Difference between revisions of "Aufgaben:Exercise 3.6Z: Transition Diagram at 3 States"

From LNTwww
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm}}
+
{{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}}
  
[[File:P_ID2667__KC_Z_3_6.png|right|frame|Unvollständiges Zustandsübergangsdiagramm für $m = 3$]]
+
[[File:P_ID2667__KC_Z_3_6.png|right|frame|State transition diagram for  $m = 3$  $($incomplete$)$]]
Im Zustandsübergangsdiagramm eines Codierers mit Gedächtnis $m$ gibt es $2^m$ Zustände. Das dargestellte Diagramm mit acht Zuständen beschreibt deshalb einen Faltungscoder mit dem Gedächtnis $m = 3$.
+
In the state transition diagram of an encoder with memory  $m$  there are  $2^m$  states.  Therefore,  the diagram shown with eight states describes a convolutional encoder with memory  $m = 3$.
  
Normalerweise bezeichnet man die Zustände mit $S_0, \ ... , \ S_{\mu}, \ ... \ , \ S_7$, wobei der Index $\mu$ aus der Belegung des Schieberegisters (Inhalt von links nach rechts: $u_{i–1}, u_{i–2}, u_{i–3})$ festgelegt ist:
+
Usually the states are denoted by  $S_0, \ \text{...} \ , \ S_{\mu}, \ \text{...} \ , \ S_7$,  where the index  $\mu$  is determined from the occupancy of the shift register  $($contents from left to right:   $u_{i-1}, u_{i-2}, u_{i-3})$ :
 
:$$\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l}
 
:$$\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Der Zustand $S_0$ ergibt sich deshalb für den Schieberegisterinhalt „$000$”, der Zustand $S_1$ für „$100$” und der Zustand $S_7$ für „$111$”.
+
The state  $S_0$  therefore results for the shift register content  "$000$",  the state  $S_1$  for  "$100$"  and the state  $S_7$  for  "$111$".
  
In obiger Grafik sind allerdings für die Zustände $S_0, \, ... \, , \, S_7$ Platzhalter names $\mathbf{A}, \, ... \, , \, \mathbf{H}$ verwendet. In den Teilaufgaben (1) und (2) sollen Sie klären, welcher Platzhalter für welchen Zustand steht.
+
However,  in the above graphic,  for the states  $S_0, \, \text{...} \, , \, S_7$  only placeholder names  $\mathbf{A}, \, \text{...} \, , \, \mathbf{H}$  are used.  In the subtasks  '''(1)'''  and  '''(2)'''  you should clarify which placeholder stands for which state.
  
Bei Faltungscodierer der Rate $1/n$, die her ausschließlich betrachtet werden sollen, gehen von jedem Zustand $S_{\mu}$ zwei Pfeile ab, ein roter für das aktuelle Informationsbit $u_i = 0$ und ein blauer für $u_i = 1$. Auch deshalb ist das gezeigte Zustandsübergangsdiagramm nicht vollständig.
+
For convolutional encoders of rate  $1/n$,  which will be exclusively considered here,  two arrows depart from each state  $S_{\mu}$ ,  
 +
*a red one for the current information bit  $u_i = 0$  and
 +
 +
*a blue one for  $u_i = 1$.  
  
Zu erwähnen ist weiterhin:
 
* Bei jedem Zustand kommen auch zwei Pfeile an, wobei diese durchaus gleichfarbig sein können.
 
* Neben den Pfeilen stehen üblicherweise noch die $n$ Codebits. Auch hierauf wurde hier verzichtet.
 
  
 +
This is another reason why the state transition diagram shown is not complete.  It is to be mentioned furthermore:
 +
* At each state also two arrows arrive,  whereby these can be absolutely of the same color.
  
''Hinweise:''
+
* Next to the arrows there are usually the  $n$  code bits. This was also omitted here.
* Die Aufgabe bezieht sich auf die beiden ersten Seiten des Kapitels [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm| Codebeschreibung mit Zustands– und Trellisdiagramm]].
 
* In der [[Aufgaben:3.7Z_Welcher_Code_ist_katastrophal| Aufgabe Z3.7]] werden zwei Faltungscodes mit Gedächtnis $m = 3$ untersucht, die beide durch das hier analysierte Zustandsübergangsdiagramm beschrieben werden können.
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
  
===Fragebogen===
+
 
 +
Hints:
 +
* The exercise belongs to the chapter  [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram| "Code Description with State and Trellis Diagram"]].
 +
 
 +
*In  [[Aufgaben:Exercise_3.7Z:_Which_Code_is_Catastrophic%3F|$\text{Exercise 3.7Z}$]]  two convolutional codes with memory  $m = 3$  are examined,  both of which can be described by the transition diagram analyzed here.
 +
 
 +
*Please include the appropriate index  $\mu$  for all questions.
 +
 
 +
*Reference is made in particular to the sections 
 +
:*[[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#State_definition_for_a_memory_register|"State definition for a memory register"]]  as well as
 +
:* [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Representation_in_the_state_transition_diagram|"Representation in the state transition diagram"]].
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Für welche Zustände $S_{\mu}$ stehen die Platzhalter $\mathbf{A}$ und $\mathbf{F}$? &#8658; Index eingeben.
+
{For which states&nbsp; $S_{\mu}$&nbsp; do the placeholders&nbsp; $\mathbf{A}$&nbsp; and&nbsp; $\mathbf{F}$ stand?  
 
|type="{}"}
 
|type="{}"}
${\rm Zustand} \ \mathbf{A} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 0 3% }  
+
${\rm state} \ \mathbf{A} \ &#8658; \ {\rm index} \ {\mu} \ = \ ${ 0. }  
${\rm Zustand} \ \mathbf{F} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 7 3% }  
+
${\rm state} \ \mathbf{F} \ &#8658; \ {\rm index} \ {\mu} \ = \ ${ 7 }  
  
{Nennen Sie auch die Zuordnungen der anderen Platzhalter zu den Indizes.
+
{Also name the mappings of the other placeholders to the indexes.
 
|type="{}"}
 
|type="{}"}
${\rm Zustand} \ \mathbf{B} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 1 3% }
+
${\rm state} \ \mathbf{B} \ &#8658; \ {\rm index} \ {\mu} \ = \ ${ 1 }
${\rm Zustand} \ \mathbf{C} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 2 3% }  
+
${\rm state} \ \mathbf{C} \ &#8658; \ {\rm index} \ {\mu} \ = \ ${ 2 }  
${\rm Zustand} \ \mathbf{D} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 5 3% }  
+
${\rm state} \ \mathbf{D} \ &#8658; \ {\rm index} \ {\mu} \ = \ ${ 5 }  
${\rm Zustand} \ \mathbf{E} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 3 3% }  
+
${\rm state} \ \mathbf{E} \ &#8658; \ {\rm index} \ {\mu} \ = \ ${ 3 }  
${\rm Zustand} \ \mathbf{G} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 6 3% }  
+
${\rm state} \ \mathbf{G} \ &#8658; \ {\rm index} \ {\mu} \ = \ ${ 6 }  
${\rm Zustand} \ \mathbf{H} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 4 3% }   
+
${\rm state} \ \mathbf{H} \ &#8658; \ {\rm index} \ {\mu} \ = \ ${ 4 }   
  
{Zu welchem Zustand $S_{\mu}$ geht der jeweils zweite Pfeil? &nbsp;&#8658;&nbsp; Index eingeben.
+
{To which state&nbsp; $S_{\mu}$&nbsp; does the second arrow in each case go?
 
|type="{}"}
 
|type="{}"}
${\rm Von \ {\it S}_{\rm 1} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ ${ 3 3% }  
+
${\rm From \ {\it S}_{\rm 1} \ to \ the\ state \ with \ index \ {\mu}} \ = \ ${ 3 }  
${\rm Von \ {\it S}_{\rm 3} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ ${ 6 3% }
+
${\rm From \ {\it S}_{\rm 3} \ to \ the\ state \ with \ index \ {\mu}} \ = \ ${ 6 }
${\rm Von \ {\it S}_{\rm 5} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ ${ 2 3% }
+
${\rm From \ {\it S}_{\rm 5} \ to \ the\ state \ with \ index \ {\mu}} \ = \ ${ 2 }
${\rm Von \ {\it S}_{\rm 7} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ ${ 6 3% }
+
${\rm From \ {\it S}_{\rm 7} \ to \ the\ state \ with \ index \ {\mu}} \ = \ ${ 6 }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Platzhalter $\mathbf{A}$ steht für den Zustand $S_0$ &nbsp;&#8658;&nbsp; $u_{i&ndash;1} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;3} = 0$. Dies ist der einzige Zustand $S_{\mu}$, bei dem man durch das Infobit $u_i = 0$ (roter Pfeil) im gleichen Zustand $S_{\mu}$ bleibt.
+
[[File:P_ID2668__KC_Z_3_6b_neu.png|right|frame|Relationship between placeholders and states]]
 +
[[File:P_ID2669__KC_Z_3_6c.png|right|frame|State transition diagram with $2^3$ states]]
 +
 
 +
'''(1)'''&nbsp; The placeholder&nbsp; $\mathbf{A}$&nbsp; represents the state&nbsp; $S_0$ &nbsp; &#8658; &nbsp; $u_{i-1} = 0, \ u_{i-2} = 0, \ u_{i-3} = 0$.
 +
 +
*This is the only state&nbsp; $S_{\mu}$&nbsp; where one remains in the same state&nbsp; $S_{\mu}$&nbsp; by the info-bit&nbsp; $u_i = 0$&nbsp; (red arrow).
 +
 
 +
*From the state&nbsp; $S_7$ &nbsp; &#8658; &nbsp; $u_{i-1} = 1, \ u_{i-2} = 1, \ u_{i-3} = 1$&nbsp; one comes with&nbsp; $u_i = 1$&nbsp; (blue arrow)&nbsp; also again to the state&nbsp; $S_7$.
 +
 +
*Thus,&nbsp; for $\mathbf{A}$&nbsp; the index&nbsp; $\underline{\mu = 0}$&nbsp; and for&nbsp; $\mathbf{F}$&nbsp; the index $\underline{\mu = 7}$&nbsp; had to be entered.
 +
 
  
[[File:P_ID2668__KC_Z_3_6b_neu.png|right|frame|Zusammenhang zwischen Platzhalter und Zuständen]]
 
  
Vom Zustand $S_7$ &nbsp;&#8658;&nbsp; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;3} = 1$ kommt man mit $u_i = 1$ (blauer Pfeil) auch wieder zum Zustand $S_7$. Einzugeben waren also für $\mathbf{A}$ der Index $\underline{\mu = 0}$ und für $\mathbf{F}$ der Index $\underline{\mu = 7}$.
+
'''(2)'''&nbsp; Starting from the state&nbsp; $\mathbf{A} = S_0$,&nbsp; one arrives at the following states according to the initial graph in a clockwise direction with the red arrows&nbsp; $(u_i = 0)$&nbsp; or the blue arrows&nbsp; $(u_i = 1)$:
 +
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 1 &#8658; s_{i+1} = \mathbf{B} = S_1,$$
 +
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 1, \ u_i = 0 &#8658; s_{i+1} = \mathbf{C} = S_2,$$
 +
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 1, \ u_{i&ndash;1} = 0, \ u_i = 1 &#8658; s_{i+1} = \mathbf{D} = S_5,$$
 +
:$$u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 1, \ u_i = 1 &#8658; s_{i+1} = \mathbf{E} = S_3,$$
 +
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 1, \ u_{i&ndash;1} = 1, \ u_i = 1 &#8658; s_{i+1} = \mathbf{F} = S_7,$$
 +
:$$u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;1} = 1, \ u_i = 0 &#8658; s_{i+1} = \mathbf{G} = S_6,$$
 +
:$$u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;1} = 0, \ u_i = 0 &#8658; s_{i+1} = \mathbf{H} = S_4,$$
 +
:$$u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 0 &#8658; s_{i+1} = \mathbf{A} = S_0.$$
  
 +
*So the indices&nbsp; $\mu$&nbsp; are to be entered in the&nbsp; <u>order 1,&nbsp; 2,&nbsp; 5,&nbsp; 3,&nbsp; 6,&nbsp; 4</u>.
 +
 +
*The graphic shows the connection between the placeholders and the states&nbsp; $S_{\mu}$.
  
'''(2)'''&nbsp; Ausgehend vom Zustand $\mathbf{A} = S_0$ kommt man entsprechend der Ausgangsgrafik im Uhrzeigersinn mit den roten Pfeilen $(u_i = 0)$ bzw. den blauen Pfeilen $(u_i = 1)$ zu folgenden Zuständen:
 
* $u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 1 &#8658; s_{i+1} = \mathbf{B} = S_1$,
 
* $u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 1, \ u_i = 0 &#8658; s_{i+1} = \mathbf{C} = S_2$,
 
* $u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 1, \ u_{i&ndash;1} = 0, \ u_i = 1 &#8658; s_{i+1} = \mathbf{D} = S_5$,
 
* $u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 1, \ u_i = 1 &#8658; s_{i+1} = \mathbf{E} = S_3$,
 
* $u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 1, \ u_{i&ndash;1} = 1, \ u_i = 1 &#8658; s_{i+1} = \mathbf{F} = S_7$,
 
* $u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;1} = 1, \ u_i = 0 &#8658; s_{i+1} = \mathbf{G} = S_6$,
 
* $u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;1} = 0, \ u_i = 0 &#8658; s_{i+1} = \mathbf{H} = S_4$,
 
* $u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 0 &#8658; s_{i+1} = \mathbf{A} = S_0$.
 
  
  
Einzugeben waren also die Indizes $\mu$ in der <u>Reihenfolge 1, 2, 5, 3, 6, 4</u>. Die Grafik zeigt den Zusammenhang zwischen den Platzhaltern und den Zuständen $S_{\mu}$.
+
'''(3)'''&nbsp; From state &nbsp; $S_1$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;3} = 0$ &nbsp; one arrives with&nbsp; $u_i = 0$&nbsp; (red arrow)&nbsp; at state&nbsp; $S_2$.&nbsp; On the other hand,&nbsp; with&nbsp; $u_i = 1$&nbsp; (blue arrow)&nbsp; one ends up at the state&nbsp; $S_3$ &nbsp; &#8658; &nbsp; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;3} = 0$.
  
  
'''(3)'''&nbsp; Vom Zustand $S_1$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;3} = 0$ kommt man mit $u_i = 0$ (roter Pfeil) zum Zustand $S_2$. Dagegen landet man mit $u_i = 1$ (blauer Pfeil) beim Zustand $S_3$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;3} = 0$.
+
The adjacent graphic shows the state transition diagram with all transitions.&nbsp; From this it can be read:
 +
* From state&nbsp; $S_3$&nbsp; one comes with&nbsp; $u_i = 0$&nbsp; to state&nbsp; $S_6$.
  
[[File:P_ID2669__KC_Z_3_6c.png|right|frame|Zustandsübergangsdiagramm mit $2^3$ Zuständen]]
+
* From state&nbsp; $S_5$&nbsp; one comes with&nbsp; $u_i = 0$&nbsp; to the state&nbsp; $S_2$.
  
Nebenstehende Grafik zeigt das Zustandsübergangsdiagramm mit allen Übergängen. Aus diesem kann abgelesen werden:
+
* From the state&nbsp; $S_7$&nbsp; one comes with&nbsp; $u_i = 0$&nbsp; to the state&nbsp; $S_6$.
* Vom Zustand $S_3$ kommt man mit $u_i = 0$ zum Zustand $S_6$.
 
* Vom Zustand $S_5$ kommt man mit $u_i = 0$ zum Zustand $S_2$.
 
* Vom Zustand $S_7$ kommt man mit $u_i = 0$ zum Zustand $S_6$.
 
  
  
Einzugeben waren also die Indizes der <u>Reihenfolge 3, 6, 2, 6</u>.
+
Thus,&nbsp; the indices are to be entered in the <u>order 3,&nbsp; 6,&nbsp; 2,&nbsp; 6</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
Line 90: Line 114:
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.3 Codebeschreibung mit Zustands– und Trellisdiagramm^]]
+
[[Category:Channel Coding: Exercises|^3.3 State and Trellis Diagram^]]

Latest revision as of 15:43, 14 November 2022

State transition diagram for  $m = 3$  $($incomplete$)$

In the state transition diagram of an encoder with memory  $m$  there are  $2^m$  states.  Therefore,  the diagram shown with eight states describes a convolutional encoder with memory  $m = 3$.

Usually the states are denoted by  $S_0, \ \text{...} \ , \ S_{\mu}, \ \text{...} \ , \ S_7$,  where the index  $\mu$  is determined from the occupancy of the shift register  $($contents from left to right:   $u_{i-1}, u_{i-2}, u_{i-3})$ :

$$\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l} \hspace{0.05cm}.$$

The state  $S_0$  therefore results for the shift register content  "$000$",  the state  $S_1$  for  "$100$"  and the state  $S_7$  for  "$111$".

However,  in the above graphic,  for the states  $S_0, \, \text{...} \, , \, S_7$  only placeholder names  $\mathbf{A}, \, \text{...} \, , \, \mathbf{H}$  are used.  In the subtasks  (1)  and  (2)  you should clarify which placeholder stands for which state.

For convolutional encoders of rate  $1/n$,  which will be exclusively considered here,  two arrows depart from each state  $S_{\mu}$ ,

  • a red one for the current information bit  $u_i = 0$  and
  • a blue one for  $u_i = 1$.


This is another reason why the state transition diagram shown is not complete.  It is to be mentioned furthermore:

  • At each state also two arrows arrive,  whereby these can be absolutely of the same color.
  • Next to the arrows there are usually the  $n$  code bits. This was also omitted here.



Hints:

  • In  $\text{Exercise 3.7Z}$  two convolutional codes with memory  $m = 3$  are examined,  both of which can be described by the transition diagram analyzed here.
  • Please include the appropriate index  $\mu$  for all questions.
  • Reference is made in particular to the sections 



Questions

1

For which states  $S_{\mu}$  do the placeholders  $\mathbf{A}$  and  $\mathbf{F}$ stand?

${\rm state} \ \mathbf{A} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{F} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

2

Also name the mappings of the other placeholders to the indexes.

${\rm state} \ \mathbf{B} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{C} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{D} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{E} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{G} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{H} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

3

To which state  $S_{\mu}$  does the second arrow in each case go?

${\rm From \ {\it S}_{\rm 1} \ to \ the\ state \ with \ index \ {\mu}} \ = \ $

${\rm From \ {\it S}_{\rm 3} \ to \ the\ state \ with \ index \ {\mu}} \ = \ $

${\rm From \ {\it S}_{\rm 5} \ to \ the\ state \ with \ index \ {\mu}} \ = \ $

${\rm From \ {\it S}_{\rm 7} \ to \ the\ state \ with \ index \ {\mu}} \ = \ $


Solution

Relationship between placeholders and states
State transition diagram with $2^3$ states

(1)  The placeholder  $\mathbf{A}$  represents the state  $S_0$   ⇒   $u_{i-1} = 0, \ u_{i-2} = 0, \ u_{i-3} = 0$.

  • This is the only state  $S_{\mu}$  where one remains in the same state  $S_{\mu}$  by the info-bit  $u_i = 0$  (red arrow).
  • From the state  $S_7$   ⇒   $u_{i-1} = 1, \ u_{i-2} = 1, \ u_{i-3} = 1$  one comes with  $u_i = 1$  (blue arrow)  also again to the state  $S_7$.
  • Thus,  for $\mathbf{A}$  the index  $\underline{\mu = 0}$  and for  $\mathbf{F}$  the index $\underline{\mu = 7}$  had to be entered.


(2)  Starting from the state  $\mathbf{A} = S_0$,  one arrives at the following states according to the initial graph in a clockwise direction with the red arrows  $(u_i = 0)$  or the blue arrows  $(u_i = 1)$:

$$u_{i–3} = 0, \ u_{i–2} = 0, \ u_{i–1} = 0, \ u_i = 1 ⇒ s_{i+1} = \mathbf{B} = S_1,$$
$$u_{i–3} = 0, \ u_{i–2} = 0, \ u_{i–1} = 1, \ u_i = 0 ⇒ s_{i+1} = \mathbf{C} = S_2,$$
$$u_{i–3} = 0, \ u_{i–2} = 1, \ u_{i–1} = 0, \ u_i = 1 ⇒ s_{i+1} = \mathbf{D} = S_5,$$
$$u_{i–3} = 1, \ u_{i–2} = 0, \ u_{i–1} = 1, \ u_i = 1 ⇒ s_{i+1} = \mathbf{E} = S_3,$$
$$u_{i–3} = 0, \ u_{i–2} = 1, \ u_{i–1} = 1, \ u_i = 1 ⇒ s_{i+1} = \mathbf{F} = S_7,$$
$$u_{i–3} = 1, \ u_{i–2} = 1, \ u_{i–1} = 1, \ u_i = 0 ⇒ s_{i+1} = \mathbf{G} = S_6,$$
$$u_{i–3} = 1, \ u_{i–2} = 1, \ u_{i–1} = 0, \ u_i = 0 ⇒ s_{i+1} = \mathbf{H} = S_4,$$
$$u_{i–3} = 1, \ u_{i–2} = 0, \ u_{i–1} = 0, \ u_i = 0 ⇒ s_{i+1} = \mathbf{A} = S_0.$$
  • So the indices  $\mu$  are to be entered in the  order 1,  2,  5,  3,  6,  4.
  • The graphic shows the connection between the placeholders and the states  $S_{\mu}$.


(3)  From state   $S_1$ ⇒ $u_{i–1} = 1, \ u_{i–2} = 0, \ u_{i–3} = 0$   one arrives with  $u_i = 0$  (red arrow)  at state  $S_2$.  On the other hand,  with  $u_i = 1$  (blue arrow)  one ends up at the state  $S_3$   ⇒   $u_{i–1} = 1, \ u_{i–2} = 1, \ u_{i–3} = 0$.


The adjacent graphic shows the state transition diagram with all transitions.  From this it can be read:

  • From state  $S_3$  one comes with  $u_i = 0$  to state  $S_6$.
  • From state  $S_5$  one comes with  $u_i = 0$  to the state  $S_2$.
  • From the state  $S_7$  one comes with  $u_i = 0$  to the state  $S_6$.


Thus,  the indices are to be entered in the order 3,  6,  2,  6.