Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.1: Error Distance Distribution"

From LNTwww
 
(24 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Beschreibungsgrößen digitaler Kanalmodelle}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models}}
  
 +
[[File:EN_Dig_A_5_1.png|right|frame|Error distance distribution]]
 +
Any digital channel model can be described in the same way by
 +
* the error sequence  〈e_{\rm \nu}〉, and
  
[[File:P_ID1827__Dig_A_5_1.png|right|frame|Gegebene Fehlerabstandsverteilung]]
+
* the error distance sequence  $〈a_{\rm \nu \hspace{0.05cm}'}〉$.
Ein jedes digitales Kanalmodell kann in gleicher Weise beschrieben werden durch
 
* die Fehlerfolge $〈e_{\rm \nu}〉$,
 
* durch die Fehlerabstandsfolge 〈a_{\rm \nu '}〉.
 
  
  
Beispielhaft betrachten wir die Folgen:
+
As an example,  we consider the sequences:
 
:$$<\hspace{-0.1cm}e_{\nu} \hspace{-0.1cm}>  \ = \ <
 
:$$<\hspace{-0.1cm}e_{\nu} \hspace{-0.1cm}>  \ = \ <
\hspace{-0.1cm}0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, ...
+
\hspace{-0.1cm}0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, \text{...}
 
\hspace{-0.1cm}> \hspace{0.05cm},$$
 
\hspace{-0.1cm}> \hspace{0.05cm},$$
:$$< \hspace{-0.1cm}a_{\nu\hspace{0.05cm} '} \hspace{-0.15cm}>  \ = \ <\hspace{-0.1cm}2, 3, 1, 4, 2, 5, 1, 1, 3, 4, 1, 2, ...
+
:$$< \hspace{-0.1cm}a_{\nu\hspace{0.05cm} '} \hspace{-0.15cm}>  \ = \ <\hspace{-0.1cm}2, 3, 1, 4, 2, 5, 1, 1, 3, 4, 1, 2, \text{...}
 
\hspace{-0.1cm}> \hspace{0.05cm}.$$
 
\hspace{-0.1cm}> \hspace{0.05cm}.$$
  
Man erkennt daraus beispielsweise:
+
One can see from this,&nbsp; for example:
* Der Fehlerabstand a2=3 bedeutet, dass zwischen dem ersten und dem zweiten Fehler zwei fehlerfreie Symbole liegen.
+
* The error distance&nbsp; a2=3&nbsp; means that there are two error-free symbols between the first and the second error.
* a3=1 deutet dagegen darauf hin, dass nach dem zweiten direkt ein dritter Fehler folgt.
 
  
 +
* In contrast,&nbsp; a3=1&nbsp; indicates that the second error is immediately followed by a third.
  
Die unterschiedlichen Laufindizes (ν und ν, jeweils beginnend mit 1) sind erforderlich, da keine Synchronität zwischen der Fehlerabstandsfolge und der Fehlerfolge besteht.
 
  
In der Grafik ist für zwei verschiedene Modelle M1 und M2 die Fehlerabstandsverteilung (FAV)  
+
The different indices &nbsp;(ν&nbsp; and&nbsp; ν,&nbsp; each starting with &nbsp;1)&nbsp; are necessary because there is no synchrony between the error distance sequence and the error sequence.
 +
 
 +
In the graph,&nbsp; for two different models &nbsp;M1&nbsp; and &nbsp;M2,&nbsp; the&nbsp; "error distance distribution"&nbsp; $\rm (EDD)$&nbsp; is given as
 
:Va(k)=Pr(ak)=1kκ=1Pr(a=κ)
 
:Va(k)=Pr(ak)=1kκ=1Pr(a=κ)
  
angegeben. Diese Tabelle soll in dieser Aufgabe ausgewertet werden.
+
This table is to be evaluated in this exercise.
  
''Hinweis:'' Die Aufgabe gehört zum Themengebiet des Kapitels [[Digitalsignal%C3%BCbertragung/Beschreibungsgr%C3%B6%C3%9Fen_digitaler_Kanalmodelle| Beschreibungsgrößen digitaler Kanalmodelle]].
 
  
  
  
===Fragebogen===
+
Note:&nbsp;  The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models|"Parameters of Digital Channel Models"]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die folgenden Fehlerwerte (0 oder 1)?
+
{What are the following error values &nbsp;$(0&nbsp; or&nbsp;1)$?
 
|type="{}"}
 
|type="{}"}
e16 =  { 0 3% }  
+
e16 =  { 0. }  
e17 =  { 1 3% }  
+
e17 =  { 1 }  
e18 =  { 1 3% }  
+
e18 =  { 1 }  
  
{Wie groß ist bei beiden Modellen Va(k=1)?
+
{What is the value of&nbsp; Va(k=1) for both models?
 
|type="{}"}
 
|type="{}"}
Va(k=1) =  { 1 3% }  
+
Va(k=1) =  { 1 }  
  
{Bestimmen Sie für das Modell M1 die Wahrscheinlichkeiten der Fehlerabstände.
+
{For model&nbsp; M1,&nbsp;&nbsp; determine the probabilities of the error distances.
 
|type="{}"}
 
|type="{}"}
$M_1 \text {:} \hspace{0.2cm} {\rm Pr}(a = 1) \ = \ $ { 0.3 3% }  
+
Pr(a=1) =  { 0.3 3% }  
$M_1 \text {:} \hspace{0.2cm} {\rm Pr}(a = 2) \ = \ $ { 0.25 3% }
+
Pr(a=2) =  { 0.25 3% }
$M_1 \text {:} \hspace{0.2cm} {\rm Pr}(a = 3) \ = \ $ { 0.2 3% }
+
Pr(a=3) =  { 0.2 3% }
$M_1 \text {:} \hspace{0.2cm} {\rm Pr}(a = 4) \ = \ $ { 0.15 3% }
+
Pr(a=4) =  { 0.15 3% }
$M_1 \text {:} \hspace{0.2cm} {\rm Pr}(a = 5) \ = \ $ { 0.1 3% }
+
Pr(a=5) =  { 0.1 3% }
  
{Wie groß ist der maximal mögliche Fehlerabstand?
+
{What is the maximum possible error distance for model&nbsp; M1?
 
|type="{}"}
 
|type="{}"}
$M_1 \text {:} \hspace{0.2cm} k_{\rm max} \ = \ ${ 5 3% }  
+
kmax = { 5 }  
  
{Berechnen Sie den mittleren Fehlerabstand.
+
{Calculate the average error distance for model&nbsp; M1.&nbsp;
 
|type="{}"}
 
|type="{}"}
$M_1 \text {:} \hspace{0.2cm} {\rm E}[a] \ = \ ${ 2.5 3% }
+
${\rm E}\big[a \big] \ = \ ${ 2.5 3% }
  
{Wie groß ist die mittlere Fehlerwahrscheinlichkeit pM=E[e]?
+
{For model&nbsp; M1,&nbsp; what is the mean error probability&nbsp; pM=E[e]?
 
|type="{}"}
 
|type="{}"}
$M_1 \text {:} \hspace{0.2cm} p_{\rm M} \ = \ ${ 0.4 3% }
+
pM = { 0.4 3% }
  
{Welche Aussagen stimmen für das Model M2 mit Sicherheit?
+
{Which statements are true for the model&nbsp; M2&nbsp; with certainty?
 
|type="[]"}
 
|type="[]"}
+ Zwei Fehler können nicht direkt aufeinander folgen.
+
+ Two errors cannot directly follow each other.
- Der häufigste Fehlerabstand ist a=6.
+
- The most frequent error distance is&nbsp; a=6.
- Die mittlere Fehlerwahrscheinlichkeit beträgt pM=0.25.
+
- The mean error probability is&nbsp; pM=0.25.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Evaluation of the error distance sequence indicates errors at&nbsp; ν=2,5,6,10,12,17,18,19,22,26,27&nbsp; and&nbsp; 29.
'''(2)'''&nbsp;  
+
'''(3)'''&nbsp;  
+
*It follows: &nbsp; e16 =0_, &nbsp; &nbsp; e17 =1_, &nbsp; &nbsp; e18 =1_.
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
 
 +
'''(2)'''&nbsp; From the definition equation follows already
 +
:Va(k=1)=Pr(a1)=1_.
 +
 
 +
 
 +
'''(3)'''&nbsp; {\rm Pr}(a = k) = V_a(k) \, &ndash;V_a(k+1)&nbsp; holds.&nbsp; From this we obtain for the individual probabilities:
 +
:Pr(a=1) = Va(1)Va(2)=10.7=0.3_,
 +
:Pr(a=2) = Va(2)Va(3)=0.70.45=0.25_,
 +
:Pr(a=3) = Va(3)Va(4)=0.450.25=0.2_,
 +
:Pr(a=4) = Va(4)Va(5)=0.250.10=0.15_,
 +
:$${\rm Pr}(a = 5)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(5) -
 +
V_a(6) = 0.10 - 0 \hspace{0.15cm}\underline {= 0.10}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; From&nbsp; V_a(k=6) = {\rm Pr}(a &#8805; 6) = 0,&nbsp; it follows directly for the maximum error distance&nbsp;  
 +
:kmax =5_.
 +
 
 +
 
 +
'''(5)'''&nbsp; Using the probabilities calculated in subtask&nbsp; '''(3)''',&nbsp; the expected value we are looking for is:
 +
:$${\rm E}\big[a \big] = \sum_{k = 1}^{5} k \cdot {\rm Pr}(a = k) =  1 \cdot 0.3 +2 \cdot 0.25 +3 \cdot 0.2 +4 \cdot 0.15 +5 \cdot 0.1\hspace{0.15cm}\underline { = 2.5}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(6)'''&nbsp; The mean error probability is the inverse of the average error distance: &nbsp;
 +
:pM =0.4_.
 +
 
 +
 
 +
'''(7)'''&nbsp; With certainty,&nbsp; only <u>statement 1</u>&nbsp; is true:
 +
*The first statement is true because Pr(a=1)=Va(1)Va(2)=0.
 +
 
 +
* The second statement is not certain because&nbsp; Va(6)&nbsp; gives only the sum of the probabilities {\rm Pr}(a &#8805; 6),&nbsp; but not Pr(a=6) alone.&nbsp;
 +
 
 +
*Only with the additional specification&nbsp; Va(7)=0&nbsp; would statement 2 be true.
 +
 
 +
* Likewise,&nbsp; for the expected value&nbsp; E[a],&nbsp; no definite statement is possible due to missing information.&nbsp; With Va(7)=0 the result would be:
 +
:$${\rm E}[a] =  2 \cdot 0.1 +3 \cdot 0.2 +4 \cdot 0.2 +5 \cdot 0.2 +6 \cdot 0.3=
 +
4.4.$$
 +
*Without this specification,&nbsp; only the statement&nbsp; {\rm E}[a] &#8805; 4.4&nbsp; is possible. But this means that the condition&nbsp; pM<1/4.4<0.227&nbsp; is valid for the mean error probability.&nbsp; Statement 3 is therefore also not true with certainty.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.1 Zu den Digitalen Kanalmodellen^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.1 Digital Channel Models^]]

Latest revision as of 15:13, 1 October 2022

Error distance distribution

Any digital channel model can be described in the same way by

  • the error sequence  eν, and
  • the error distance sequence  aν.


As an example,  we consider the sequences:

<eν> = <0,1,0,0,1,1,0,0,0,1,0,1,...>,
<aν> = <2,3,1,4,2,5,1,1,3,4,1,2,...>.

One can see from this,  for example:

  • The error distance  a2=3  means that there are two error-free symbols between the first and the second error.
  • In contrast,  a3=1  indicates that the second error is immediately followed by a third.


The different indices  (ν  and  ν,  each starting with  1)  are necessary because there is no synchrony between the error distance sequence and the error sequence.

In the graph,  for two different models  M1  and  M2,  the  "error distance distribution"  (EDD)  is given as

Va(k)=Pr(ak)=1kκ=1Pr(a=κ)

This table is to be evaluated in this exercise.



Note:  The exercise belongs to the chapter  "Parameters of Digital Channel Models".



Questions

1

What are the following error values  (0  or  1)?

e16 = 

e17 = 

e18 = 

2

What is the value of  Va(k=1) for both models?

Va(k=1) = 

3

For model  M1,   determine the probabilities of the error distances.

Pr(a=1) = 

Pr(a=2) = 

Pr(a=3) = 

Pr(a=4) = 

Pr(a=5) = 

4

What is the maximum possible error distance for model  M1?

kmax = 

5

Calculate the average error distance for model  M1

E[a] = 

6

For model  M1,  what is the mean error probability  pM=E[e]?

pM = 

7

Which statements are true for the model  M2  with certainty?

Two errors cannot directly follow each other.
The most frequent error distance is  a=6.
The mean error probability is  pM=0.25.


Solution

(1)  Evaluation of the error distance sequence indicates errors at  ν=2,5,6,10,12,17,18,19,22,26,27  and  29.

  • It follows:   e16 =0_,     e17 =1_,     e18 =1_.


(2)  From the definition equation follows already

Va(k=1)=Pr(a1)=1_.


(3)  {\rm Pr}(a = k) = V_a(k) \, –V_a(k+1)  holds.  From this we obtain for the individual probabilities:

{\rm Pr}(a = 1)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(1) - V_a(2) = 1 - 0.7\hspace{0.15cm}\underline {= 0.3}\hspace{0.05cm},
{\rm Pr}(a = 2)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(2) - V_a(3) = 0.7 - 0.45 \hspace{0.15cm}\underline {= 0.25}\hspace{0.05cm},
{\rm Pr}(a = 3)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(3) - V_a(4) = 0.45 - 0.25 \hspace{0.15cm}\underline {= 0.2}\hspace{0.05cm},
{\rm Pr}(a = 4)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(4) - V_a(5) = 0.25 - 0.10 \hspace{0.15cm}\underline {= 0.15}\hspace{0.05cm},
{\rm Pr}(a = 5)\hspace{-0.1cm} \ = \ \hspace{-0.1cm}V_a(5) - V_a(6) = 0.10 - 0 \hspace{0.15cm}\underline {= 0.10}\hspace{0.05cm}.


(4)  From  V_a(k=6) = {\rm Pr}(a ≥ 6) = 0,  it follows directly for the maximum error distance 

k_{\rm max} \ \underline {= 5}.


(5)  Using the probabilities calculated in subtask  (3),  the expected value we are looking for is:

{\rm E}\big[a \big] = \sum_{k = 1}^{5} k \cdot {\rm Pr}(a = k) = 1 \cdot 0.3 +2 \cdot 0.25 +3 \cdot 0.2 +4 \cdot 0.15 +5 \cdot 0.1\hspace{0.15cm}\underline { = 2.5} \hspace{0.05cm}.


(6)  The mean error probability is the inverse of the average error distance:  

p_{\rm M} \ \underline {= 0.4}.


(7)  With certainty,  only statement 1  is true:

  • The first statement is true because {\rm Pr}(a = 1) = V_a(1) - V_a(2) = 0.
  • The second statement is not certain because  V_a(6)  gives only the sum of the probabilities {\rm Pr}(a ≥ 6),  but not {\rm Pr}(a = 6) alone. 
  • Only with the additional specification  V_a(7) = 0  would statement 2 be true.
  • Likewise,  for the expected value  {\rm E}[a],  no definite statement is possible due to missing information.  With V_a(7) = 0 the result would be:
{\rm E}[a] = 2 \cdot 0.1 +3 \cdot 0.2 +4 \cdot 0.2 +5 \cdot 0.2 +6 \cdot 0.3= 4.4.
  • Without this specification,  only the statement  {\rm E}[a] ≥ 4.4  is possible. But this means that the condition  p_{\rm M} < 1/4.4 < 0.227  is valid for the mean error probability.  Statement 3 is therefore also not true with certainty.