Difference between revisions of "Aufgaben:Exercise 5.2: Error Correlation Function"
From LNTwww
(20 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models}} |
− | [[File:P_ID1854__Dig_A_5_2_version1.png|right|frame| | + | [[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Error distance probability & error correlation function]] |
− | + | For the characterization of digital channel models one uses among other things | |
− | * | + | * the "error correlation function" $\rm (ECF)$ |
− | :$$\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu + | + | :$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu + |
− | k}]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$ | + | k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$ |
− | * | + | * the "error distance probabilities" |
:$${\rm Pr}( a =k) \hspace{0.05cm}, \hspace{0.2cm} k \ge | :$${\rm Pr}( a =k) \hspace{0.05cm}, \hspace{0.2cm} k \ge | ||
1\hspace{0.05cm}.$$ | 1\hspace{0.05cm}.$$ | ||
− | + | Here denote: | |
− | * 〈e_{\rm \nu}〉 | + | * 〈e_{\rm \nu}〉 is the error sequence with e_{\rm \nu} ∈ \{0, 1\}. |
− | * a | + | |
+ | * a indicates the error distance with a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}. | ||
− | + | Two directly consecutive symbol errors are thus characterized by the error distance a=1. | |
− | + | The table shows exemplary values of the error distance probabilities Pr(a=k) as well as the error correlation function φe(k). | |
+ | *Some data are missing in the table. | ||
+ | *These values are to be calculated from the given values. | ||
− | |||
− | |||
− | === | + | |
+ | Note: The exercise covers the subject matter of the chapter [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models|"Parameters of Digital Channel Models"]]. | ||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which value results for the mean error probability? |
|type="{}"} | |type="{}"} | ||
pM = { 0.1 3% } | pM = { 0.1 3% } | ||
− | { | + | {Which value results for the mean error distance? |
|type="{}"} | |type="{}"} | ||
− | E[a] = { 10 3% } | + | ${\rm E}\big[a\big] \ = \ ${ 10 3% } |
− | { | + | {Calculate the value of the error correlation function (ECF) for k=1. |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $\varphi_e(k = 1) \ = \ ${ 0.0309 3% } |
− | { | + | {What is the approximation for the probability of the error distance a=2? |
|type="{}"} | |type="{}"} | ||
Pr(a=2) = { 0.1715 3% } | Pr(a=2) = { 0.1715 3% } | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The mean error probability is equal to the ECF value for k=0. Namely, because of e_{\nu} ∈ \{0, 1\}: |
:$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]= | :$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]= | ||
p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1} | p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1} | ||
Line 52: | Line 58: | ||
− | '''(2)''' | + | '''(2)''' The mean (or: "average") error distance is equal to the reciprocal of the mean error probability. That is: |
+ | :$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$ | ||
− | '''(3)''' | + | '''(3)''' According to the definition equation and [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability| "Bayes' theorem"]], the following result is obtained: |
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm | :$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm | ||
E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot | E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot | ||
− | (e_{\nu + 1}=1)]= | + | (e_{\nu + 1}=1)]={\rm Pr}(e_{\nu + 1}=1 |
− | |||
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm | \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm | ||
Pr}(e_{\nu} = 1) | Pr}(e_{\nu} = 1) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *The first probability is equal to Pr(a=1) and the second probability is equal to pM: | |
− | :$$\varphi_{e}(k = 1) = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309} | + | :$$\varphi_{e}(k = 1) = {\rm Pr}(a = 1) \cdot p_{\rm M} = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(4)''' | + | '''(4)''' The ECF value φe(k=2) can be interpreted (approximately) as follows: |
:$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1 | :$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1 | ||
− | \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M}$$ | + | \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} $$ |
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1 | :$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1 | ||
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k | \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k | ||
= 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$ | = 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$ | ||
− | + | *This probability is composed of "at time ν+1 an error occurs" and "at time ν+1 there is no error": | |
:$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = | :$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = | ||
− | 1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2) | + | 1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$ | |
− | + | *In the calculation, it was assumed that the individual error distances are statistically independent of each other. | |
+ | #However, this assumption is valid only for a special class of channel models called "renewing". | ||
+ | #The burst error model considered here does not satisfy this condition. | ||
+ | #The actual probability Pr(a=2)=0.1675 therefore deviates slightly from the value calculated here $(0.1715)$. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Digital Signal Transmission: Exercises|^5.1 Digital Channel Models^]] |
Latest revision as of 04:39, 18 September 2022
For the characterization of digital channel models one uses among other things
- the "error correlation function" (ECF)
- φe(k)=E[eν⋅eν+k],k≥0,
- the "error distance probabilities"
- Pr(a=k),k≥1.
Here denote:
- 〈eν〉 is the error sequence with eν∈{0,1}.
- a indicates the error distance with aν∈{0,1,2,...}.
Two directly consecutive symbol errors are thus characterized by the error distance a=1.
The table shows exemplary values of the error distance probabilities Pr(a=k) as well as the error correlation function φe(k).
- Some data are missing in the table.
- These values are to be calculated from the given values.
Note: The exercise covers the subject matter of the chapter "Parameters of Digital Channel Models".
Questions
Solution
(1) The mean error probability is equal to the ECF value for k=0. Namely, because of eν∈{0,1}:
- φe(k=0)=E[e2ν]=E[eν]=pM⇒pM=0.1_.
(2) The mean (or: "average") error distance is equal to the reciprocal of the mean error probability. That is:
- E[a]=1/pM =10_.
(3) According to the definition equation and "Bayes' theorem", the following result is obtained:
- φe(k=1) = E[eν⋅eν+1]=E[(eν=1)⋅(eν+1=1)]=Pr(eν+1=1|eν=1)⋅Pr(eν=1).
- The first probability is equal to Pr(a=1) and the second probability is equal to pM:
- φe(k=1)=Pr(a=1)⋅pM=0.3091⋅0.1=0.0309_.
(4) The ECF value φe(k=2) can be interpreted (approximately) as follows:
- φe(k=2)=Pr(eν+2=1|eν=1)⋅pM
- ⇒Pr(eν+2=1|eν=1)=φe(k=2)pM=0.02670.1=0.267.
- This probability is composed of "at time ν+1 an error occurs" and "at time ν+1 there is no error":
- Pr(eν+2=1|eν=1)=Pr(a=1)⋅Pr(a=1)+Pr(a=2)⇒Pr(a=2)=0.267−0.30912=0.1715_.
- In the calculation, it was assumed that the individual error distances are statistically independent of each other.
- However, this assumption is valid only for a special class of channel models called "renewing".
- The burst error model considered here does not satisfy this condition.
- The actual probability Pr(a=2)=0.1675 therefore deviates slightly from the value calculated here (0.1715).