Difference between revisions of "Aufgaben:Exercise 4.08Z: Error Probability with Three Symbols"

From LNTwww
 
(16 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}}
  
[[File:P_ID2037__Dig_Z_4_8.png|right|frame|Entscheidungsregionen mit <i>M</i> = 3]]
+
[[File:P_ID2037__Dig_Z_4_8.png|right|frame|Decision regions with&nbsp; $M = 3$]]
Die Grafik zeigt die genau gleiche Signalraumkonstellation wie in der [[Aufgaben:4.8_Entscheidungsregionen| Aufgabe A4.8]]:
+
The diagram shows exactly the same signal space constellation as in&nbsp; [[Aufgaben:Exercise_4.08:_Decision_Regions_at_Three_Symbols|"Exercise 4.8"]]:
* die $M = 3$ möglichen Sendesignale, nämlich
+
* the&nbsp; $M = 3$&nbsp; possible transmitted signals,&nbsp; viz.
 
:$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm}  
 
:$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm}  
 
   \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm}
 
   \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm}
 
   \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
 
   \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
  
* die $M = 3$ Entscheidungsgrenzen
+
* the&nbsp; $M = 3$&nbsp; decision boundaries
:$$G_{01}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
+
:$$G_{01}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
:$$   G_{02}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
+
:$$G_{02}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
:$$   G_{12}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$
+
:$$G_{12}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$
  
  
Die beiden Achsen des 2D&ndash;Signalraums sind hier vereinfachend mit $x$ und $y$ bezeichnet; eigentlich müsste hierfür $\varphi_1(t)/\sqrt {E}$ bzw. $\varphi_2(t)/\sqrt {E}$ geschrieben werden.
+
The two axes of the two-dimensional signal space are simplistically denoted here as&nbsp; $x$&nbsp; and&nbsp; $y$;&nbsp; actually, &nbsp; $\varphi_1(t)/\sqrt {E}$&nbsp; and&nbsp; $\varphi_2(t)/\sqrt {E}$&nbsp; should be written for these, respectively.
  
Diese Entscheidungsgrenzen sind optimal unter den Voraussetzungen
+
These decision boundaries are optimal under the two conditions:
* gleichwahrscheinliche Symbolwahrscheinlichkeiten
+
* equal probability symbol probabilities,
* zirkulär&ndash;symmetrische WDF des Rauschens (z.B. AWGN).
 
  
 +
* circularly&ndash;symmetric PDF of the noise&nbsp; (e.g. AWGN).
  
In dieser Aufgabe betrachten wir dagegen für die Rausch&ndash;WDF eine zweidimensionale Gleichverteilung:
+
 
 +
In contrast,&nbsp; in this exercise we consider a two&ndash;dimensional uniform distribution for the noise PDF:
 
:$$\boldsymbol{ p }_{\boldsymbol{ n }}  (x,\hspace{0.15cm} y) =
 
:$$\boldsymbol{ p }_{\boldsymbol{ n }}  (x,\hspace{0.15cm} y) =
 
  \left\{ \begin{array}{c} K\\
 
  \left\{ \begin{array}{c} K\\
 
   0 \end{array} \right.\quad
 
   0 \end{array} \right.\quad
  \begin{array}{*{1}c}{\rm  f\ddot{u}r} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm},
+
  \begin{array}{*{1}c}{\rm  for} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm},
\\  {\rm sonst}  \hspace{0.05cm}.\\ \end{array}$$
+
\\  {\rm else}  \hspace{0.05cm}.\\ \end{array}$$
 +
 
 +
*Such an amplitude-limited noise is admittedly without any practical meaning.
 +
 
 +
*However,&nbsp; it allows an error probability calculation without extensive integrals,&nbsp; from which the principle of the procedure can be seen.
 +
 
 +
 
  
Ein solches amplitudenbegrenztes Rauschen ist zwar ohne jede praktische Bedeutung. Es ermöglicht jedoch eine Fehlerwahrscheinlichkeitsberechnung ohne umfangreiche Integrale, aus der das Prinzip der Vorgehensweise erkennbar wird.
 
  
''Hinweis:''
+
Notes:
* Die Aufgabe gehört zum Themenkomplex des Kapitels [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]].
+
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]].  
 +
 +
* To simplify the notation, the following is used:
 +
:$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm}
 +
  y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Wert besitzt die Konstante $K$ für $A = 0.75$?
+
{What is the value of the constant&nbsp; $K$&nbsp; for &nbsp;$A = 0.75$?
 
|type="{}"}
 
|type="{}"}
$\boldsymbol{K}$ = { 0.444 3% }
+
$\boldsymbol{K} \ = \ $ { 0.444 3% }
  
{Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit $A = 0.75$?
+
{What is the symbol error probability with&nbsp; $A = 0.75$?
 
|type="{}"}
 
|type="{}"}
$A = 0.75 \text{:} \hspace{0.2cm} p_{\rm S}$ = { 0 3% }
+
$p_{\rm S} \ = \ $ { 0. } $\ \%$
  
{Welche Aussagen sind für $A = 1$ zutreffend?
+
{Which statements are true for&nbsp; $A = 1$?&nbsp;
 
|type="[]"}
 
|type="[]"}
- Alle Nachrichten $m_i$ werden in gleicher Weise verfälscht.
+
- All messages&nbsp; $m_i$&nbsp; are falsified in the same way.
+ Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_0)} = 1/64$.
+
+ Conditional error probability&nbsp; ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_0) = 1/64$.
- Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_1)} = 0$.
+
- Conditional error probability&nbsp; ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_1) = 0$.
+ Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_2)} = 0$.
+
+ Conditional error probability&nbsp; ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_2) = 0$.
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?
+
{What is the error probability with&nbsp; $A=1$&nbsp; and&nbsp; ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?
 
|type="{}"}
 
|type="{}"}
$A = 1; \ {\rm alle \ 1/3} \text{:} \hspace{0.2cm} p_{\rm S}$ = { 1.04 3% } $\ \cdot 10^{\rm &ndash;2}$
+
$p_{\rm S} \ = \ $ { 1.04 3% } $\ \%$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4, {\rm Pr}(m_2) = 1/2$?
+
{What is the error probability with&nbsp; $A=1$&nbsp; and &nbsp;${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4$ &nbsp;and&nbsp; ${\rm Pr}(m_2) = 1/2$?
 
|type="{}"}
 
|type="{}"}
$A = 1; 1/4, 1/4, 1/2 \text{:} \hspace{0.2cm} p_{\rm S}$ = { 0.78 3% } $\ \cdot 10^{\rm &ndash;2}$
+
$p_{\rm S} \ = \ $ { 0.78 3% } $\ \%$
  
{Könnte man durch Festlegung anderer Regionen ein besseres Ergebnis erzielen?
+
{Could a better result be obtained by specifying other regions?
 
|type="()"}
 
|type="()"}
+ ja,
+
+ Yes.
- nein.
+
- No.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Volumen der 2D&ndash;WDF $p_n(x, y)$ muss $1$ ergeben, das heißt:
+
[[File:P_ID2039__Dig_Z_4_8b.png|right|frame|Noise regions with&nbsp; $A = 0.75$]]
 +
'''(1)'''&nbsp; The volume of the two-dimensional PDF must give&nbsp; $p_n(x, y) =1$,&nbsp; that is:
 
:$$2A \cdot 2A  \cdot K = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \frac{1}{4A^2}\hspace{0.05cm}.$$
 
:$$2A \cdot 2A  \cdot K = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \frac{1}{4A^2}\hspace{0.05cm}.$$
  
Mit $A = 0.75$ &#8658; $2A = 3/2$ erhält man $K = 4/9 = \ \underline {0.444}$.
+
*With&nbsp; $A = 0.75$ &nbsp; &#8658; &nbsp;  $2A = 3/2$,&nbsp; we get $K = 4/9 \ \underline {=0.444}$.
 +
 
 +
 
  
 +
'''(2)'''&nbsp; In the accompanying graph,&nbsp; the noise component&nbsp; $\boldsymbol{n}$ is plotted by the squares of edge length&nbsp; $1.5$&nbsp; around the signal space points&nbsp; $\boldsymbol{s}_i$.
 +
*It can be seen that no decision boundary is exceeded by noise components.
  
'''(2)'''&nbsp; [[File:P_ID2039__Dig_Z_4_8b.png|right|frame|Rauschgebiete mit <i>A</i> = 0.75]] In nebenstehender Grafik ist die Rauschkomponente $\boldsymbol{n}$ durch die Quadrate der Kantenlänge $1.5$ um die 2D&ndash;Signalraumpunkte $\boldsymbol{s}_i$ eingezeichnet. Man erkennt, dass keine Entscheidungsgrenze durch Rauschkomponenten überschritten wird. Daraus folgt: Die Symbolfehlerwahrscheinlichkeit $p_{\rm S}$ ist unter den hier gegebenen Voraussetzungen <u>identisch 0</u>.
+
*It follows: &nbsp;The symbol error probability is&nbsp; $p_{\rm S}\ \underline { \equiv  0}$&nbsp; under the conditions given here.
 +
<br clear=all>
 +
[[File:P_ID2040__Dig_Z_4_8c.png|right|frame|Noise regions with&nbsp; $A = 1$]]
 +
'''(3)'''&nbsp; <u>Statements 2 and 4</u>&nbsp; are correct,&nbsp; as can be seen from the second graph:
 +
* The message&nbsp;  $m_2$&nbsp; cannot be falsified because the square around&nbsp; $\boldsymbol{s}_2$&nbsp; lies entirely in the lower right quadrant and thus in the decision region&nbsp; $I_2$.
  
 +
* Likewise,&nbsp; $m_2$&nbsp; was sent with certainty if the received value lies in decision region&nbsp; $I_2$. <br>The reason:&nbsp; None of the squares around&nbsp; $\boldsymbol{s}_0$&nbsp; and&nbsp; $\boldsymbol{s}_1$&nbsp; extends into the region&nbsp; $I_2$.
  
'''(3)'''&nbsp; Richtig sind die <u>Aussagen 2 und 4</u>, wie aus der unteren Grafik abgelesen werden kann.
+
* $m_0$&nbsp; can only be falsified to $m_1$.&nbsp; The&nbsp; (conditional)&nbsp; falsification probability is equal to the ratio of the areas of the small yellow triangle&nbsp; $($area $1/16)$&nbsp; and the square&nbsp; $($area&nbsp; $4)$:
* Die Nachricht $m_2$ kann nicht verfälscht werden, da das Quadrat um $\boldsymbol{s}_2$ vollständig im rechten unteren Quadranten und damit im Entscheidungsgebiet $I_2$ liegt.
 
* Ebenso wurde mit Sicherheit $m_2$ gesendet, wenn der Empfangswert im Entscheidungsgebiet $I_2$ liegt. Der Grund: Keines der Quadrate um $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ reicht bis in das Gebiet $I_2$ hinein.
 
* $m_0$ kann nur zu $m_1$ verfälscht werden. Die (bedingte) Verfälschungswahrscheinlichkeit ist gleich dem Verhältnis der Flächen des gelben Dreiecks (Fläche $1/16$) und des Quadrats (Fläche 4):
 
  
[[File:P_ID2040__Dig_Z_4_8c.png|right|frame|Rauschgebiete mit <i>A</i> = 1]]
 
 
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) = \frac{1/2 \cdot 1/2 \cdot 1/4}{4}= {1}/{64}
 
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) = \frac{1/2 \cdot 1/2 \cdot 1/4}{4}= {1}/{64}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* Aus Symmetriegründen gilt gleichermaßen:
+
* For symmetry reasons,&nbsp; equally:
 
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={1}/{64}
 
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={1}/{64}
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
  
  
'''(4)'''&nbsp; Bei gleichwahrscheinlichen Symbolen erhält man für die (mittlere) Fehlerwahrscheinlichkeit:
+
'''(4)'''&nbsp; For equal probability symbols,&nbsp; we obtain for the&nbsp; (average)&nbsp; error probability:
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{3} \cdot \left [{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) +  {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 )+{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\right ]=$$
+
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \big [{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) +  {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 )+{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\big ]$$
:$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{3} \cdot \left [{1}/{64} +  {1}/{64} + 0 )\right ]= \frac{2}{3 \cdot 64} = {1}/{96}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.0104} \hspace{0.05cm}.$$
+
:$$ \Rightarrow \hspace{0.3cm} p_{\rm S}  = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \left [{1}/{64} +  {1}/{64} + 0 )\right ]= \frac{2}{3 \cdot 64} = {1}/{96}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 1.04 \%} \hspace{0.05cm}.$$
 +
 
  
 +
'''(5)'''&nbsp; Now we obtain a smaller&nbsp; average error probability, viz.
 +
:$$p_{\rm S}  = {\rm Pr}({ \cal E} )  = {1}/{4} \cdot {1}/{64} +  {1}/{4} \cdot {1}/{64}+ {1}/{2} \cdot0 = {1}/{128}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.78 \% } \hspace{0.05cm}. $$
  
'''(5)'''&nbsp; Nun ergibt sich eine kleinere mittlere Fehlerwahrscheinlichkeit, nämlich
 
:$$p_{\rm S}  = {\rm Pr}({ \cal E} )  = {1}/{4} \cdot {1}/{64} +  {1}/{4} \cdot {1}/{64}+ {1}/{2} \cdot0 = {1}/{128}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.0078 } \hspace{0.05cm}. $$
 
  
 +
'''(6)'''&nbsp; <u>Correct is YES</u>:
 +
*For example, &nbsp; &nbsp; $I_1$: first quadrant, &nbsp; &nbsp;  $I_0$: second quadrant, &nbsp; &nbsp;  $I_2 \text{:} \ y < 0$ &nbsp; &nbsp; would give zero error probability.
  
'''(6)'''&nbsp; <u>Richtig ist JA</u>. Beispielsweise ergäbe sich durch $I_1$: erster Quadrant, $I_0$: zweiter Quadrant, $I_2 \text{:} \ y < 0$ die Fehlerwahrscheinlichkeit $0$. Das bedeutet, dass die vorgegebenen Grenzen nur bei zirkulär symmetrischer WDF des Rauschens optimal sind, zum Beispiel beim AWGN&ndash;Kanal.
+
*This means that the given bounds are optimal only in the case of circularly symmetric PDF of the noise,&nbsp; for example, the AWGN model.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.3 BER-Approximation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.3 BER Approximation^]]

Latest revision as of 17:16, 28 July 2022

Decision regions with  $M = 3$

The diagram shows exactly the same signal space constellation as in  "Exercise 4.8":

  • the  $M = 3$  possible transmitted signals,  viz.
$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
  • the  $M = 3$  decision boundaries
$$G_{01}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
$$G_{02}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
$$G_{12}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$


The two axes of the two-dimensional signal space are simplistically denoted here as  $x$  and  $y$;  actually,   $\varphi_1(t)/\sqrt {E}$  and  $\varphi_2(t)/\sqrt {E}$  should be written for these, respectively.

These decision boundaries are optimal under the two conditions:

  • equal probability symbol probabilities,
  • circularly–symmetric PDF of the noise  (e.g. AWGN).


In contrast,  in this exercise we consider a two–dimensional uniform distribution for the noise PDF:

$$\boldsymbol{ p }_{\boldsymbol{ n }} (x,\hspace{0.15cm} y) = \left\{ \begin{array}{c} K\\ 0 \end{array} \right.\quad \begin{array}{*{1}c}{\rm for} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm}, \\ {\rm else} \hspace{0.05cm}.\\ \end{array}$$
  • Such an amplitude-limited noise is admittedly without any practical meaning.
  • However,  it allows an error probability calculation without extensive integrals,  from which the principle of the procedure can be seen.



Notes:

  • To simplify the notation, the following is used:
$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm} y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$


Questions

1

What is the value of the constant  $K$  for  $A = 0.75$?

$\boldsymbol{K} \ = \ $

2

What is the symbol error probability with  $A = 0.75$?

$p_{\rm S} \ = \ $

$\ \%$

3

Which statements are true for  $A = 1$? 

All messages  $m_i$  are falsified in the same way.
Conditional error probability  ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_0) = 1/64$.
Conditional error probability  ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_1) = 0$.
Conditional error probability  ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_2) = 0$.

4

What is the error probability with  $A=1$  and  ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?

$p_{\rm S} \ = \ $

$\ \%$

5

What is the error probability with  $A=1$  and  ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4$  and  ${\rm Pr}(m_2) = 1/2$?

$p_{\rm S} \ = \ $

$\ \%$

6

Could a better result be obtained by specifying other regions?

Yes.
No.


Solution

Noise regions with  $A = 0.75$

(1)  The volume of the two-dimensional PDF must give  $p_n(x, y) =1$,  that is:

$$2A \cdot 2A \cdot K = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \frac{1}{4A^2}\hspace{0.05cm}.$$
  • With  $A = 0.75$   ⇒   $2A = 3/2$,  we get $K = 4/9 \ \underline {=0.444}$.


(2)  In the accompanying graph,  the noise component  $\boldsymbol{n}$ is plotted by the squares of edge length  $1.5$  around the signal space points  $\boldsymbol{s}_i$.

  • It can be seen that no decision boundary is exceeded by noise components.
  • It follows:  The symbol error probability is  $p_{\rm S}\ \underline { \equiv 0}$  under the conditions given here.


Noise regions with  $A = 1$

(3)  Statements 2 and 4  are correct,  as can be seen from the second graph:

  • The message  $m_2$  cannot be falsified because the square around  $\boldsymbol{s}_2$  lies entirely in the lower right quadrant and thus in the decision region  $I_2$.
  • Likewise,  $m_2$  was sent with certainty if the received value lies in decision region  $I_2$.
    The reason:  None of the squares around  $\boldsymbol{s}_0$  and  $\boldsymbol{s}_1$  extends into the region  $I_2$.
  • $m_0$  can only be falsified to $m_1$.  The  (conditional)  falsification probability is equal to the ratio of the areas of the small yellow triangle  $($area $1/16)$  and the square  $($area  $4)$:
$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) = \frac{1/2 \cdot 1/2 \cdot 1/4}{4}= {1}/{64} \hspace{0.05cm}.$$
  • For symmetry reasons,  equally:
$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={1}/{64} \hspace{0.05cm}. $$


(4)  For equal probability symbols,  we obtain for the  (average)  error probability:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \big [{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) + {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 )+{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\big ]$$
$$ \Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \left [{1}/{64} + {1}/{64} + 0 )\right ]= \frac{2}{3 \cdot 64} = {1}/{96}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 1.04 \%} \hspace{0.05cm}.$$


(5)  Now we obtain a smaller  average error probability, viz.

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{4} \cdot {1}/{64} + {1}/{4} \cdot {1}/{64}+ {1}/{2} \cdot0 = {1}/{128}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.78 \% } \hspace{0.05cm}. $$


(6)  Correct is YES:

  • For example,     $I_1$: first quadrant,     $I_0$: second quadrant,     $I_2 \text{:} \ y < 0$     would give zero error probability.
  • This means that the given bounds are optimal only in the case of circularly symmetric PDF of the noise,  for example, the AWGN model.