Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.2: Error Correlation Function"

From LNTwww
 
(20 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Beschreibungsgrößen digitaler Kanalmodelle}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models}}
  
[[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Gegebene Fehlerabstandswahrscheinlichkeiten und Fehlerkorrelationsfunktion]]
+
[[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Error distance probability & error correlation function]]
Zur Charakterisierung von digitalen Kanalmodellen verwendet man unter Anderem
+
For the characterization of digital channel models one uses among other things
* die Fehlerkorrelationsfunktion (FKF)
+
* the  "error correlation function"  $\rm (ECF)$
:$$\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu +
+
:$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu +
k}]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
+
k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  
* die Fehlerabstandswahrscheinlichkeiten
+
* the  "error distance probabilities"
 
:$${\rm Pr}( a =k)  \hspace{0.05cm}, \hspace{0.2cm} k \ge
 
:$${\rm Pr}( a =k)  \hspace{0.05cm}, \hspace{0.2cm} k \ge
 
1\hspace{0.05cm}.$$
 
1\hspace{0.05cm}.$$
  
Hierbei bezeichnen
+
Here denote:
* 〈e_{\rm \nu}〉 die Fehlerfolge mit e_{\rm \nu} ∈ \{0, 1\}, und
+
* 〈e_{\rm \nu}〉  is the error sequence with  e_{\rm \nu} ∈ \{0, 1\}.
* a den Fehlerabstand.
+
 +
* a  indicates the error distance  with  a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}.
  
  
Zwei direkt aufeinanderfolgende Bitfehler werden somit durch den Fehlerabstand a=1 gekennzeichnet.
+
Two directly consecutive symbol errors are thus characterized by the error distance  a=1. 
  
Die Tabelle zeigt beispielhafte Werte der Fehlerabstandswahrscheinlichkeiten Pr(a=k) sowie der Fehlerkorrelationsfunktion φe(k). Einige Angaben fehlen in der Tabelle. Diese Werte sollen aus den gegebenen Werten berechnet werden.
+
The table shows exemplary values of the error distance probabilities  Pr(a=k)  as well as the error correlation function  φe(k).  
 +
*Some data are missing in the table.
 +
*These values are to be calculated from the given values.
  
''Hinweise:''
 
* Die Aufgabe behandel den Lehrstoff des Kapitels [[Digitalsignal%C3%BCbertragung/Beschreibungsgr%C3%B6%C3%9Fen_digitaler_Kanalmodelle| Beschreibungsgrößen digitaler Kanalmodelle]].
 
  
  
===Fragebogen===
+
 
 +
Note:  The exercise covers the subject matter of the chapter  [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models|"Parameters of Digital Channel Models"]].
 +
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Wert ergibt sich für die mittlere Fehlerwahrscheinlichkeit?
+
{Which value results for the mean error probability?
 
|type="{}"}
 
|type="{}"}
 
pM = { 0.1 3% }
 
pM = { 0.1 3% }
  
{Welcher Wert ergibt sich für den mittleren Fehlerabstand?
+
{Which value results for the mean error distance?
 
|type="{}"}
 
|type="{}"}
E[a] = { 10 3% }
+
${\rm E}\big[a\big] \ = \ ${ 10 3% }
  
{Berechnen Sie den FKF&ndash;Wert für k=1.
+
{Calculate the value of the error correlation function&nbsp; (ECF)&nbsp; for&nbsp; k=1.
 
|type="{}"}
 
|type="{}"}
$\varphi_r(k = 1) \ = \ ${ 0.0309 3% }  
+
$\varphi_e(k = 1) \ = \ ${ 0.0309 3% }  
  
{Welche Näherung gilt für die Wahrscheinlichkeit des Fehlerabstands a=2?
+
{What is the approximation for the probability of the error distance&nbsp; a=2?
 
|type="{}"}
 
|type="{}"}
 
Pr(a=2) = { 0.1715 3% }  
 
Pr(a=2) = { 0.1715 3% }  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die mittlere Fehlerwahrscheinlichkeit ist gleich dem FKF&ndash;Wert für k=0. Wegen e_{\nu} &#8712; \{0, 1\} gilt nämlich:
+
'''(1)'''&nbsp; The mean error probability is equal to the ECF value for&nbsp; k=0.&nbsp; Namely,&nbsp; because of&nbsp; e_{\nu} &#8712; \{0, 1\}:
 
:$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]=
 
:$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]=
 
p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1}
 
p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1}
Line 52: Line 58:
  
  
'''(2)'''&nbsp; Der mittlere Fehlerabstand ist gleich dem Kehrwert der mittleren Fehlerwahrscheinlichkeit. Das heißt: E[a]=1/pM =10_.
+
'''(2)'''&nbsp; The mean&nbsp; (or:&nbsp; "average")&nbsp; error distance is equal to the reciprocal of the mean error probability.&nbsp; That is:
 +
:$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$
  
  
'''(3)'''&nbsp; Nach der Definitionsgleichung und dem [[Stochastische_Signaltheorie/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit#Bedingte_Wahrscheinlichkeit| Satz von Bayes]] erhält man folgendes Ergebnis:
+
'''(3)'''&nbsp; According to the definition equation and&nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability| "Bayes' theorem"]],&nbsp; the following result is obtained:
 
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm
 
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm
 
E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot
 
E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot
(e_{\nu + 1}=1)]=$$
+
(e_{\nu + 1}=1)]={\rm Pr}(e_{\nu + 1}=1
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Pr}(e_{\nu + 1}=1
 
 
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm
 
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm
 
Pr}(e_{\nu} = 1)
 
Pr}(e_{\nu} = 1)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Die erste Wahrscheinlichkeits ist gleich Pr(a=1) und die zweite Wahrscheinlichkeit ist gleich pM:
+
*The first probability is equal to&nbsp; Pr(a=1)&nbsp; and the second probability is equal to&nbsp; pM:
:$$\varphi_{e}(k = 1) = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309}
+
:$$\varphi_{e}(k = 1) = {\rm Pr}(a = 1) \cdot p_{\rm M} = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Der FKF&ndash;Wert φe(k=2) kann (näherungsweise) folgendermaßen interpretiert werden:
+
'''(4)'''&nbsp; The ECF value&nbsp; φe(k=2)&nbsp; can be interpreted&nbsp; (approximately)&nbsp; as follows:
 
:$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1
 
:$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M}$$
+
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} $$
 
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1
 
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1
 
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k
 
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k
 
= 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$
 
= 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$
  
Diese Wahrscheinlichkeit setzt sich zusammen aus den beiden Möglichkeiten &bdquo;Zum Zeitpunkt ν+1 tritt tritt ein Fehler auf&rdquo; sowie &bdquo;Zum Zeitpunkt ν+1 gibt es keinen Fehler&rdquo;:
+
*This probability is composed of &nbsp;"at time&nbsp; ν+1&nbsp; an error occurs"&nbsp; and &nbsp;"at time&nbsp; ν+1&nbsp; there is no error":
 
:$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} =
 
:$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} =
1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)$$
+
1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$
+
\Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$
  
Bei der Rechnung wurde davon ausgegangen, dass die einzelnen Fehlerabstände statistisch voneinander unabhängig sind. Diese Annahme gilt allergings nur für eine besondere Klasse von Kanalmodellen, die man als &bdquo;erneuernd&rdquo; bezeichnet. Das hier betrachtete Bündelfehlermodell erfüllt diese Bedingung nicht. Die tatsächliche Wahrscheinlichkeit Pr(a=2)=0.1675 weicht deshalb vom hier berechneten Wert ($0.1715$) geringfügig ab.
+
*In the calculation,&nbsp; it was assumed that the individual error distances are statistically independent of each other.
 +
#However,&nbsp; this assumption is valid only for a special class of channel models called&nbsp; "renewing".
 +
#The burst error model considered here does not satisfy this condition.
 +
#The actual probability&nbsp; Pr(a=2)=0.1675&nbsp; therefore deviates slightly from the value calculated here&nbsp; $(0.1715)$.&nbsp;
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.1 Zu den Digitalen Kanalmodellen^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.1 Digital Channel Models^]]

Latest revision as of 04:39, 18 September 2022

Error distance probability & error correlation function

For the characterization of digital channel models one uses among other things

  • the  "error correlation function"  (ECF)
φe(k)=E[eνeν+k],k0,
  • the  "error distance probabilities"
Pr(a=k),k1.

Here denote:

  • eν  is the error sequence with  eν{0,1}.
  • a  indicates the error distance with  aν{0,1,2,...}.


Two directly consecutive symbol errors are thus characterized by the error distance  a=1

The table shows exemplary values of the error distance probabilities  Pr(a=k)  as well as the error correlation function  φe(k).

  • Some data are missing in the table.
  • These values are to be calculated from the given values.



Note:  The exercise covers the subject matter of the chapter  "Parameters of Digital Channel Models".


Questions

1

Which value results for the mean error probability?

pM = 

2

Which value results for the mean error distance?

E[a] = 

3

Calculate the value of the error correlation function  (ECF)  for  k=1.

φe(k=1) = 

4

What is the approximation for the probability of the error distance  a=2?

Pr(a=2) = 


Solution

(1)  The mean error probability is equal to the ECF value for  k=0.  Namely,  because of  eν{0,1}:

φe(k=0)=E[e2ν]=E[eν]=pMpM=0.1_.


(2)  The mean  (or:  "average")  error distance is equal to the reciprocal of the mean error probability.  That is:

E[a]=1/pM =10_.


(3)  According to the definition equation and  "Bayes' theorem",  the following result is obtained:

φe(k=1) = E[eνeν+1]=E[(eν=1)(eν+1=1)]=Pr(eν+1=1|eν=1)Pr(eν=1).
  • The first probability is equal to  Pr(a=1)  and the second probability is equal to  pM:
φe(k=1)=Pr(a=1)pM=0.30910.1=0.0309_.


(4)  The ECF value  φe(k=2)  can be interpreted  (approximately)  as follows:

φe(k=2)=Pr(eν+2=1|eν=1)pM
Pr(eν+2=1|eν=1)=φe(k=2)pM=0.02670.1=0.267.
  • This probability is composed of  "at time  ν+1  an error occurs"  and  "at time  ν+1  there is no error":
Pr(eν+2=1|eν=1)=Pr(a=1)Pr(a=1)+Pr(a=2)Pr(a=2)=0.2670.30912=0.1715_.
  • In the calculation,  it was assumed that the individual error distances are statistically independent of each other.
  1. However,  this assumption is valid only for a special class of channel models called  "renewing".
  2. The burst error model considered here does not satisfy this condition.
  3. The actual probability  Pr(a=2)=0.1675  therefore deviates slightly from the value calculated here  (0.1715)