Difference between revisions of "Aufgaben:Exercise 4.19: Orthogonal Multilevel FSK"

From LNTwww
 
(17 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit nichtkohärenter Demodulation}}  
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation}}  
  
[[File:P_ID2092__Dig_A_4_19.png|right|frame|Vorgegebene Signalraumkonstellationen]]
+
[[File:P_ID2092__Dig_A_4_19.png|right|frame|Signal space constellations]]
Wir betrachten in dieser letzten Übungsaufgabe zu diesem Kapitel <i>Frequency Shift Keying</i> (FSK) mit $M$ Signalformen und setzen voraus, dass diese paarweise zueinander orthogonal sind. In diesem Fall können die äquivalenten Tiefpass&ndash;Signale $s_i(t)$ mit $i = 1, \ ... \ , M$ in folgender Form dargestellt werden:
+
In this last exercise of this chapter we consider &nbsp;"Frequency Shift Keying"&nbsp; $\rm (FSK)$&nbsp; with&nbsp; $M$&nbsp; waveforms and assume that they are orthogonal to each other in pairs.&nbsp;
 +
 
 +
*In this case,&nbsp; the equivalent low&ndash;pass signals&nbsp; $s_i(t)$&nbsp; with&nbsp; $i = 1, \ \text{...} \ , M$&nbsp; can be represented in the following form:
 
:$$s_i(t)  = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$
 
:$$s_i(t)  = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$
  
$\xi_i(t)$ sind komplexe Basisfunktionen, für die allgemein $i = 1, \ ... \ , N$ gilt. Bei orthogonaler Signalisierung ist allerdings stets $M = N$.  
+
*$\xi_i(t)$&nbsp; are complex basis functions for which in general&nbsp; $i = 1, \ \text{...} \ , N$.&nbsp; &nbsp;
  
Die Grafik zeigt drei verschiedene Signalraumkonstellationen. Jedoch beschreiben nicht alle drei eine orthogonale FSK. Hierauf wird in der Teilaufgabe (1) Bezug genommen.
+
*However,&nbsp; for orthogonal signaling,&nbsp; $M = N$ is always true.
  
Im [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Theorieteil]] ist die exakte Formel für die Wahrscheinlichkeit einer korrekten Entscheidung bei AWGN&ndash;Störung angegeben:
+
*The diagram shows three different signal space constellations.&nbsp; However,&nbsp; not all three describe an orthogonal FSK.&nbsp; This is referred to in the subtask&nbsp; '''(1)'''.
:$${\rm Pr}({\cal{C}}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot $$
+
 
:$$\hspace{-0.1cm} \ \cdot \ \hspace{-0.1cm} {\rm exp } \left [ - \frac{i }
+
 
  {(i+1) }\cdot \frac{ E_{\rm S} }
+
In the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "theory part"]],&nbsp; the exact formula for the probability of a correct decision in the case of AWGN noise is given:
  { N_0}\right ]
+
:$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Daraus lässt sich sehr einfach die Symbolfehlerwahrscheinlichkeit berechnen:
+
*From this it is very easy to calculate the symbol error probability:
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) =  1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i }
+
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) =  1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
  {(i+1) }\cdot \frac{ E_{\rm S} }
 
  { N_0}\right ]
 
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Eine obere Schranke ($p_{\rm S, \ max} &#8805; p_{\rm S}$) ergibt sich aufgrund der alternierenden Vorzeichen, wenn man von dieser Summe nur den ersten Term berücksichtigt:
+
*An upper bound&nbsp; $(p_{\rm S, \ max} &#8805; p_{\rm S})$&nbsp; is obtained due to the alternating signs if we consider only the first term&nbsp; $(i=1)$&nbsp; of this sum:
:$$p_{\rm S, \hspace{-0.05cm}max} =  \frac {M-1}{ 2} \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}
+
:$$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Teilaufgabe (4) soll diese Schranke bei gegebenem Verhältnis $E_{\rm B}/N_0$ ausgewertet werden, wobei $E_{\rm B}$ die mittlere Signalenergie pro Bit angibt:
+
In subtask&nbsp; '''(4)''',&nbsp; this bound is to be evaluated for a given ratio&nbsp; $E_{\rm B}/N_0$,&nbsp; where&nbsp; $E_{\rm B}$&nbsp; is the average signal energy per bit:
 
:$$E_{\rm B} = \frac{ E_{\rm S} }  { {\rm log_2}\hspace{0.1cm}(M)}  
 
:$$E_{\rm B} = \frac{ E_{\rm S} }  { {\rm log_2}\hspace{0.1cm}(M)}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
Line 33: Line 33:
  
  
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit nichtkohärenter Demodulation]].
 
* Bezug genommen wird insbesondere auf die Seite  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation#Nichtkoh.C3.A4rente_Demodulation_von_mehrstufiger_FSK|Nichtkohärente Demodulation von mehrstufiger FSK]].
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
 +
Notes:
 +
* The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "Carrier Frequency Systems with Non-Coherent Demodulation"]].
  
 +
* Reference is made in particular to the section&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Non-coherent_demodulation_of_multi-level_FSK|"Non-coherent demodulation of multi-level FSK"]].
 +
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der obigen Signalraumkonstellationen gelten für orthogonale FSK?
+
{Which of the above signal space constellations are valid for orthogonal FSK?
 
|type="[]"}
 
|type="[]"}
+ Konstellation A,
+
+ Constellation &nbsp;$\rm A$,
- Konstellation B,
+
- Constellation &nbsp;$\rm B$,
+ Konstellation C.
+
+ Constellation &nbsp;$\rm C$.
  
{Berechnen Sie für $E_{\rm S}/N_0 = 6$ die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm S}$ bezeichnet die Symbolenergie.
+
{For&nbsp; $E_{\rm S}/N_0 = 6$,&nbsp; calculate the error probability of binary, ternary and quaternary FSK.&nbsp; $E_{\rm S}$&nbsp; denotes the average symbol energy.
 
|type="{}"}
 
|type="{}"}
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 0.0249 3% }  
+
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 2.49 3% } $\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 0.0437 3% }
+
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 4.37 3% } $\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 0.0675 3% }
+
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 6.75 3% } $\ \%$
  
{Berechnen Sie für $E_{\rm S}/N_0 = 6$ die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm S}$ bezeichnet die Symbolenergie.
+
{For&nbsp; $E_{\rm S}/N_0 = 6$,&nbsp; calculate the given upper bounds&nbsp; $p_{\rm S, \ max}$ for the error probabilities.
 
|type="{}"}
 
|type="{}"}
$E_{\rm S}/N_0 = 6, M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 0.0249 3% }  
+
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$
$\hspace{2.3cm} M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 0.0498 3% }  
+
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 4.98 3% } $\ \%$
$\hspace{2.3cm} M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 0.0747 3% }  
+
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 7.47 3% } $\ \%$
  
{Berechnen Sie für $E_{\rm B}/N_0 = 6$ die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm B}$ bezeichnet die Symbolenergie.
+
{For&nbsp; $E_{\rm B}/N_0 = 6$,&nbsp; calculate the error probability of the binary, ternary, and quaternary FSK. $E_{\rm B}$&nbsp; denotes the bit energy.
 
|type="{}"}
 
|type="{}"}
$E_{\rm B}/N_0 = 6, M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 0.0249 3% }  
+
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$
$\hspace{2.35cm} M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 0.0086 3% }  
+
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 0.86 3% } $\ \%$
$\hspace{2.35cm} M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 0.0037 3% }  
+
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 0.37 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>. Bei der Konstellation <b>B</b> ist dagegen Orthogonalität nicht gegeben. Vielmehr gilt hier $M = 3$ und $N = 2$.
+
'''(1)'''&nbsp; <u>Solutions 1 and 3</u>&nbsp; are correct:
 +
*In constellation &nbsp;$\rm B$&nbsp; the orthogonality is not given.&nbsp; Rather&nbsp; $M = 3$&nbsp; and&nbsp; $N = 2$&nbsp; are valid here.
  
  
'''(2)'''&nbsp; Für die binäre FSK ($M = 2$) gilt mit der Abkürzung $x = E_{\rm S}/N_0 = 6$:
+
 
:$$p_{\rm S} =  (-1)^{2} \cdot {1 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3} \approx \underline{0.0249}  
+
'''(2)'''&nbsp; For the binary FSK&nbsp; $(M = 2)$&nbsp; applies with the abbreviation&nbsp; $x = E_{\rm S}/N_0 = 6$:
 +
:$$p_{\rm S} =  (-1)^{2} \cdot {1 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3} \hspace{0.15cm}\underline{\approx 2.49 \%}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Entsprechend erhält man für die ternäre FSK ($M = 3$):
+
*Accordingly,&nbsp; for the ternary FSK&nbsp; $(M = 3)$&nbsp; we obtain:
:$$p_{\rm S} \hspace{-0.25cm} \ = \ \hspace{-0.25cm}  (-1)^{2} \cdot {2 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} +  
+
:$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} +  
  (-1)^{3} \cdot {2 \choose 2 }  \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}=$$
+
  (-1)^{3} \cdot {2 \choose 2 }  \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}=
:$$ \hspace{-0.25cm} \ = \ \hspace{-0.25cm}
+
   {\rm e }^{-3} - {1}/{3} \cdot {\rm e }^{-4} \approx 0.0498 - 0.0061 \hspace{0.15cm}\underline{ =4.37\%}  
   {\rm e }^{-3} - {1}/{3} \cdot {\rm e }^{-4} \approx 0.0498 - 0.0061 = \underline{0.0437}  
 
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Schließlich ergibt sich für die quaternäre FSK ($M = 4$):
+
*Finally,&nbsp; for the quaternary FSK&nbsp; $(M = 4)$&nbsp; we obtain:
:$$p_{\rm S} \hspace{-0.25cm} \ = \ \hspace{-0.25cm}  (-1)^{2} \cdot {3 \choose 1 }  \cdot \frac{{\rm e }^{-x/2}}{2}  +  
+
:$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 }  \cdot \frac{{\rm e }^{-x/2}}{2}  +  
 
  (-1)^{3} \cdot {3 \choose 2 }  \cdot \frac{{\rm e }^{-2x/3}}{3}
 
  (-1)^{3} \cdot {3 \choose 2 }  \cdot \frac{{\rm e }^{-2x/3}}{3}
  +  (-1)^{4} \cdot {4 \choose 3 }  \cdot \frac{{\rm e }^{-3x/4 }}{4} =$$
+
  +  (-1)^{4} \cdot {4 \choose 3 }  \cdot \frac{{\rm e }^{-3x/4 }}{4} =
:$$\hspace{-0.25cm} \ = \ \hspace{-0.25cm}
+
   {3}/ {2} \cdot{\rm e }^{-3} -  {\rm e }^{-4} + {\rm e }^{-4.5} \hspace{0.15cm}\underline{\approx 6.75\%}  
   {3}/ {2} \cdot{\rm e }^{-3} -  {\rm e }^{-4} + {\rm e }^{-4.5} \approx 0.0747 - 0.0183 + 0.0111 = \underline{0.0675}  
 
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Mit konstantem $E_{\rm S}/N_0 = 6$ gilt stets $p_{\rm S, \ max} &#8805; p_{\rm S}$:
 
:$$M =2: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \underline{0.0249} = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =3: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \underline{0.0498} > 0.0437 = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =4: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \underline{0.0747} > {0.0675} = p_{\rm S} \hspace{0.05cm}.$$
 
  
Analysiert man die Gleichung
+
'''(3)'''&nbsp; For equal&nbsp; $E_{\rm S}/N_0 = 6$,&nbsp; $p_{\rm S, \ max} &#8805; p_{\rm S}$ always holds:
:$$p_{\rm S, \hspace{-0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$$
+
:$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
 +
:$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
 +
:$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$
 +
 
 +
Analyzing the equation &nbsp; $p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ &nbsp; in more detail,&nbsp; we see that this bound exactly specifies the [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Union_Bound_-_Upper_bound_for_the_error_probability| "Union Bound"]]:
 +
* For the binary system, &nbsp; $1/2 \cdot  {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ &nbsp; gives the falsification probability,&nbsp; for example from&nbsp; $\boldsymbol{s}_1$&nbsp; to&nbsp; $\boldsymbol{s}_2$&nbsp; or&nbsp; vice versa.
 +
 
 +
* For the $M$&ndash;level system,&nbsp; the distance between&nbsp; $\boldsymbol{s}_1$&nbsp; and&nbsp; $\boldsymbol{s}_2$&nbsp; is exactly the same.&nbsp; But also the points&nbsp; $\boldsymbol{s}_3, \ \text{... ,} \, \boldsymbol{s}_M$&nbsp; are at the same distance from&nbsp; $\boldsymbol{s}_1$&nbsp; or&nbsp; from $\boldsymbol{s}_2$.
 +
 
 +
* The&nbsp; "Union Bound"&nbsp; considers the distortion possibilities of a point to each of the generally&nbsp; $M&ndash;1$&nbsp; other points by the factor&nbsp; $M -1$.
  
etwas genauer, so erkennt man, dass diese Schranke genau die [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Union_Bound_-_Obere_Schranke_f.C3.BCr_die_Fehlerwahrscheinlichkeit| Union&ndash;Bound]] angibt:
 
* Beim Binärsystem gibt $1/2 \cdot \exp {[&ndash;E_{\rm S}/(2N_0)]}$ die Verfälschungswahrscheinlichkeit an, zum Beispiel von $\boldsymbol{s}_1$ nach $\boldsymbol{s}_2$ oder umgekehrt.
 
* Beim <i>M</i>&ndash;stufigen System ist der Abstand zwischen $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ genau so groß. Aber auch die Punkte $\boldsymbol{s}_1, \ ... \, \boldsymbol{s}_M$ liegen im gleichen Abstand zu $\boldsymbol{s}_1$ bzw. zu $\boldsymbol{s}_2$
 
* Die &bdquo;Union&ndash;Bound&rdquo; berücksichtigt die Verfälschungsmöglichkeiten eines Punktes zu jedem der allgemein $M&ndash;1$ anderen Punkte durch den Faktor $M \, &ndash;1$.
 
  
  
'''(4)'''&nbsp; Mit $E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$ erhält man
+
'''(4)'''&nbsp; With &nbsp;$E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$&nbsp; one obtains $p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.
:$$p_{\rm S, \hspace{-0.05cm}max} =  \frac {M-1}{ 2} \cdot {\rm exp } \left [ - \frac{ {\rm log_2}\hspace{0.1cm}(M) \cdot E_{\rm B}}{2 \cdot N_{\rm 0}}\right ]  \hspace{0.05cm}.$$
 
  
Nun wird die Fehlerwahrscheinlichkeit mit zunehmender Stufenzahl immer kleiner, da bei konstantem $E_{\rm B}$ die Energie $E_{\rm S}$ pro Symbol um den Faktor ${\rm log}_2 \, (M)$ zunimmt. Der Faktor $M&ndash;1$ (dieser berücksichtigt die Verfälschungsmöglichkeiten eines Signalraumpunktes) hat dann weniger Einfluss als die Vergrößerung des negativen Exponenten:
+
*The error probability becomes smaller as the level number increases,&nbsp; because at constant&nbsp; $E_{\rm B}$&nbsp; the energy&nbsp; $E_{\rm S}$&nbsp; per symbol increases by the factor&nbsp; ${\rm log}_2 \, (M)$.
:$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{-0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 0.0249} \hspace{0.05cm},$$
+
:$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{-0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm e }^{-4.755} \hspace{0.5cm}  \underline{= 0.0086} \hspace{0.05cm},$$
+
*The factor&nbsp; $M-1$&nbsp; (considers the falsification possibilities of a signal space point)&nbsp; has less influence than the increase of the negative exponent:
:$$M =4\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{-0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {3}/{ 2} \cdot {\rm e }^{-6} \hspace{0.15cm}  \underline{=0.0037} \hspace{0.05cm}.$$
+
:$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
 +
:$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm e }^{-4.755} \hspace{0.5cm}  \underline{= 0.86\%} \hspace{0.05cm},$$
 +
:$$M =4\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {3}/{ 2} \cdot {\rm e }^{-6} \hspace{0.15cm}  \underline{=0.37\%} \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
Line 118: Line 122:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.5 Inkohärente Demodulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.5 Non-Coherent Demodulation^]]

Latest revision as of 04:49, 11 September 2022

Signal space constellations

In this last exercise of this chapter we consider  "Frequency Shift Keying"  $\rm (FSK)$  with  $M$  waveforms and assume that they are orthogonal to each other in pairs. 

  • In this case,  the equivalent low–pass signals  $s_i(t)$  with  $i = 1, \ \text{...} \ , M$  can be represented in the following form:
$$s_i(t) = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$
  • $\xi_i(t)$  are complex basis functions for which in general  $i = 1, \ \text{...} \ , N$.   
  • However,  for orthogonal signaling,  $M = N$ is always true.
  • The diagram shows three different signal space constellations.  However,  not all three describe an orthogonal FSK.  This is referred to in the subtask  (1).


In the  "theory part",  the exact formula for the probability of a correct decision in the case of AWGN noise is given:

$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0} \hspace{0.05cm}.$$
  • From this it is very easy to calculate the symbol error probability:
$$p_{\rm S} = {\rm Pr}({\cal{E}}) = 1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0} \hspace{0.05cm}.$$
  • An upper bound  $(p_{\rm S, \ max} ≥ p_{\rm S})$  is obtained due to the alternating signs if we consider only the first term  $(i=1)$  of this sum:
$$p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})} \hspace{0.05cm}.$$

In subtask  (4),  this bound is to be evaluated for a given ratio  $E_{\rm B}/N_0$,  where  $E_{\rm B}$  is the average signal energy per bit:

$$E_{\rm B} = \frac{ E_{\rm S} } { {\rm log_2}\hspace{0.1cm}(M)} \hspace{0.05cm}.$$



Notes:



Questions

1

Which of the above signal space constellations are valid for orthogonal FSK?

Constellation  $\rm A$,
Constellation  $\rm B$,
Constellation  $\rm C$.

2

For  $E_{\rm S}/N_0 = 6$,  calculate the error probability of binary, ternary and quaternary FSK.  $E_{\rm S}$  denotes the average symbol energy.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

3

For  $E_{\rm S}/N_0 = 6$,  calculate the given upper bounds  $p_{\rm S, \ max}$ for the error probabilities.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$

4

For  $E_{\rm B}/N_0 = 6$,  calculate the error probability of the binary, ternary, and quaternary FSK. $E_{\rm B}$  denotes the bit energy.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$


Solution

(1)  Solutions 1 and 3  are correct:

  • In constellation  $\rm B$  the orthogonality is not given.  Rather  $M = 3$  and  $N = 2$  are valid here.


(2)  For the binary FSK  $(M = 2)$  applies with the abbreviation  $x = E_{\rm S}/N_0 = 6$:

$$p_{\rm S} = (-1)^{2} \cdot {1 \choose 1 } \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3} \hspace{0.15cm}\underline{\approx 2.49 \%} \hspace{0.05cm}.$$
  • Accordingly,  for the ternary FSK  $(M = 3)$  we obtain:
$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 } \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} + (-1)^{3} \cdot {2 \choose 2 } \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}= {\rm e }^{-3} - {1}/{3} \cdot {\rm e }^{-4} \approx 0.0498 - 0.0061 \hspace{0.15cm}\underline{ =4.37\%} \hspace{0.05cm}.$$
  • Finally,  for the quaternary FSK  $(M = 4)$  we obtain:
$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 } \cdot \frac{{\rm e }^{-x/2}}{2} + (-1)^{3} \cdot {3 \choose 2 } \cdot \frac{{\rm e }^{-2x/3}}{3} + (-1)^{4} \cdot {4 \choose 3 } \cdot \frac{{\rm e }^{-3x/4 }}{4} = {3}/ {2} \cdot{\rm e }^{-3} - {\rm e }^{-4} + {\rm e }^{-4.5} \hspace{0.15cm}\underline{\approx 6.75\%} \hspace{0.05cm}.$$


(3)  For equal  $E_{\rm S}/N_0 = 6$,  $p_{\rm S, \ max} ≥ p_{\rm S}$ always holds:

$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$

Analyzing the equation   $p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$   in more detail,  we see that this bound exactly specifies the "Union Bound":

  • For the binary system,   $1/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$   gives the falsification probability,  for example from  $\boldsymbol{s}_1$  to  $\boldsymbol{s}_2$  or  vice versa.
  • For the $M$–level system,  the distance between  $\boldsymbol{s}_1$  and  $\boldsymbol{s}_2$  is exactly the same.  But also the points  $\boldsymbol{s}_3, \ \text{... ,} \, \boldsymbol{s}_M$  are at the same distance from  $\boldsymbol{s}_1$  or  from $\boldsymbol{s}_2$.
  • The  "Union Bound"  considers the distortion possibilities of a point to each of the generally  $M–1$  other points by the factor  $M -1$.


(4)  With  $E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$  one obtains $p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.

  • The error probability becomes smaller as the level number increases,  because at constant  $E_{\rm B}$  the energy  $E_{\rm S}$  per symbol increases by the factor  ${\rm log}_2 \, (M)$.
  • The factor  $M-1$  (considers the falsification possibilities of a signal space point)  has less influence than the increase of the negative exponent:
$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{-4.755} \hspace{0.5cm} \underline{= 0.86\%} \hspace{0.05cm},$$
$$M =4\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {3}/{ 2} \cdot {\rm e }^{-6} \hspace{0.15cm} \underline{=0.37\%} \hspace{0.05cm}.$$