Difference between revisions of "Aufgaben:Exercise 1.5: Cosine-Square Spectrum"

From LNTwww
 
(17 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Eigenschaften von Nyquistsystemen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Properties_of_Nyquist_Systems
 
}}
 
}}
  
  
[[File:P_ID1282__Dig_A_1_5.png|right|frame|Cosinus-Quadrat-Nyquistspektrum]]
+
[[File:P_ID1282__Dig_A_1_5.png|right|frame|Cosine-square Nyquist spectrum]]
Betrachtet wird das Spektrum $G(f)$ mit cos$^{2}$–förmigem Verlauf entsprechend der Skizze. Dieses erfüllt das erste Nyquistkriterium:
+
The spectrum  $G(f)$  with  $\cos^{2}$–shaped course is considered according to the sketch.  This satisfies the first Nyquist criterion:
:$$\sum_{k = -\infty}^{+\infty} G(f -
+
:$$\sum_{k = -\infty}^{+\infty} G(f -{k}/{T} ) =  {\rm const.}$$
\frac{k}{T} ) =  {\rm const.}$$
+
Accordingly,  the associated pulse  $g(t)$  has zero crossings at multiples of  $T$,  where  $T$  remains to be determined.  The inverse Fourier  transform of  $G(f)$  yields the equation for the time course:
Dementsprechend hat der zugehörige Impuls $g(t)$ Nulldurchgänge bei Vielfachen von $T$, wobei $T$ noch zu bestimmen ist. Durch Fourierrücktransformation von $G(f)$ erhält man die Gleichung für den Zeitverlauf:
 
 
:$$g( t )= g_0 \cdot  \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot
 
:$$g( t )= g_0 \cdot  \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot
t/T)^2}\cdot {\rm si}(\pi \cdot {t}/{T})\hspace{0.05cm}.$$
+
t/T)^2}\cdot {\rm sinc}( {t}/{T})\hspace{0.5cm} \text{with}\hspace{0.5cm} {\rm sinc}(x)=\sin(\pi x)/(\pi x)\hspace{0.05cm}.$$
In den Fragen zu dieser Aufgabe werden auf folgende Eigenschaften Bezug genommen:
+
The questions for this exercise refer to the following properties:
*Die hier betrachtete Spektralfunktion $G(f)$ ist ein Sonderfall des Cosinus–Rolloff–Spektrums, das punktsymmetrisch um die Nyquistfrequenz $f_{\rm Nyq}$ ist.
+
*The spectral function  $G(f)$  is a special case of the cosine rolloff spectrum,  which is point symmetric about the Nyquist frequency  $f_{\rm Nyq}$. 
*Das Cosinus–Rolloff–Spektrum ist durch die Eckfrequenzen $f_{1}$ und $f_{2}$ vollständig gekennzeichnet. Für $| f | < f_{1}$ ist $G(f) = g_{0} \cdot T = const.$, während das Spektrum für $| f | > f_{2}$ keine Anteile besitzt.
+
*The cosine rolloff spectrum is completely characterized by the corner frequencies &nbsp;$f_{1}$&nbsp; and &nbsp;$f_{2}$.&nbsp;
*Der Zusammenhang zwischen der Nyquistfrequenz und den Eckfrequenzen lautet:
+
* For &nbsp;$| f | < f_{1}$,&nbsp; &nbsp;$G(f) = g_{0} \cdot T = \rm const.$,&nbsp; while the spectrum for &nbsp;$| f | > f_{2}$&nbsp; has no components.&nbsp;
 +
*The relation between the Nyquist frequency and the corner frequencies is:
 
:$$f_{\rm Nyq}=  \frac{f_1 +f_2 }
 
:$$f_{\rm Nyq}=  \frac{f_1 +f_2 }
 
{2 }\hspace{0.05cm}.$$
 
{2 }\hspace{0.05cm}.$$
*Die Flankensteilheit wird durch den so genannten Rolloff–Faktor charakterisiert:
+
*The edge steepness is characterized by the so-called rolloff factor:
 
:$$r = \frac{f_2 -f_1 }
 
:$$r = \frac{f_2 -f_1 }
 
{f_2 +f_1 }\hspace{0.2cm}(0 \le r \le 1) \hspace{0.05cm}.$$
 
{f_2 +f_1 }\hspace{0.2cm}(0 \le r \le 1) \hspace{0.05cm}.$$
  
''Hinweis:''
 
  
Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen|Eigenschaften von Nyquistsystemen]].
 
  
===Fragebogen===
+
Note:&nbsp; The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems|"Properties of Nyquist Systems"]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{What are the corner frequencies of this cosine rolloff spectrum?
 +
|type="{}"}
 +
$f_{1} \ = \ $ { 0 3% } $\ \rm MHz$
 +
$f_{2} \ = \ $ { 2 3% } $\ \rm MHz$
 +
 
 +
{What are the Nyquist frequency and the rolloff factor?
 +
|type="{}"}
 +
$f_{\rm Nyq} \ = \ $ { 1 3% } $\ \rm MHz$
 +
$r \ = \ $ { 1 3% }
 +
 
 +
{At what time interval &nbsp;$T$&nbsp; does &nbsp;$g(t)$&nbsp; have zero crossings?
 +
|type="{}"}
 +
$T \ = \ $  { 0.5 3% } $\ \rm &micro; s$
 +
 
 +
{Which of the following statements is true?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ $g(t)$&nbsp; satisfies the first Nyquist criterion because of the &nbsp;$\rm sinc$&ndash;term.
+ Richtig
+
- $g(t)$&nbsp; has further zero crossings at &nbsp;$\pm 0.5T, &nbsp;\pm 1.5T, &nbsp;\pm 2.5 T, \text{...}$
 +
+ The &nbsp;$\cos^{2}$&ndash;spectrum also satisfies the second Nyquist criterion.
  
  
{Input-Box Frage
+
{What is the&nbsp; (normalized)&nbsp; value of the pulse at time &nbsp;$t = T/2$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$g(t = T/2)/g_{0} \ = \ $ { 0.5 3% }
  
  
Line 42: Line 60:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; The upper corner frequency can be read from the diagram: &nbsp; $f_{2} \underline{= 2 \ \rm MHz}$.&nbsp; Since the spectrum is not constant in any range, $f_{1} \underline {= 0}$.
'''(2)'''&nbsp;
+
 
'''(3)'''&nbsp;
+
 
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
'''(2)'''&nbsp; From the given equations we obtain:
'''(6)'''&nbsp;
+
:$$f_{\rm Nyq}  = \  \frac{f_1 +f_2 }
 +
{2 }\hspace{0.1cm}\underline { = 1\,{\rm MHz}}\hspace{0.05cm},\hspace{0.5cm} r = \ \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.1cm}\underline { = 1 }\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; The spacing of equidistant zero crossings is directly related to the Nyquist frequency:
 +
:$$f_{\rm Nyq}= \frac{1}{2T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T= \frac{1}{2f_{\rm Nyq}}\hspace{0.1cm}\underline { = 0.5\,{\rm &micro; s}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; <u>Statements 1 and 3</u>&nbsp; are correct:
 +
*The first statement is correct: &nbsp; The function&nbsp; ${\rm sinc}(t/T)$&nbsp; leads to zero crossings at&nbsp; $\nu T (\nu \neq 0)$.
 +
*The last statement is also true: &nbsp;Because of&nbsp; $g(t) = 0$&nbsp; for&nbsp; $t =\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$&nbsp; the second Nyquist criterion is also fulfilled.
 +
*On the other hand,&nbsp; the middle statement is false,&nbsp; since $g(t = T/2) \neq 0$.
 +
*The condition for the second Nyquist criterion is in the frequency domain:
 +
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} \frac {G \left ( f -
 +
{k}/{T} \right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}=
 +
{\rm const.}$$
 +
*The condition is indeed fulfilled for the&nbsp; cos$^{2}$&ndash;spectrum,&nbsp; as can be shown after a longer calculation.
 +
*We restrict ourselves here to the frequency range&nbsp; $| f · T | \leq 1$&nbsp; and set&nbsp; $g_{0} \cdot  T = 1$&nbsp; for simplicity:
 +
:$$G_{\rm Per}(f) =  \frac {\cos^2 \left [\pi/2 \cdot  ( f_{\rm Nyq}
 +
- f) \cdot T \right ]}{\cos \left [\pi \cdot  ( f_{\rm Nyq} - f)
 +
\cdot T \right ]}+\frac {\cos^2 \left [\pi/2 \cdot  ( f_{\rm Nyq}
 +
+ f) \cdot T \right ]}{\cos \left [\pi \cdot  ( f_{\rm Nyq} + f)
 +
\cdot T \right ]}\hspace{0.05cm}.$$
 +
*Further holds:
 +
:$$\frac {\cos^2 (x)}{\cos(2x)} = {1}/{2} \cdot \frac
 +
{1+\cos(2x)}{\cos(2x)}= {1}/{2} \cdot \left [1+ \frac
 +
{1}{\cos(2x)}\right ]$$
 +
:$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) =  {1}/{2}
 +
\cdot \left [1+ \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq}
 +
- f) \cdot T \right ]} +1- \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq}
 +
+ f) \cdot T \right ]}\right ]\hspace{0.05cm}.$$
 +
* Because of&nbsp; $\cos \left [ \pi \cdot ( f_{\rm Nyq} \pm f) \cdot T \right] = \cos
 +
\left (  {\pi}/{2} \pm \pi  f  T \right) =  \sin \left ( \pm
 +
\pi  f  T \right)\text{:}$
 +
:$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) =  2 - \frac {1}{\sin
 +
(\pi  f  T)} + \frac {1}{\sin (\pi  f  T)} = 2  = {\rm const}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; For&nbsp; $t = T/2$,&nbsp; the given equation yields an indeterminate value&nbsp; ("0 divided by 0"),&nbsp; which can be determined using l'Hospital's rule.
 +
*To do this,&nbsp; form the derivatives of the numerator and denominator and insert the desired time&nbsp; $t = T/2$&nbsp; into the result:
 +
 
 +
:$$\frac{g( t = T/2)}{g_0}  = \ {{\rm sinc}( \frac{t}{T})
 +
\cdot \frac{{\rm d}/{\rm d}t \left [ \cos(\pi \cdot
 +
t/T)\right]}{{\rm d}/{\rm d}t\left [ 1 - (2 \cdot t/T)^2\right]}}
 +
\bigg |_{t = T/2}  = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{- \pi/T \cdot
 +
\sin(\pi \cdot t/T)}{-2 \cdot (2\cdot t/T) \cdot (2/T)}} \bigg |_{t = T/2} = \frac {2}{\pi}\cdot
 +
\frac {\pi}{4}\hspace{0.1cm}\underline { = 0.5}\hspace{0.05cm}.$$
  
 +
*A second solution method leads to the expression:
 +
:$$\frac{g( t )}{g_0}  = {\rm sinc}( \frac{t}{T}) \cdot
 +
\frac {\pi}{4} \cdot \big [ {\rm sinc}( t/T + 1/2) +
 +
{\rm sinc}(t/T - 1/2)\big] \hspace{0.05cm}.$$
 +
*The second bracket expression can be transformed as follows:
 +
:$$\frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm}
 +
\bigg ]  = \  \frac {\pi}{4} \cdot \left [ \frac {{\rm sin}(\pi
 +
\cdot t/T + \pi/2)}{\pi \cdot t/T + \pi/2} + \frac {{\rm sin}(\pi
 +
\cdot t/T - \pi/2)}{\pi \cdot t/T - \pi/2}\right]    = \  \frac {1}{2} \cdot {\rm cos}(\pi
 +
\cdot t/T )\cdot \left [ \frac {1}{2 \cdot t/T + 1} - \frac {1}{ 2
 +
\cdot t/T - 1}\right] $$
 +
:$$\Rightarrow \hspace{0.3cm} \frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm}
 +
\bigg ]    = \  \frac {1}{2} \cdot {\rm cos}(\pi
 +
\cdot t/T )\cdot \frac{1- 2 \cdot t/T + 1+ 2 \cdot t/T}{(1+ 2
 +
\cdot t/T)(1- 2 \cdot t/T)}= \frac{\cos(\pi \cdot t/T)}{1 - (2
 +
\cdot t/T)^2}\hspace{0.05cm}.$$
 +
*It follows that both expressions are actually equal.&nbsp; Thus,&nbsp; for time&nbsp; $t = T/2$,&nbsp; the following is still true:
 +
:$$\frac{g( t = T/2)}{g_0}  = {\rm sinc}(  0.5) \cdot \frac
 +
{\pi}{4} \cdot \big [ {\rm sinc}(1 ) + {\rm sinc}(0)\big]= \frac
 +
{2}{\pi}\cdot \frac {\pi}{4} = 0.5 \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.3 Eigenschaften von Nyquistsystemen^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.3 Nyquist System Properties^]]

Latest revision as of 13:24, 2 May 2022


Cosine-square Nyquist spectrum

The spectrum  $G(f)$  with  $\cos^{2}$–shaped course is considered according to the sketch.  This satisfies the first Nyquist criterion:

$$\sum_{k = -\infty}^{+\infty} G(f -{k}/{T} ) = {\rm const.}$$

Accordingly,  the associated pulse  $g(t)$  has zero crossings at multiples of  $T$,  where  $T$  remains to be determined.  The inverse Fourier transform of  $G(f)$  yields the equation for the time course:

$$g( t )= g_0 \cdot \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot t/T)^2}\cdot {\rm sinc}( {t}/{T})\hspace{0.5cm} \text{with}\hspace{0.5cm} {\rm sinc}(x)=\sin(\pi x)/(\pi x)\hspace{0.05cm}.$$

The questions for this exercise refer to the following properties:

  • The spectral function  $G(f)$  is a special case of the cosine rolloff spectrum,  which is point symmetric about the Nyquist frequency  $f_{\rm Nyq}$. 
  • The cosine rolloff spectrum is completely characterized by the corner frequencies  $f_{1}$  and  $f_{2}$. 
  • For  $| f | < f_{1}$,   $G(f) = g_{0} \cdot T = \rm const.$,  while the spectrum for  $| f | > f_{2}$  has no components. 
  • The relation between the Nyquist frequency and the corner frequencies is:
$$f_{\rm Nyq}= \frac{f_1 +f_2 } {2 }\hspace{0.05cm}.$$
  • The edge steepness is characterized by the so-called rolloff factor:
$$r = \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.2cm}(0 \le r \le 1) \hspace{0.05cm}.$$


Note:  The exercise belongs to the chapter  "Properties of Nyquist Systems".


Questions

1

What are the corner frequencies of this cosine rolloff spectrum?

$f_{1} \ = \ $

$\ \rm MHz$
$f_{2} \ = \ $

$\ \rm MHz$

2

What are the Nyquist frequency and the rolloff factor?

$f_{\rm Nyq} \ = \ $

$\ \rm MHz$
$r \ = \ $

3

At what time interval  $T$  does  $g(t)$  have zero crossings?

$T \ = \ $

$\ \rm µ s$

4

Which of the following statements is true?

$g(t)$  satisfies the first Nyquist criterion because of the  $\rm sinc$–term.
$g(t)$  has further zero crossings at  $\pm 0.5T,  \pm 1.5T,  \pm 2.5 T, \text{...}$
The  $\cos^{2}$–spectrum also satisfies the second Nyquist criterion.

5

What is the  (normalized)  value of the pulse at time  $t = T/2$?

$g(t = T/2)/g_{0} \ = \ $


Solution

(1)  The upper corner frequency can be read from the diagram:   $f_{2} \underline{= 2 \ \rm MHz}$.  Since the spectrum is not constant in any range, $f_{1} \underline {= 0}$.


(2)  From the given equations we obtain:

$$f_{\rm Nyq} = \ \frac{f_1 +f_2 } {2 }\hspace{0.1cm}\underline { = 1\,{\rm MHz}}\hspace{0.05cm},\hspace{0.5cm} r = \ \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.1cm}\underline { = 1 }\hspace{0.05cm}.$$


(3)  The spacing of equidistant zero crossings is directly related to the Nyquist frequency:

$$f_{\rm Nyq}= \frac{1}{2T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T= \frac{1}{2f_{\rm Nyq}}\hspace{0.1cm}\underline { = 0.5\,{\rm µ s}}\hspace{0.05cm}.$$


(4)  Statements 1 and 3  are correct:

  • The first statement is correct:   The function  ${\rm sinc}(t/T)$  leads to zero crossings at  $\nu T (\nu \neq 0)$.
  • The last statement is also true:  Because of  $g(t) = 0$  for  $t =\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$  the second Nyquist criterion is also fulfilled.
  • On the other hand,  the middle statement is false,  since $g(t = T/2) \neq 0$.
  • The condition for the second Nyquist criterion is in the frequency domain:
$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} \frac {G \left ( f - {k}/{T} \right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}= {\rm const.}$$
  • The condition is indeed fulfilled for the  cos$^{2}$–spectrum,  as can be shown after a longer calculation.
  • We restrict ourselves here to the frequency range  $| f · T | \leq 1$  and set  $g_{0} \cdot T = 1$  for simplicity:
$$G_{\rm Per}(f) = \frac {\cos^2 \left [\pi/2 \cdot ( f_{\rm Nyq} - f) \cdot T \right ]}{\cos \left [\pi \cdot ( f_{\rm Nyq} - f) \cdot T \right ]}+\frac {\cos^2 \left [\pi/2 \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}{\cos \left [\pi \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}\hspace{0.05cm}.$$
  • Further holds:
$$\frac {\cos^2 (x)}{\cos(2x)} = {1}/{2} \cdot \frac {1+\cos(2x)}{\cos(2x)}= {1}/{2} \cdot \left [1+ \frac {1}{\cos(2x)}\right ]$$
$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) = {1}/{2} \cdot \left [1+ \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq} - f) \cdot T \right ]} +1- \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}\right ]\hspace{0.05cm}.$$
  • Because of  $\cos \left [ \pi \cdot ( f_{\rm Nyq} \pm f) \cdot T \right] = \cos \left ( {\pi}/{2} \pm \pi f T \right) = \sin \left ( \pm \pi f T \right)\text{:}$
$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) = 2 - \frac {1}{\sin (\pi f T)} + \frac {1}{\sin (\pi f T)} = 2 = {\rm const}\hspace{0.05cm}.$$


(5)  For  $t = T/2$,  the given equation yields an indeterminate value  ("0 divided by 0"),  which can be determined using l'Hospital's rule.

  • To do this,  form the derivatives of the numerator and denominator and insert the desired time  $t = T/2$  into the result:
$$\frac{g( t = T/2)}{g_0} = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{{\rm d}/{\rm d}t \left [ \cos(\pi \cdot t/T)\right]}{{\rm d}/{\rm d}t\left [ 1 - (2 \cdot t/T)^2\right]}} \bigg |_{t = T/2} = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{- \pi/T \cdot \sin(\pi \cdot t/T)}{-2 \cdot (2\cdot t/T) \cdot (2/T)}} \bigg |_{t = T/2} = \frac {2}{\pi}\cdot \frac {\pi}{4}\hspace{0.1cm}\underline { = 0.5}\hspace{0.05cm}.$$
  • A second solution method leads to the expression:
$$\frac{g( t )}{g_0} = {\rm sinc}( \frac{t}{T}) \cdot \frac {\pi}{4} \cdot \big [ {\rm sinc}( t/T + 1/2) + {\rm sinc}(t/T - 1/2)\big] \hspace{0.05cm}.$$
  • The second bracket expression can be transformed as follows:
$$\frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm} \bigg ] = \ \frac {\pi}{4} \cdot \left [ \frac {{\rm sin}(\pi \cdot t/T + \pi/2)}{\pi \cdot t/T + \pi/2} + \frac {{\rm sin}(\pi \cdot t/T - \pi/2)}{\pi \cdot t/T - \pi/2}\right] = \ \frac {1}{2} \cdot {\rm cos}(\pi \cdot t/T )\cdot \left [ \frac {1}{2 \cdot t/T + 1} - \frac {1}{ 2 \cdot t/T - 1}\right] $$
$$\Rightarrow \hspace{0.3cm} \frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm} \bigg ] = \ \frac {1}{2} \cdot {\rm cos}(\pi \cdot t/T )\cdot \frac{1- 2 \cdot t/T + 1+ 2 \cdot t/T}{(1+ 2 \cdot t/T)(1- 2 \cdot t/T)}= \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot t/T)^2}\hspace{0.05cm}.$$
  • It follows that both expressions are actually equal.  Thus,  for time  $t = T/2$,  the following is still true:
$$\frac{g( t = T/2)}{g_0} = {\rm sinc}( 0.5) \cdot \frac {\pi}{4} \cdot \big [ {\rm sinc}(1 ) + {\rm sinc}(0)\big]= \frac {2}{\pi}\cdot \frac {\pi}{4} = 0.5 \hspace{0.05cm}.$$