Difference between revisions of "Aufgaben:Exercise 2.2: Binary Bipolar Rectangles"

From LNTwww
 
(17 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Grundlagen der codierten Übertragung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Basics_of_Coded_Transmission
 
}}
 
}}
 
+
[[File:P_ID1310__Dig_A_2_2.png|right|frame|Binary bipolar rectangular signals]]
 
+
We assume the following signal:
 
 
[[File:P_ID1310__Dig_A_2_2.png|right|frame|Beispiele für binäre bipolare Rechtecksignale]]
 
Wir gehen von folgendem Signal aus:
 
 
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$
 
:$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$
Der Sendegrundimpuls $g_{s}(t)$ wird in dieser Aufgabe stets als rechteckförmig angenommen, wobei das NRZ–Format (blaue Signalverläufe in der Grafik) als auch das RZ–Format mit dem Tastverhältnis $T_{\rm S}/T = 0.5$ (rote Signalverläufe) zu untersuchen ist.
+
The basic transmission pulse  $g_{s}(t)$  is always assumed to be rectangular in this exercise,  with the NRZ format  (blue signal curves in the graph)  as well as the RZ format with duty cycle  $T_{\rm S}/T = 0.5$  (red signal curves)  to be investigated.
  
Die Amplitudenkoeffizienten besitzen die folgenden Eigenschaften:
+
The amplitude coefficients have the following properties:
*Sie sind binär und bipolar: $a_{\nu} \{–1, +1\}$.
+
*They are binary and bipolar:   $a_{\nu} \in \{–1, +1\}$.
*$\langle a_{\nu }\rangle$ weist keine statistischen Bindungen auf.
+
*The symbols within the sequence  $\langle a_{\nu }\rangle$  have no statistical ties.
*Die Wahrscheinlichkeiten für die beiden möglichen Werte $±1$ lauten mit $0 < p < 1$:
+
*The probabilities for the two possible values &nbsp;$±1$&nbsp; are with &nbsp;$0 < p < 1$:
 
:$${\rm Pr}(a_\nu = +1) \ = \ p,$$
 
:$${\rm Pr}(a_\nu = +1) \ = \ p,$$
 
:$${\rm Pr}(a_\nu = -1)  \ = \ 1 - p \hspace{0.05cm}.$$
 
:$${\rm Pr}(a_\nu = -1)  \ = \ 1 - p \hspace{0.05cm}.$$
Die drei in der Grafik dargestellten Signalausschnitte gelten für $p = 0.75$, $p = 0.50$ und $p = 0.25$.
+
The three signal sections shown in the graph are valid for &nbsp;$p = 0.75$, &nbsp;$p = 0.50$&nbsp; and &nbsp;$p = 0.25$.
 +
 
 +
Throughout this exercise,&nbsp; reference is made to the following descriptive quantities:
 +
*$m_{a} = \E\big[a_{\nu}\big]$&nbsp; indicates the linear mean&nbsp; (first order moment)&nbsp; of the amplitude coefficients.
 +
*$m_{2a} = \E\big[a_{\nu}^{2}\big]$&nbsp; is the power&nbsp; (second order moment).
 +
*Thus,&nbsp; the variance &nbsp;$\sigma_{a}^{2} = m_{2a} - m_{a}^{2}$&nbsp; can also be calculated.
 +
*The discrete ACF of the amplitude coefficients is &nbsp;$\varphi_{a}(\lambda) = \E\big[a_{\nu} \cdot a_{\nu + \lambda} \big]$.&nbsp; It holds here:
 +
:$$\varphi_a(\lambda) = \left\{ \begin{array}{c} m_2 \\ m_1^2 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \lambda \ne 0 \hspace{0.05cm}.\\ \end{array}$$
 +
*The energy ACF of the basic transmission pulse is:
 +
:$$\varphi^{^{\bullet}}_{g_s}(\tau) = \left\{ \begin{array}{c} s_0^2 \cdot T_{\rm S} \cdot \left( 1 - {|\tau|}/{T_{\rm S}}\right) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}|\tau| \le T_{\rm S} \\ |\tau| \ge T_{\rm S} \hspace{0.05cm}.\\ \end{array}$$
 +
*Thus,&nbsp; for the total ACF of the transmitted signal,&nbsp; we obtain:
 +
:$$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{g_s}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
 +
*The power-spectral density &nbsp;${\it \Phi}_{s}(f)$&nbsp; is the Fourier transform of the ACF &nbsp;$\varphi_{s}(\tau)$.
 +
 
  
Im Laufe dieser Aufgabe wird auf folgende Beschreibungsgrößen Bezug genommen:
 
*$m_{a} = \E[a_{\nu}]$ gibt den linearen Mittelwert der Amplitudenkoeffizienten an, und $m_{2a} = \E[a_{\nu}^{2}]$ ist der quadratische Mittelwert. Damit kann auch die Varianz $\sigma_{a}^{2} = m_{2a} – m_{a}^{2}$ berechnet werden.
 
*Die diskrete AKF der Amplitudenkoeffizienten ist $\varphi_{a}(\lambda) = \E[a_{\nu} \cdot a_{\nu} + \lambda]$. Es gilt hier:
 
:$$\varphi_a(\lambda) = \left\{ \begin{array}{c} m_2 \\ m_1^2 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \lambda \ne 0 \hspace{0.05cm}.\\ \end{array}$$
 
*Die Energie–AKF des Sendegrundimpulses beträgt:
 
:$$\varphi^{^{\bullet}}_{gs}(\tau) = \left\{ \begin{array}{c} s_0^2 \cdot T_{\rm S} \cdot \left( 1 - {|\tau|}/{T_{\rm S}}\right) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c}|\tau| \le T_{\rm S} \\ |\tau| \ge T_{\rm S} \hspace{0.05cm}.\\ \end{array}$$
 
*Damit erhält man für die gesamte AKF des Sendesignals:
 
:$$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
 
*Das Leistungsdichtespektrum $\Phi_{s}(f)$ ist die Fouriertransformierte der AKF $\varphi_{s}(\tau)$.
 
  
 +
Note: &nbsp; The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Basics_of_Coded_Transmission|"Basics of Coded Transmission"]].
 +
  
''Hinweis:''
 
  
Diese Aufgabe bezieht sich auf [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]] des Buches „Digitalsignalübertragung”.
 
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche der drei dargestellten Signale sind redundanzfrei?
+
{Which of the three signals shown are redundancy-free?
 
|type="[]"}
 
|type="[]"}
 
- $s_{0.75}(t)$,
 
- $s_{0.75}(t)$,
Line 44: Line 45:
  
  
{Wie groß ist der quadratische Mittelwert $m_{2a}$ der Amplitudenkoeffizienten in Abhängigkeit von $p$?
+
{What is the second order moment&nbsp; ("power") &nbsp;$m_{2a}= \E\big[a_{\nu}^{2}\big]$&nbsp; of the amplitude coefficients as a function of &nbsp;$p$?
 
|type="{}"}
 
|type="{}"}
$p = 0.75 : m_{2a} \ = \ $ { 1 3% }
+
$p = 0.75\text{:} \hspace{0.4cm} m_{2a} \ = \ $ { 1 3% }
$p = 0.50 : m_{2a} \ = \ $ { 1 3% }
+
$p = 0.50\text{:} \hspace{0.4cm} m_{2a} \ = \ $ { 1 3% }
$p = 0.25 : m_{2a} \ = \ $ { 1 3% }
+
$p = 0.25\text{:} \hspace{0.4cm} m_{2a} \ = \ $ { 1 3% }
  
{Berechnen Sie den linearen Mittelwert $m_{a}$ in Abhängigkeit von $p$.
+
{Calculate the first order moment&nbsp; ("linear mean") &nbsp;$m_{a}= \E\big[a_{\nu}\big]$&nbsp; in relation to &nbsp;$p$.
 
|type="{}"}
 
|type="{}"}
$p = 0.75 : m_{a} \ = \ $ { 0.5 3% }
+
$p = 0.75\text{:} \hspace{0.4cm} m_{a} \ = \ $ { 0.5 3% }
$p = 0.50 : m_{a} \ = \ $ { 0 3% }
+
$p = 0.50\text{:} \hspace{0.4cm} m_{a} \ = \ $ { 0 3% }
$p = 0.25 : m_{a} \ = \ $ { -0.515--0.485 }
+
$p = 0.25\text{:} \hspace{0.4cm} m_{a} \ = \ $ { -0.515--0.485 }
  
{Wie groß ist die Varianz $\sigma_{a}^{2}$ der Amplitudenkoeffizienten?
+
{What is the variance &nbsp;$\sigma_{a}^{2}$&nbsp; of the amplitude coefficients?
 
|type="{}"}
 
|type="{}"}
$p = 0.75 : \sigma_{a}^{2} \ = \ $ { 0.75 3% }
+
$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $ { 0.75 3% }
$p = 0.50 : \sigma_{a}^{2} \ = \ $ { 0.75 3% }
+
$p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $ { 1 3% }
$p = 0.25 : \sigma_{a}^{2} \ = \ $ { 0.75 3% }
+
$p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $ { 0.75 3% }
  
{Es gelte zunächst $p = 0.5$. Skizzieren Sie die AKF $\varphi_{s}(\tau)$ für den NRZ– und den RZ–Grundimpuls und bewerten Sie folgende Aussagen:
+
{Let &nbsp;$p = 0.5$&nbsp; hold initially.&nbsp; Sketch the ACF &nbsp;$\varphi_{s}(\tau)$&nbsp; for the NRZ and RZ basic transmission pulses and evaluate the following statements:
 
|type="[]"}
 
|type="[]"}
+ Die AKF ist in beiden Fällen dreieckförmig.
+
+ The ACF is triangular in both cases.
+ Das LDS verläuft in beiden Fällen ${\rm si}^{2}$–förmig.
+
+ The PSD is &nbsp;${\rm sinc}^{2}$–shaped in both cases.
-Die LDS–Fläche ist in beiden Fällen gleich.
+
-The PSD area is the same in both cases.
-Bei RZ–Impulsen beinhaltet $\Phi_{s}(f)$ zusätzliche Diracfunktionen.
+
-In the case of RZ pulses, &nbsp;${\it \Phi}_{s}(f)$&nbsp; involves additional Dirac delta functions.
  
{Es gelte nun $p = 0.75$. Skizzieren Sie die AKF für den NRZ–Grundimpuls und bewerten Sie folgende Aussagen:
+
{Let be&nbsp; $p = 0.75$.&nbsp; Sketch the ACF for the NRZ basic pulse and evaluate the following statements:
 
|type="[]"}
 
|type="[]"}
+ Die AKF besteht aus einem Dreieck und einem Gleichanteil.
+
+ The ACF consists of a triangle and a DC component.
+ Das LDS besteht aus einem ${\rm si}^{2}$–Anteil und einem Dirac.
+
+ The PSD consists of a &nbsp;${\rm sinc}^{2}$ component and a Dirac delta function.
-Die Diracfunktion hat das Gewicht $s_{0}^{2}$.
+
-The Dirac delta function has the weight &nbsp;$s_{0}^{2}$.
+Mit $p = 0.25$ ergibt sich das gleiche Leistungsdichtespektrum.
+
+With $p = 0.25$,&nbsp; the same power-spectral density is obtained.
  
{Es gelte weiter $p = 0.75$. Skizzieren Sie die AKF für den RZ–Grundimpuls und bewerten Sie folgende
+
{Let be &nbsp;$p = 0.75$.&nbsp; Sketch the ACF for the RZ basic pulse and evaluate the following statements:
 
|type="[]"}
 
|type="[]"}
+ Auch hier beinhaltet das LDS einen ${\rm si}^{2}$–förmigen Anteil.
+
+ Again,&nbsp; the PSD contains a &nbsp;${\rm sinc}^{2}$–shaped component.
+ Gleichzeitig gibt es im LDS noch unendlich viele Diraclinien.
+
+ At the same time,&nbsp; there are still infinitely many Dirac delta lines in the PSD.  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Man spricht von einem redundanzfreien Digitalsignal, wenn
+
'''(1)'''&nbsp; A digital signal is said to be redundancy-free if
*die Amplitudenkoeffizienten nicht voneinander abhängen (dies wurde hier vorausgesetzt),
+
*the amplitude coefficients do not depend on each other&nbsp; (this was assumed here),
*alle möglichen Amplitudenkoeffizienten gleichwahrscheinlich sind.
+
*all possible amplitude coefficients are equally probable.
  
  
In diesem Sinne ist $s_{0.5}(t)$ ein redundanzfreies Signal $\Rightarrow$ <u>Lösungsvorschlag 2</u>. Somit ist hier die Entropie (der mittlere Informationsgehalt pro übertragenem Binärsymbol) maximal gleich dem Entscheidungsgehalt:
+
In this sense,&nbsp; $s_{0.5}(t)$&nbsp; is a redundancy-free signal &nbsp; &rArr; &nbsp;  <u>solution 2</u>.  
:$$H_{\rm max} = {1}/{2}\cdot {\rm log}_2 (2)+{1}/{2}\cdot {\rm log}_2 (2) = 1 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$
+
*Thus,&nbsp; here the entropy&nbsp; (the average information content per transmitted binary symbol)&nbsp; is at most equal to the decision content:
Dagegen gilt für die Entropien der beiden anderen Binärsignale:
+
:$$H_{\rm max} = {1}/{2}\cdot {\rm log}_2 (2)+{1}/{2}\cdot {\rm log}_2 (2) = 1 \,\,{\rm bit/binary\ symbol} \hspace{0.05cm}.$$
 +
*In contrast,&nbsp; the entropies of the other two binary signals are:
 
:$$H  = \  \frac{3}{4}\cdot {\rm log}_2 (\frac{4}{3})+ \frac{1}{4}\cdot {\rm log}_2 (4)
 
:$$H  = \  \frac{3}{4}\cdot {\rm log}_2 (\frac{4}{3})+ \frac{1}{4}\cdot {\rm log}_2 (4)
 
  = \left( \frac{3}{4} + \frac{1}{4}\right)\cdot {\rm log}_2 (4) -
 
  = \left( \frac{3}{4} + \frac{1}{4}\right)\cdot {\rm log}_2 (4) -
 
  \frac{3}{4}\cdot{\rm log}_2 (3) =$$
 
  \frac{3}{4}\cdot{\rm log}_2 (3) =$$
 
:$$ \hspace{0.5cm} = \ 2 - \frac{3}{4}\cdot{\rm log}_2 (3) =
 
:$$ \hspace{0.5cm} = \ 2 - \frac{3}{4}\cdot{\rm log}_2 (3) =
  0.811 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$
+
  0.811 \,\,{\rm bit/binary\ symbol} \hspace{0.05cm}.$$
Daraus ergibt sich für die relative Redundanz dieser Signale:
+
*From this,&nbsp; the relative redundancy of these signals is:
 
:$$r = \frac{H_{\rm max} - H}{H_{\rm max}}\hspace{0.15cm} \approx 18.9\%\hspace{0.05cm}.$$
 
:$$r = \frac{H_{\rm max} - H}{H_{\rm max}}\hspace{0.15cm} \approx 18.9\%\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Der quadratische Mittelwert ist unabhängig von $p$ gleich $m_{2a} = 1$:
+
'''(2)'''&nbsp; The second order moment&nbsp; ("power")&nbsp; is equal to&nbsp; $m_{2a} = 1$&nbsp; independent of&nbsp; $p$:
 
:$$m_{2a}={\rm E}[a_\nu^2] = p \cdot (+1)^2 + (1-p)\cdot (-1)^2 \hspace{0.15cm}\underline { = 1 \hspace{0.05cm}}.$$
 
:$$m_{2a}={\rm E}[a_\nu^2] = p \cdot (+1)^2 + (1-p)\cdot (-1)^2 \hspace{0.15cm}\underline { = 1 \hspace{0.05cm}}.$$
  
'''(3)'''&nbsp; Für den linearen Mittelwert erhält man
+
 
 +
'''(3)'''&nbsp; For the first order moment&nbsp; ("linear mean")&nbsp; we get:
 
:$$m_{a}={\rm E}[a_\nu] = p \cdot (+1) + (1-p)\cdot (-1) = 2 p -1 \hspace{0.05cm}.$$
 
:$$m_{a}={\rm E}[a_\nu] = p \cdot (+1) + (1-p)\cdot (-1) = 2 p -1 \hspace{0.05cm}.$$
:$$\Rightarrow \hspace{0.3cm} p = 0.75: m_{a}\hspace{0.15cm}\underline {=0.50},\hspace{0.2cm} p = 0.50: m_{a}\hspace{0.15cm}\underline {=0},\hspace{0.2cm} p = 0.25: m_{a}\hspace{0.15cm}\underline { =-0.50 \hspace{0.05cm}}.$$
+
:$$\Rightarrow \hspace{0.3cm} p = 0.75\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0.50},\hspace{0.2cm} p = 0.50\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0},\hspace{0.2cm} p = 0.25\text{:} \hspace{0.4cm}  m_{a}\hspace{0.15cm}\underline { =-0.50 \hspace{0.05cm}}.$$
  
'''(4)'''&nbsp; Mit den Ergebnissen aus (2) und (4) erhält man:
 
:$$p \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.75 \hspace{-0.05cm}: \hspace{0.15cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75},$$
 
:$$ p \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.50 \hspace{-0.05cm}:\hspace{0.15cm} \sigma_{a}^2\hspace{0.15cm} \underline { =1.00 \hspace{0.05cm}},$$
 
:$$ p \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.25 \hspace{-0.05cm}: \hspace{0.15cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75}.$$
 
  
 +
'''(4)'''&nbsp; Using the results from&nbsp; ( '''(2)'''&nbsp; and&nbsp; '''(4)''',&nbsp; we obtain:
 +
:$$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75},$$
 +
:$$ p = 0.50\text{:} \hspace{0.4cm}  \sigma_{a}^2\hspace{0.15cm} \underline { =1.00 \hspace{0.05cm}},$$
 +
:$$ p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75}.$$
  
'''(5)'''&nbsp; Für $p = 0.5$ gilt $\varphi_{a}(\lambda = 0) = 1$ und $\varphi_{a}(\lambda \neq 0) = 0$. Daraus folgt:
+
 
 +
[[File:P_ID1311__Dig_A_2_2e.png|right|frame|ACF with equal symbol probabilities]]
 +
'''(5)'''&nbsp; Only the&nbsp; <u>first two statements</u>&nbsp; are correct:
 +
*For&nbsp; $p = 0.5$, &nbsp;  $\varphi_{a}(\lambda = 0) = 1$&nbsp; and&nbsp; $\varphi_{a}(\lambda \neq 0) = 0$.&nbsp; It follows that:
 
:$$\varphi_s(\tau) = \frac{1}{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau )\hspace{0.05cm}.$$
 
:$$\varphi_s(\tau) = \frac{1}{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau )\hspace{0.05cm}.$$
[[File:P_ID1311__Dig_A_2_2e.png|right|frame|AKF bei gleichwahrscheinlichen Symbolen]]
+
*This results in a triangular ACF and a&nbsp; ${\rm sinc}^{2}$–shaped PSD for both the NRZ and RZ basic pulses.
Damit ergeben sich sowohl beim NRZ– als auch beim RZ–Grundimpuls eine dreieckförmige AKF und ein ${\rm si}^{2}$–förmiges LDS. Die Fläche unter dem LDS ist beim RZ–Impuls um den Faktor $T_{\rm S}/T$ kleiner als beim NRZ–Impuls, da sich auch die AKF–Werte bei $\tau = 0$ um diesen Faktor unterscheiden. Das LDS ist in beiden Fällen kontinuierlich, da die AKF keinen Gleichanteil und keine periodischen Anteile beinhaltet.
+
*The area under the PSD is smaller by a factor of&nbsp; $T_{\rm S}/T$&nbsp; for the RZ pulse than for the NRZ pulse,&nbsp; <br>since the ACF values also differ by this factor at&nbsp; $\tau = 0$.
 
+
*The PSD is continuous in both cases because the ACF does not contain a DC component or periodic components.
Richtig sind also nur die <u>beiden ersten Aussagen</u>.
 
 
 
[[File:P_ID1330__Dig_A_2_2f.png|right|frame|AKF bei ungleichen Symbolwahrscheinlichkeiten]]
 
'''(6)'''&nbsp; Für $p = 0.75$ setzt sich die AKF $\varphi_{s}(\tau)$ aus unendlich vielen Dreieckfunktionen zusammen, die mit Ausnahme des mittleren Dreiecks um $\tau = 0$ alle die gleiche Höhe $s_{0}^{2}/4$ aufweisen. Entsprechend der Skizze kann man alle diese Dreieckfunktionen zu einem Gleichanteil der Höhe $m_{a}^{2} \cdot  s_{0}^{2} = s_{0}^{2}/4$ und einem einzigen Dreieck um $\tau = 0$ mit der Höhe $\sigma_{a}^{2} \cdot  s_{0}^{2} = 3/4 · s_{0}^{2}$ zusammenfassen.
 
  
  
Im LDS führt dies zu einem kontinuierlichen, ${\rm si}^{2}$–förmigem Anteil und zu einer Diracfunktion bei $f = 0$. Das Gewicht dieses Diracs ist $s_{0}^{2}/4$. Für $p = 0.25$ ergibt sich die gleiche AKF wie mit $p = 0.75$, da sowohl der quadratische Mittelwert $m_{2a} = 1$ als auch $m_{a}^{2} = 0.25$ übereinstimmen. Somit stimmen natürlich auch die Leistungsdichtespektren überein.
+
[[File:P_ID1330__Dig_A_2_2f.png|right|frame|ACF with unequal symbol probabilities]]
 +
'''(6)'''&nbsp; <u>All statements except the third</u>&nbsp; are correct:
 +
*For&nbsp; $p = 0.75$, &nbsp; the ACF $\varphi_{s}(\tau)$ is composed of infinitely many triangular functions,&nbsp; all of which have the same height&nbsp; $s_{0}^{2}/4$&nbsp; except for the middle triangle around&nbsp; $\tau = 0$.
 +
*According to the sketch,&nbsp; one can combine all these triangle functions into a DC component of height&nbsp; $m_{a}^{2} \cdot  s_{0}^{2} = s_{0}^{2}/4$&nbsp; and a single triangle around&nbsp; $\tau = 0$&nbsp; with height&nbsp; $\sigma_{a}^{2} \cdot  s_{0}^{2} = 3/4 · s_{0}^{2}$.
 +
*In the PSD,&nbsp; this leads to a continuous&nbsp; ${\rm sinc}^{2}$–shaped component and a Dirac delta function at&nbsp; $f = 0$.&nbsp; The weight of this Dirac is&nbsp; $s_{0}^{2}/4$.  
 +
*For&nbsp; $p = 0.25$&nbsp; we get the same ACF as with&nbsp; $p = 0.75$,&nbsp; since both the second order moment&nbsp; $m_{2a} = 1$&nbsp; and&nbsp; $m_{a}^{2} = 0.25$&nbsp; coincide.&nbsp; Thus,&nbsp; of course,&nbsp; the power-spectral densities also match.
  
Richtig sind somit <u>alle Aussagen mit Ausnahme der dritten</u>.
 
  
[[File:P_ID1331__Dig_A_2_2g.png|right|frame|AKF bei RZ-Rechteckimpulsen]]
+
[[File:P_ID1331__Dig_A_2_2g.png|right|frame|ACF for RZ rectangular pulses]]
'''(7)'''&nbsp; Mit dem RZ–Tastverhältnis $T_{\rm S}/T = 0.5$ ergibt sich die skizzierte AKF, die auch durch eine periodische Dreieckfunktion der Höhe $s_{0}^{2}/8$ (mit roter Füllung) und einem einzigen Dreieckimpuls der Höhe $3/8 \cdot s_{0}^{2}$ (grün gefüllt) dargestellt werden kann. Dieser nichtperiodische Anteil führt zu einem kontinuierlichen, ${\rm si}^{2}$–förmigen LDS mit Nullstellen bei Vielfachen von $2/T$.
+
'''(7)'''&nbsp; <u>Both proposed solutions are correct:</u>:
 +
*With the RZ duty cycle&nbsp; $T_{\rm S}/T = 0.5$&nbsp; the sketched ACF is obtained,&nbsp; which can also be represented by a periodic triangular function of height&nbsp; $s_{0}^{2}/8$&nbsp; (red filling)&nbsp; and a single triangular pulse of height&nbsp; $3/8 \cdot s_{0}^{2}$&nbsp; (green filling).  
 +
*This non-periodic component leads to a continuous-valued,&nbsp; ${\rm sinc}^{2}$–shaped PSD with zeros at multiples of&nbsp; $2/T$.
 +
*The periodic triangular ACF causes Dirac delta functions in the PSD at multiples of&nbsp; $1/T$.
 +
*However,&nbsp; due to the antimetry of the periodic component,&nbsp; the Dirac delta functions at multiples of&nbsp; $2/T$&nbsp; each have weight&nbsp; $0$.
 +
*The weights of the Dirac delta functions at distance&nbsp; $1/T$&nbsp; are proportional to the continuous PSD component.
  
Das periodische Dreiecksignal bewirkt Diracfunktionen bei Vielfachen von $1/T$. Aufgrund der Antimetrie des periodischen Anteils besitzen die Diracfunktionen bei Vielfachen von $2/T$ jeweils das Gewicht $0$. Die Gewichte der Diracfunktionen im Abstand $1/T$ sind proportional zum kontinuierlichen LDS–Anteil.
 
  
<u>Beide Lösungsvorschläge sind somit richtig</u>.
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 147: Line 150:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^2.1 Codierte Übertragung - Grundlagen^]]
+
[[Category:Digital Signal Transmission: Exercises|^2.1 Basics of Coded Transmission^]]

Latest revision as of 18:02, 13 May 2022

Binary bipolar rectangular signals

We assume the following signal:

$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$

The basic transmission pulse  $g_{s}(t)$  is always assumed to be rectangular in this exercise,  with the NRZ format  (blue signal curves in the graph)  as well as the RZ format with duty cycle  $T_{\rm S}/T = 0.5$  (red signal curves)  to be investigated.

The amplitude coefficients have the following properties:

  • They are binary and bipolar:   $a_{\nu} \in \{–1, +1\}$.
  • The symbols within the sequence  $\langle a_{\nu }\rangle$  have no statistical ties.
  • The probabilities for the two possible values  $±1$  are with  $0 < p < 1$:
$${\rm Pr}(a_\nu = +1) \ = \ p,$$
$${\rm Pr}(a_\nu = -1) \ = \ 1 - p \hspace{0.05cm}.$$

The three signal sections shown in the graph are valid for  $p = 0.75$,  $p = 0.50$  and  $p = 0.25$.

Throughout this exercise,  reference is made to the following descriptive quantities:

  • $m_{a} = \E\big[a_{\nu}\big]$  indicates the linear mean  (first order moment)  of the amplitude coefficients.
  • $m_{2a} = \E\big[a_{\nu}^{2}\big]$  is the power  (second order moment).
  • Thus,  the variance  $\sigma_{a}^{2} = m_{2a} - m_{a}^{2}$  can also be calculated.
  • The discrete ACF of the amplitude coefficients is  $\varphi_{a}(\lambda) = \E\big[a_{\nu} \cdot a_{\nu + \lambda} \big]$.  It holds here:
$$\varphi_a(\lambda) = \left\{ \begin{array}{c} m_2 \\ m_1^2 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \lambda \ne 0 \hspace{0.05cm}.\\ \end{array}$$
  • The energy ACF of the basic transmission pulse is:
$$\varphi^{^{\bullet}}_{g_s}(\tau) = \left\{ \begin{array}{c} s_0^2 \cdot T_{\rm S} \cdot \left( 1 - {|\tau|}/{T_{\rm S}}\right) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}|\tau| \le T_{\rm S} \\ |\tau| \ge T_{\rm S} \hspace{0.05cm}.\\ \end{array}$$
  • Thus,  for the total ACF of the transmitted signal,  we obtain:
$$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{g_s}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
  • The power-spectral density  ${\it \Phi}_{s}(f)$  is the Fourier transform of the ACF  $\varphi_{s}(\tau)$.


Note:   The exercise belongs to the chapter  "Basics of Coded Transmission".



Questions

1

Which of the three signals shown are redundancy-free?

$s_{0.75}(t)$,
$s_{0.50}(t)$,
$s_{0.25}(t)$,

2

What is the second order moment  ("power")  $m_{2a}= \E\big[a_{\nu}^{2}\big]$  of the amplitude coefficients as a function of  $p$?

$p = 0.75\text{:} \hspace{0.4cm} m_{2a} \ = \ $

$p = 0.50\text{:} \hspace{0.4cm} m_{2a} \ = \ $

$p = 0.25\text{:} \hspace{0.4cm} m_{2a} \ = \ $

3

Calculate the first order moment  ("linear mean")  $m_{a}= \E\big[a_{\nu}\big]$  in relation to  $p$.

$p = 0.75\text{:} \hspace{0.4cm} m_{a} \ = \ $

$p = 0.50\text{:} \hspace{0.4cm} m_{a} \ = \ $

$p = 0.25\text{:} \hspace{0.4cm} m_{a} \ = \ $

4

What is the variance  $\sigma_{a}^{2}$  of the amplitude coefficients?

$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $

$p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $

$p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $

5

Let  $p = 0.5$  hold initially.  Sketch the ACF  $\varphi_{s}(\tau)$  for the NRZ and RZ basic transmission pulses and evaluate the following statements:

The ACF is triangular in both cases.
The PSD is  ${\rm sinc}^{2}$–shaped in both cases.
The PSD area is the same in both cases.
In the case of RZ pulses,  ${\it \Phi}_{s}(f)$  involves additional Dirac delta functions.

6

Let be  $p = 0.75$.  Sketch the ACF for the NRZ basic pulse and evaluate the following statements:

The ACF consists of a triangle and a DC component.
The PSD consists of a  ${\rm sinc}^{2}$ component and a Dirac delta function.
The Dirac delta function has the weight  $s_{0}^{2}$.
With $p = 0.25$,  the same power-spectral density is obtained.

7

Let be  $p = 0.75$.  Sketch the ACF for the RZ basic pulse and evaluate the following statements:

Again,  the PSD contains a  ${\rm sinc}^{2}$–shaped component.
At the same time,  there are still infinitely many Dirac delta lines in the PSD.


Solution

(1)  A digital signal is said to be redundancy-free if

  • the amplitude coefficients do not depend on each other  (this was assumed here),
  • all possible amplitude coefficients are equally probable.


In this sense,  $s_{0.5}(t)$  is a redundancy-free signal   ⇒   solution 2.

  • Thus,  here the entropy  (the average information content per transmitted binary symbol)  is at most equal to the decision content:
$$H_{\rm max} = {1}/{2}\cdot {\rm log}_2 (2)+{1}/{2}\cdot {\rm log}_2 (2) = 1 \,\,{\rm bit/binary\ symbol} \hspace{0.05cm}.$$
  • In contrast,  the entropies of the other two binary signals are:
$$H = \ \frac{3}{4}\cdot {\rm log}_2 (\frac{4}{3})+ \frac{1}{4}\cdot {\rm log}_2 (4) = \left( \frac{3}{4} + \frac{1}{4}\right)\cdot {\rm log}_2 (4) - \frac{3}{4}\cdot{\rm log}_2 (3) =$$
$$ \hspace{0.5cm} = \ 2 - \frac{3}{4}\cdot{\rm log}_2 (3) = 0.811 \,\,{\rm bit/binary\ symbol} \hspace{0.05cm}.$$
  • From this,  the relative redundancy of these signals is:
$$r = \frac{H_{\rm max} - H}{H_{\rm max}}\hspace{0.15cm} \approx 18.9\%\hspace{0.05cm}.$$


(2)  The second order moment  ("power")  is equal to  $m_{2a} = 1$  independent of  $p$:

$$m_{2a}={\rm E}[a_\nu^2] = p \cdot (+1)^2 + (1-p)\cdot (-1)^2 \hspace{0.15cm}\underline { = 1 \hspace{0.05cm}}.$$


(3)  For the first order moment  ("linear mean")  we get:

$$m_{a}={\rm E}[a_\nu] = p \cdot (+1) + (1-p)\cdot (-1) = 2 p -1 \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm} p = 0.75\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0.50},\hspace{0.2cm} p = 0.50\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0},\hspace{0.2cm} p = 0.25\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline { =-0.50 \hspace{0.05cm}}.$$


(4)  Using the results from  ( (2)  and  (4),  we obtain:

$$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75},$$
$$ p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^2\hspace{0.15cm} \underline { =1.00 \hspace{0.05cm}},$$
$$ p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75}.$$


ACF with equal symbol probabilities

(5)  Only the  first two statements  are correct:

  • For  $p = 0.5$,   $\varphi_{a}(\lambda = 0) = 1$  and  $\varphi_{a}(\lambda \neq 0) = 0$.  It follows that:
$$\varphi_s(\tau) = \frac{1}{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau )\hspace{0.05cm}.$$
  • This results in a triangular ACF and a  ${\rm sinc}^{2}$–shaped PSD for both the NRZ and RZ basic pulses.
  • The area under the PSD is smaller by a factor of  $T_{\rm S}/T$  for the RZ pulse than for the NRZ pulse, 
    since the ACF values also differ by this factor at  $\tau = 0$.
  • The PSD is continuous in both cases because the ACF does not contain a DC component or periodic components.


ACF with unequal symbol probabilities

(6)  All statements except the third  are correct:

  • For  $p = 0.75$,   the ACF $\varphi_{s}(\tau)$ is composed of infinitely many triangular functions,  all of which have the same height  $s_{0}^{2}/4$  except for the middle triangle around  $\tau = 0$.
  • According to the sketch,  one can combine all these triangle functions into a DC component of height  $m_{a}^{2} \cdot s_{0}^{2} = s_{0}^{2}/4$  and a single triangle around  $\tau = 0$  with height  $\sigma_{a}^{2} \cdot s_{0}^{2} = 3/4 · s_{0}^{2}$.
  • In the PSD,  this leads to a continuous  ${\rm sinc}^{2}$–shaped component and a Dirac delta function at  $f = 0$.  The weight of this Dirac is  $s_{0}^{2}/4$.
  • For  $p = 0.25$  we get the same ACF as with  $p = 0.75$,  since both the second order moment  $m_{2a} = 1$  and  $m_{a}^{2} = 0.25$  coincide.  Thus,  of course,  the power-spectral densities also match.


ACF for RZ rectangular pulses

(7)  Both proposed solutions are correct::

  • With the RZ duty cycle  $T_{\rm S}/T = 0.5$  the sketched ACF is obtained,  which can also be represented by a periodic triangular function of height  $s_{0}^{2}/8$  (red filling)  and a single triangular pulse of height  $3/8 \cdot s_{0}^{2}$  (green filling).
  • This non-periodic component leads to a continuous-valued,  ${\rm sinc}^{2}$–shaped PSD with zeros at multiples of  $2/T$.
  • The periodic triangular ACF causes Dirac delta functions in the PSD at multiples of  $1/T$.
  • However,  due to the antimetry of the periodic component,  the Dirac delta functions at multiples of  $2/T$  each have weight  $0$.
  • The weights of the Dirac delta functions at distance  $1/T$  are proportional to the continuous PSD component.