(t) = \ \left\{ \begin{array}{c} g_d(t)
 
:$$g_k(t) \ = \ g_d(t) - g_w(t) = \ \left\{ \begin{array}{c} g_d(t)
 
  \\ 0  \\  \end{array} \right.\quad
 
  \\ 0  \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c} t < T_{\rm D} +  T_{\rm V}, \\  t \ge T_{\rm D} +  T_{\rm V}, \\
 
\begin{array}{*{20}c} t < T_{\rm D} +  T_{\rm V}, \\  t \ge T_{\rm D} +  T_{\rm V}, \\
 
\end{array}$$
 
\end{array}$$
  
Hierbei bezeichnet TD den Detektionszeitpunkt, der eine optimierbare Systemgröße darstellt. TD=0 bedeutet eine Symboldetektion in Impulsmitte.
+
Here &nbsp;TD&nbsp; denotes the detection time,&nbsp; which is a system variable that can be optimized.&nbsp; TD=0&nbsp; denotes symbol detection at the pulse midpoint.
 +
 
 +
*However,&nbsp; for a system with DFE, &nbsp;gk(t)&nbsp; is strongly asymmetric,&nbsp; so a detection time &nbsp;TD<0&nbsp; is more favorable.
 +
 +
*The delay time &nbsp;TV=T/2&nbsp; indicates that the DFE does not take effect until half a symbol duration after detection.
 +
 
 +
*However, &nbsp;TV&nbsp; is not relevant for solving this exercise.
  
Bei einem System mit DFE ist jedoch gk(t) stark unsymmetrisch, so dass ein Detektionszeitpunkt TD<0 günstiger ist. Die Verzögerungszeit TV=T/2 gibt an, dass die DFE erst eine halbe Symboldauer nach der Detektion wirksam wird. Zur Lösung dieser Aufgabe ist TV allerdings nicht relevant.
 
  
Eine aufwandsgünstige Realisierung der DFE ist mit einem Laufzeitfilter möglich, wobei die Filterordnung bei dem gegebenen Grundimpuls mindestens N=3 betragen muss. Die Filterkoeffizienten sind dabei wie folgt zu wählen:
+
A low-effort realization of the DFE is possible with a delay filter,&nbsp; where the filter order must be at least &nbsp;N=3&nbsp; for the given basic pulse.&nbsp; The filter coefficients are to be selected as follows:
 
:$$k_1 = g_d(T_{\rm D} + T),\hspace{0.2cm}k_2 = g_d(T_{\rm D} + 2T),\hspace{0.2cm}k_3 = g_d(T_{\rm D} + 3T)
 
:$$k_1 = g_d(T_{\rm D} + T),\hspace{0.2cm}k_2 = g_d(T_{\rm D} + 2T),\hspace{0.2cm}k_3 = g_d(T_{\rm D} + 3T)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
''Hinweise:''
 
* Die Aufgabe behandelt die theoretischen Grundlagen des Kapitels [[Digitalsignal%C3%BCbertragung/Entscheidungsr%C3%BCckkopplung|Entscheidungsrückkopplung]].
 
* Beachten Sie auch, dass die Entscheidungsrückkopplung nicht mit einer Erhöhung der Rauschleistung verbunden ist, so dass eine Vergrößerung der (halben) Augenöffnung um den Faktor K gleichzeitig einen Störabstandsgewinn von 20lgK zur Folge hat.
 
* Der vorentzerrte Grundimpuls gd(t) am Eingang der DFE entspricht der Rechteckantwort eines Gaußtiefpasses mit der Grenzfrequenz fGT=0.25. In der Tabelle sind die auf s0 normierten Abtastwerte von gd(t) angegeben. Auf der Angabenseite zu [http://en.lntwww.de/Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter| Aufgabe A3.8] ist gd(t) skizziert.
 
  
  
===Fragebogen===
+
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Decision_Feedback|"Decision Feedback"]].
 +
 +
* Note also that decision feedback is not associated with an increase in noise power,&nbsp; so that an increase in&nbsp; (half)&nbsp; eye opening by a factor of &nbsp;K&nbsp; simultaneously results in a signal-to-noise ratio gain of &nbsp;20lgK.&nbsp;
 +
 +
* The pre-equalized basic pulse &nbsp;gd(t)&nbsp; at the DFE input corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency &nbsp;$f_{\rm G} = 0.25/T$.
 +
 +
*The table shows the sample values of &nbsp;gd(t)&nbsp; normalized to &nbsp;s0.&nbsp; The information section for&nbsp; [[Aufgaben:Exercise_3.8:_Delay_Filter_DFE_Realization| "Exercise 3.8"]]&nbsp; shows a sketch of &nbsp;gd(t).&nbsp;
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die halbe Augenöffnung für TD=0 und ideale DFE.
+
{Calculate the half eye opening for &nbsp;TD=0&nbsp; and ideal DFE.
 
|type="{}"}
 
|type="{}"}
100% DFE:¨o(TD=0)/(2s0) = { 0.205 3% }
+
$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0) \ = \ $ { 0.205 3% }
  
{Wie müssen hierzu die Koeffizienten des Laufzeitfilters eingestellt werden?
+
{How must the coefficients of the delay filter be set for this?
 
|type="{}"}
 
|type="{}"}
k1 = { 0.235 3% }
+
$k_1\ = \ $ { 0.235 3% }
k2 = { 0.029 3% }
+
$k_2\ = \ $ { 0.029 3% }
k3 = { 0.001 3% }
+
$k_3\ = \ $ { 0.001 3% }
  
{Es gelte weiter TD=0. Welche (halbe) Augenöffnung ergibt sich, wenn die DFE die Nachläufer nur zu 50% kompensiert?
+
{Let &nbsp;TD=0. What (half) eye opening results if the DFE compensates the trailers only &nbsp;50%?&nbsp;
 
|type="{}"}
 
|type="{}"}
50% DFE:¨o(TD=0)/(2s0) = { 0.072 3% }
+
$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)\ = \ $ { 0.072 3% }
  
{Bestimmen Sie den optimalen Detektionszeitpunkt und die Augenöffnung bei idealer DFE.
+
{Determine the optimal detection time and eye opening with ideal DFE.
 
|type="{}"}
 
|type="{}"}
TD, opt/T = { -0.412--0.388 }
+
$T_{\rm D, \ opt}/T\ = \ $ { -0.412--0.388 }
$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)$ = { 0.205 3% }
+
$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_\text{D, opt})/(2s_0) \ = \ $ { 0.291 3% }
  
{Wie müssen hierzu die Koeffizienten des Laufzeitfilters eingestellt werden?
+
{How must the coefficients of the delay filter be set for this?
 
|type="{}"}
 
|type="{}"}
k1 = { 0.366 3% }
+
$k_1\ = \ $ { 0.366 3% }
k2 = { 0.08 3% }
+
$k_2\ = \ $ { 0.08 3% }
k3 = { 0.004 3% }
+
$k_3\ = \ $ { 0.004 3% }
  
{Wie groß ist die (halbe) Augenöffnung mit TD, opt, wenn die DFE die Nachläufer nur zu 50% kompensiert? Interpretieren Sie das Ergebnis.
+
{How large is the (half) eye opening with &nbsp;TD, opt,&nbsp; if the DFE compensates the trailers only &nbsp;50%?&nbsp; Interpret the result.
 
|type="{}"}
 
|type="{}"}
$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)$ = { 0.066 3% }
+
$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_\text{D, opt})/(2s_0)\ = \ $ { 0.066 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Für den Detektionszeitpunkt TD=0 gilt (wurde bereits in [http://en.lntwww.de/Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter| Aufgabe A3.8] berechnet):
+
'''(1)'''&nbsp; For detection time&nbsp; TD=0,&nbsp; the following holds&nbsp; (already calculated in Exercise 3.8):
 
:$$\frac{\ddot{o}(T_{\rm D})}{
 
:$$\frac{\ddot{o}(T_{\rm D})}{
 
  2} = g_d(0) - g_d(-T)- g_d(-2T)- g_d(-3T)$$
 
  2} = g_d(0) - g_d(-T)- g_d(-2T)- g_d(-3T)$$
:$$\Rightarrow \hspace{0.3cm} \frac{\ddot{o}(T_{\rm D})}{
+
:$$ \Rightarrow \hspace{0.3cm} \frac{\ddot{o}(T_{\rm D})}{
 
  2 \cdot s_0} = 0.470 - 0.235 - 0.029 -0.001 \hspace{0.15cm}\underline {= 0.205}
 
  2 \cdot s_0} = 0.470 - 0.235 - 0.029 -0.001 \hspace{0.15cm}\underline {= 0.205}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Die Koeffizienten sind so zu wählen, dass gk(t) die Nachläufer von gd(t) vollständig kompensiert.
+
'''(2)'''&nbsp; The coefficients should be chosen such that&nbsp; gk(t)&nbsp; fully compensates for the trailer of&nbsp; gd(t):
 
:$$k_1 = g_d( T)\hspace{0.15cm}\underline {= 0.235},\hspace{0.2cm}k_2 = g_d(2T)\hspace{0.15cm}\underline {= 0.029},\hspace{0.2cm}k_3 =
 
:$$k_1 = g_d( T)\hspace{0.15cm}\underline {= 0.235},\hspace{0.2cm}k_2 = g_d(2T)\hspace{0.15cm}\underline {= 0.029},\hspace{0.2cm}k_3 =
 
   g_d(3T)\hspace{0.15cm}\underline {= 0.001}
 
   g_d(3T)\hspace{0.15cm}\underline {= 0.001}
Line 79: Line 88:
  
  
'''(3)'''&nbsp; Ausgehend von dem Ergebnis der Teilaufgabe (1) erhält man:
+
'''(3)'''&nbsp; Based on the result of subtask&nbsp; '''(1)''',&nbsp; we obtain:
 
:$$\frac{\ddot{o}(T_{\rm D})}{
 
:$$\frac{\ddot{o}(T_{\rm D})}{
 
  2 \cdot s_0} = 0.205 - 0.5 \cdot (0.235 + 0.029 + 0.001)\hspace{0.15cm}\underline { = 0.072}
 
  2 \cdot s_0} = 0.205 - 0.5 \cdot (0.235 + 0.029 + 0.001)\hspace{0.15cm}\underline { = 0.072}
Line 85: Line 94:
  
  
'''(4)'''&nbsp; Die Optimierung von TD entsprechend den Einträgen in der Tabelle liefert:
+
'''(4)'''&nbsp; Optimizing&nbsp; TD&nbsp; according to the entries in the table yields:
 
:T_{\rm D}/T = 0: \hspace{0.5cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.470 &ndash; 0.235 &ndash; 0.029 &ndash; 0.001 = 0.205,
 
:T_{\rm D}/T = 0: \hspace{0.5cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.470 &ndash; 0.235 &ndash; 0.029 &ndash; 0.001 = 0.205,
 
:T_{\rm D}/T = \ &ndash;0.1: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.466 \ &ndash; \ 0.204 \ &ndash; \ 0.022 \ &ndash; \ 0.001 = 0.240,
 
:T_{\rm D}/T = \ &ndash;0.1: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.466 \ &ndash; \ 0.204 \ &ndash; \ 0.022 \ &ndash; \ 0.001 = 0.240,
Line 93: Line 102:
 
:T_{\rm D}/T = \ &ndash;0.5: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.395 \ &ndash; \ 0.099 \ &ndash; \ 0.006 \ &ndash; \ 0.001 = 0.290,
 
:T_{\rm D}/T = \ &ndash;0.5: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.395 \ &ndash; \ 0.099 \ &ndash; \ 0.006 \ &ndash; \ 0.001 = 0.290,
 
:T_{\rm D}/T = \ &ndash;0.6: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.366 \ &ndash; \ 0.080 \ &ndash; \ 0.004 \ &ndash; \ 0.001 = 0.282,
 
:T_{\rm D}/T = \ &ndash;0.6: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.366 \ &ndash; \ 0.080 \ &ndash; \ 0.004 \ &ndash; \ 0.001 = 0.282,
 +
*Thus,&nbsp; the optimal detection time is&nbsp; T_{\rm D, \ opt} \ \underline {= \ &ndash;0.4T}&nbsp; (probably slightly larger).
  
Der optimale Detektionszeitpunkt ist demnach $T_{\rm D, \ opt} \ \underline {= \ &ndash;0.4T}$ (wahrscheinlich geringfügig größer). Hierfür wurde für die halbe Augenöffnung der maximale Wert ($0.291$) ermittelt.
+
* For this,&nbsp; the maximum value $(\underline{0.291})$&nbsp; was determined for the half eye opening.
  
  
'''(5)'''&nbsp; Mit T_{\rm D} = \ &ndash;0.4 \ T lauten die Filterkoeffizienten:
+
'''(5)'''&nbsp; With&nbsp; T_{\rm D} = \ &ndash;0.4 \ T,&nbsp; the filter coefficients are:
 
:$$k_1 = g_d(0.6 T)\hspace{0.15cm}\underline {= 0.366},\hspace{0.2cm}k_2 = g_d(1.6T)\hspace{0.15cm}\underline {= 0.080},\hspace{0.2cm}k_3 =
 
:$$k_1 = g_d(0.6 T)\hspace{0.15cm}\underline {= 0.366},\hspace{0.2cm}k_2 = g_d(1.6T)\hspace{0.15cm}\underline {= 0.080},\hspace{0.2cm}k_3 =
 
   g_d(2.6T)\hspace{0.15cm}\underline {= 0.004}
 
   g_d(2.6T)\hspace{0.15cm}\underline {= 0.004}
Line 103: Line 113:
  
  
'''(6)'''&nbsp; Bei gleicher Vorgehensweise wie in der Teilaufgabe (3) erhält man hier:
+
'''(6)'''&nbsp; Using the same procedure as in subtask&nbsp; '''(3)''',&nbsp; we obtain here:
 
:$$\frac{\ddot{o}(T_{\rm D,\hspace{0.05cm} opt})}{
 
:$$\frac{\ddot{o}(T_{\rm D,\hspace{0.05cm} opt})}{
 
  2 \cdot s_0} = 0.291 - 0.5 \cdot (0.366 + 0.080 + 0.004) \hspace{0.15cm}\underline {= 0.066}
 
  2 \cdot s_0} = 0.291 - 0.5 \cdot (0.366 + 0.080 + 0.004) \hspace{0.15cm}\underline {= 0.066}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Die Ergebnisse dieser Aufgabe lassen sich wie folgt zusammenfassen:
+
The results of this exercise can be summarized as follows:
* Durch Optimierung des Detektionszeitpunktes wird die Augenöffnung im Idealfall um den Faktor 0.291/0.205=1.42 vergrößert, was dem Störabstandsgewinn von 20lg1.423 dB entspricht.
+
# Optimizing the detection timing ideally increases the eye opening by a factor of&nbsp; 0.291/0.205=1.42,&nbsp; which corresponds to the signal-to-noise ratio gain of&nbsp; 20lg1.423 dB.
* Funktioniert die DFE aufgrund von Realisierungsungenauigkeiten jedoch nur zu 50%, so ergibt sich mit T_{\rm D} = \ &ndash;0.4T gegenüber der idealen DFE eine Verschlechterung um den Amplitudenfaktor 0.291/0.0664.4. Für TD=0 ist dieser Faktor mit 2.05/0.0723 deutlich kleiner.
+
# However,&nbsp; if the DFE functions only&nbsp; 50%&nbsp; due to realization inaccuracies,&nbsp; then with&nbsp; T_{\rm D} = \ &ndash;0.4T&nbsp; there is a degradation by the amplitude factor&nbsp; 0.291/0.0664.4&nbsp; compared to the ideal DFE.&nbsp; For&nbsp; TD=0,&nbsp; this factor is much smaller with&nbsp; 2.05/0.0723.
* Es ist sogar so: Das eigentlich schlechtere System (mit TD=0) ist dem eigentlich besseren System (mit T_{\rm D} = \ &ndash;0.4T) überlegen, wenn die Entscheidungsrückkopplung nur zu 50 funktioniert. Dann ergibt sich ein Störabstandsverlust von 20lg(0.072/0.066)0.75 dB.
+
# In fact,&nbsp; the actually worse system&nbsp; $($with&nbsp; $T_{\rm D} = 0)$&nbsp; is superior to the actually better system&nbsp; $($with&nbsp; $T_{\rm D} = \ &ndash;0.4T)$,&nbsp; if the decision feedback works only&nbsp; $50\%$.&nbsp; Then there is a SNR loss of&nbsp; 20lg(0.072/0.066)0.75 dB.
* Man kann diese Aussagen verallgemeinern: Je größer die Verbesserung durch Systemoptimierung (hier: die Optimierung des Detektionszeitpunktes) im Idealfall ist, desto größer ist auch die Verschlechterung bei nichtidealen Bedingungen, z.B. bei toleranzbehafteter Realisierung.
+
# One can generalize these statements: &nbsp; '''The larger the improvement by system optimization'''&nbsp; (here:&nbsp; the optimization of the detection time)&nbsp;''' is in the ideal case,&nbsp; the larger is also the degradation at non-ideal conditions''',&nbsp; e.g.,&nbsp; at tolerance-bounded realization.
 
 
 
 
'''(6)'''&nbsp;  
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.6 Entscheidungsrückkopplung^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.6 Decision Feedback Equalization^]]

Latest revision as of 16:29, 27 June 2022

Table of  gd(t)  samples  (normalized)

As in  "Exercise 3.8",  we consider the bipolar binary system with decision feedback equalization  (DFE).

The pre-equalized basic pulse  gd(t)  at the input of the DFE corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency fGT=0.25.

In the ideal DFE,  a compensation pulse  gw(t)  is formed which is exactly equal to the input pulse  gd(t)  for all times  tTD+TV,  so that the following applies to the corrected basic pulse:

gk(t) = gd(t)gw(t)= {gd(t)0forfort<TD+TV,tTD+TV,

Here  TD  denotes the detection time,  which is a system variable that can be optimized.  TD=0  denotes symbol detection at the pulse midpoint.

  • However,  for a system with DFE,  gk(t)  is strongly asymmetric,  so a detection time  TD<0  is more favorable.
  • The delay time  TV=T/2  indicates that the DFE does not take effect until half a symbol duration after detection.
  • However,  TV  is not relevant for solving this exercise.


A low-effort realization of the DFE is possible with a delay filter,  where the filter order must be at least  N=3  for the given basic pulse.  The filter coefficients are to be selected as follows:

k1=gd(TD+T),k2=gd(TD+2T),k3=gd(TD+3T).


Notes:

  • Note also that decision feedback is not associated with an increase in noise power,  so that an increase in  (half)  eye opening by a factor of  K  simultaneously results in a signal-to-noise ratio gain of  20lgK
  • The pre-equalized basic pulse  gd(t)  at the DFE input corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency  fG=0.25/T.
  • The table shows the sample values of  gd(t)  normalized to  s0.  The information section for  "Exercise 3.8"  shows a sketch of  gd(t)


Questions

1

Calculate the half eye opening for  TD=0  and ideal DFE.

100% DFE:¨o(TD=0)/(2s0) = 

2

How must the coefficients of the delay filter be set for this?

k1 = 

k2 = 

k3 = 

3

Let  TD=0. What (half) eye opening results if the DFE compensates the trailers only  50%

50% DFE:¨o(TD=0)/(2s0) = 

4

Determine the optimal detection time and eye opening with ideal DFE.

TD, opt/T = 

100% DFE:¨o(TD, opt)/(2s0) = 

5

How must the coefficients of the delay filter be set for this?

k1 = 

k2 = 

k3 = 

6

How large is the (half) eye opening with  TD, opt,  if the DFE compensates the trailers only  50%?  Interpret the result.

50% DFE:¨o(TD, opt)/(2s0) = 


Solution

(1)  For detection time  TD=0,  the following holds  (already calculated in Exercise 3.8):

¨o(TD)2=gd(0)gd(T)gd(2T)gd(3T)
¨o(TD)2s0=0.4700.2350.0290.001=0.205_.


(2)  The coefficients should be chosen such that  gk(t)  fully compensates for the trailer of  gd(t):

k1=gd(T)=0.235_,k2=gd(2T)=0.029_,k3=gd(3T)=0.001_.


(3)  Based on the result of subtask  (1),  we obtain:

¨o(TD)2s0=0.2050.5(0.235+0.029+0.001)=0.072_.


(4)  Optimizing  TD  according to the entries in the table yields:

T_{\rm D}/T = 0: \hspace{0.5cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.470 – 0.235 – 0.029 – 0.001 = 0.205,
T_{\rm D}/T = \ –0.1: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.466 \ – \ 0.204 \ – \ 0.022 \ – \ 0.001 = 0.240,
T_{\rm D}/T = \ –0.2: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.456 \ – \ 0.174 \ – \ 0.016 \ – \ 0.001 = 0.266,
T_{\rm D}/T = \ –0.3: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.441 \ – \ 0.146 \ – \ 0.012 \ – \ 0.001 = 0.283,
{\bf {\it T}_{\rm D}/{\it T} = \ –0.4: \hspace{0.2cm} \ddot{o}({\it T}_{\rm D})/(2 \, {\it s}_0) = 0.420 \ – \ 0.121 \ – \ 0.008 \ – \ 0.001 = 0.291,}
T_{\rm D}/T = \ –0.5: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.395 \ – \ 0.099 \ – \ 0.006 \ – \ 0.001 = 0.290,
T_{\rm D}/T = \ –0.6: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.366 \ – \ 0.080 \ – \ 0.004 \ – \ 0.001 = 0.282,
  • Thus,  the optimal detection time is  T_{\rm D, \ opt} \ \underline {= \ –0.4T}  (probably slightly larger).
  • For this,  the maximum value (\underline{0.291})  was determined for the half eye opening.


(5)  With  T_{\rm D} = \ –0.4 \ T,  the filter coefficients are:

k_1 = g_d(0.6 T)\hspace{0.15cm}\underline {= 0.366},\hspace{0.2cm}k_2 = g_d(1.6T)\hspace{0.15cm}\underline {= 0.080},\hspace{0.2cm}k_3 = g_d(2.6T)\hspace{0.15cm}\underline {= 0.004} \hspace{0.05cm}.


(6)  Using the same procedure as in subtask  (3),  we obtain here:

\frac{\ddot{o}(T_{\rm D,\hspace{0.05cm} opt})}{ 2 \cdot s_0} = 0.291 - 0.5 \cdot (0.366 + 0.080 + 0.004) \hspace{0.15cm}\underline {= 0.066} \hspace{0.05cm}.

The results of this exercise can be summarized as follows:

  1. Optimizing the detection timing ideally increases the eye opening by a factor of  0.291/0.205 = 1.42,  which corresponds to the signal-to-noise ratio gain of  20 \cdot {\rm lg} \, 1.42 \approx 3 \ \rm dB.
  2. However,  if the DFE functions only  50\%  due to realization inaccuracies,  then with  T_{\rm D} = \ –0.4T  there is a degradation by the amplitude factor  0.291/0.066 \approx 4.4  compared to the ideal DFE.  For  T_{\rm D} = 0,  this factor is much smaller with  2.05/0.072 \approx 3.
  3. In fact,  the actually worse system  (with  T_{\rm D} = 0)  is superior to the actually better system  (with  T_{\rm D} = \ –0.4T),  if the decision feedback works only  50\%.  Then there is a SNR loss of  20 \cdot {\rm lg} \, (0.072/0.066) \approx 0.75 \ \rm dB.
  4. One can generalize these statements:   The larger the improvement by system optimization  (here:  the optimization of the detection time)  is in the ideal case,  the larger is also the degradation at non-ideal conditions,  e.g.,  at tolerance-bounded realization.