Difference between revisions of "Aufgaben:Exercise 3.7Z: Which Code is Catastrophic?"

From LNTwww
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm}}
+
{{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}}
  
[[File:P_ID2671__KC_Z_3_7.png|right|frame|Codierer und Zustandsübergangsdiagramm für $m = 3$]]
+
[[File:EN_KC_Z_3_7_neu.png|right|frame|Encoder for&nbsp; $m = 3$&nbsp; <br>and state transition diagram.]]
Die nebenstehende Grafik zeigt
+
The adjacent graph shows
* zwei unterschiedliche <span style="color: rgb(51, 0, 204);"><b>Coder A</b></span> und <span style="color: rgb(51, 0, 204);"><b>Coder B</b></span>, jeweils mit dem Gedächtnis $m = 3$ (oben),
+
* two different $\text{ encoder A }$ and $\text{ enoder B}$,&nbsp; each with memory&nbsp; $m = 3$&nbsp; $($top$)$,
* zwei Zustandsübergangsdiagramme, bezeichnet mit <span style="color: rgb(0, 102, 0);"><b>Diagramm 1</b></span> und <span style="color: rgb(0, 102, 0);"><b>Diagramm 2</b></span> (unten).
 
  
 +
* two state transition diagrams,&nbsp; labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$&nbsp; $($bottom$)$.
  
In der letzten Teilaufgabe sollen Sie entscheiden, welches Diagramm zum Coder A gehört und welches zum Coder B.
 
  
Zunächst werden die drei Übertragungsfunktionen
+
In the last subtask,&nbsp; you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$.
 +
 
 +
First,&nbsp; the three transfer functions
 
* $G(D) = 1 + D + D^2 + D^3$,
 
* $G(D) = 1 + D + D^2 + D^3$,
* $G(D) = 1 + D^3$, und
+
 
 +
* $G(D) = 1 + D^3$,&nbsp; and
 +
 
 
* $G(D) = 1 + D + D^3$
 
* $G(D) = 1 + D + D^3$
  
  
analysiert und anschließend die Ausgangssequenzen $\underline{x}$ unter der Voraussetzung
+
are analyzed and then the initial sequences&nbsp; $\underline{x}$&nbsp; is calculated under the condition
:$$\underline{u}= \underline{1}= (1, 1, 1, ... \hspace{0.1cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}
+
:$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.35cm}
U(D)= \frac{1}{1+D}$$
+
U(D)= \frac{1}{1+D}.$$
  
berechnet. Diese Übertragungsfunktionen stehen im direkten Zusammenhang mit den skizzierten Codierern.
+
These transfer functions are directly related to the outlined encoders.
  
Desweiteren ist noch zu klären, welcher der beiden Codes <i>katastrophal</i> ist. Von einem solchen spricht man, wenn eine endliche Anzahl von Übertragungsfehlern zu unendlich vielen Decodierfehlern führt.  
+
*Furthermore, it remains to be clarified which of the two codes is "catastrophic".
 +
 +
*One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors.  
  
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm| Codebeschreibung mit Zustands&ndash; und Trellisdiagramm]]-
 
* Angegeben werden noch zwei Polynomprodukte in ${\rm GF}(2)$:
 
:$$(1+D) \cdot (1+D^2) \hspace{-0.25cm} \ = \ \hspace{-0.25cm}1+D +D^2+D^3\hspace{0.05cm},$$
 
:$$(1+D) \cdot (1+D+D^2) \hspace{-0.25cm} \ = \ \hspace{-0.25cm}1+D^3\hspace{0.05cm}.$$
 
  
  
  
===Fragebogen===
+
<u>Hints:</u>
 +
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram| "Code description with state and trellis diagram"]].
 +
 
 +
:*&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#State_definition_for_a_memory_register|"State definition for a memory register"]]&nbsp; and
 +
:*&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Representation_in_the_state_transition_diagram|"Representation in the state transition diagram"]].
 +
 
 +
* Two more polynomial products in&nbsp; ${\rm GF}(2)$&nbsp; are given:
 +
:$$(1+D) \cdot (1+D^2) = 1+D +D^2+D^3\hspace{0.05cm},$$
 +
:$$(1+D) \cdot (1+D+D^2) = 1+D^3\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Ausgangssequenz $\underline{x}$ ergibt sich für $\underline{u} = \underline{1}, \ G(D) = 1 + D + D^2 + D^3$?
+
{What output sequence &nbsp; $\underline{x}$ &nbsp; results fo r&nbsp; $\underline{u} = \underline{1}$ &nbsp; and &nbsp; $G(D) = 1 + D + D^2 + D^3$?
 
|type="[]"}
 
|type="[]"}
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, ...)$,
+
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
+ $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$,
+
+ $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, ...)$.
+
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$.
+ Die Ausgangsfolge $\underline{x}$ ist zeitlich begrenzt.
+
+ The output sequence &nbsp; $\underline{x}$ &nbsp; is time-limited.
  
{Welche Ausgangssequenz $\underline{x}$ ergibt sich für $\underline{u} = \underline{1}$ und $G(D) = 1 + D^3$?
+
{What output sequence &nbsp; $\underline{x}$ &nbsp; results for &nbsp; $\underline{u} = \underline{1}$ &nbsp; and &nbsp; $G(D) = 1 + D^3$?
 
|type="[]"}
 
|type="[]"}
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, ...)$,
+
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$,
+
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
+ $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, ...)$,
+
+ $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
+ Die Ausgangsfolge $\underline{x}$ ist zeitlich begrenzt.
+
+ The output sequence&nbsp; $\underline{x}$&nbsp; is time-limited.
  
{Welche Ausgangssequenz $\underline{x}$ ergibt sich für $\underline{u} = \underline{1}$ und $G(D) = 1 + D + D^3$?
+
{What output sequence &nbsp; $\underline{x}$ &nbsp; results for &nbsp; $\underline{u} = \underline{1}$ &nbsp; and &nbsp; $G(D) = 1 + D + D^3$?
 
|type="[]"}
 
|type="[]"}
+ $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, ...)$,
+
+ $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$,
+
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$,
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, ...)$,
+
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
- Die Ausgangsfolge $\underline{x}$ ist zeitlich begrenzt.
+
- The output sequence &nbsp; $\underline{x}$&nbsp; is finite in time.
  
{Wie lautet die Codesequenz $\underline{x}$ von <span style="color: rgb(51, 0, 255);"><b>Coder A</b></span> für die Eins&ndash;Sequenz am Eingang?
+
{What is the code sequence&nbsp; $\underline{x}$&nbsp; of $\text{ encoder A }$ for the sequence of ones at the input?
 
|type="[]"}
 
|type="[]"}
+ $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$,
+
+ $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
- $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, ...)$,
+
- $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$,
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, ...)$.
+
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$.
- Die Codesequenz $\underline{x}$ beinhaltet endlich viele Einsen.
+
- The code sequence&nbsp; $\underline{x}$&nbsp; contains finitely many&nbsp; "ones".
  
{Wie lautet die Codesequenz $\underline{x}$ von <span style="color: rgb(51, 0, 255);"><b>Coder B</b></span> für die Eins&ndash;Sequenz am Eingang?
+
{What is the code sequence &nbsp; $\underline{x}$ &nbsp; of $\text{ encoder B }$ for the&nbsp; "sequence of ones"&nbsp; at the input?
 
|type="[]"}
 
|type="[]"}
- $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$,
+
- $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
+ $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, ...)$,
+
+ $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$,
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, ...)$.
+
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$.
+ Die Codesequenz $\underline{x}$ beinhaltet endlich viele Einsen.
+
+ The code sequence $\underline{x}$ contains finitely many&nbsp; "ones".
  
{Welche Aussagen treffen für <span style="color: rgb(51, 0, 255);"><b>Coder B</b></span> zu?
+
{Which statements are true for $\text{ encoder B }$?
 
|type="[]"}
 
|type="[]"}
- Zu Coder B gehört das Zustandsübergangsdiagramm 1.
+
- The $\text{ diagram 1}$&nbsp; belongs to $\text{ encoder B }$.
+ Zu Coder B gehört das Zustandsübergangsdiagramm 2.
+
+ The $\text{ diagram 2}$&nbsp; belongs to $\text{ encoder B }$.
+ Der Coder B ist katastrophal.
+
+ $\text{Encoder B }$ is catastrophic.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die $D$&ndash;Transformierte der Codesequenz $\underline{x}$ ergibt sich mit $U(D) = 1/(1+ D)$ zu
+
'''(1)'''&nbsp; Applicable are the&nbsp; <u>solutions 2 and 4</u>:
 +
*The D&ndash;transform of the code sequence&nbsp; $\underline{x}$&nbsp; is given by&nbsp; $U(D) = 1/(1+ D)$.
 
:$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
   \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
+
   \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
 +
*Consider&nbsp; $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.
  
Zutreffend sind die <u>Antworten 2 und 4</u>. Berücksichtigt wurde $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.
 
  
  
'''(2)'''&nbsp; Wegen $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$ sind hier die <u>Lösungsvorschläge 3 und 4</u> zutreffend:
+
'''(2)'''&nbsp; Because of &nbsp; $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$,&nbsp; <u>solutions 3 and 4</u>&nbsp; are applicable here:
 
:$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
   \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
+
   \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Die Polynomdivision $(1 + D + D^3)$ durch $(1 + D)$ ist im binären Galoisfeld nicht ohne Rest möglich. Man erhält $X(D) = 1 + D^3 + D^4 + D^5 + \ ... \ $ und damit die Ausgangssequenz $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, ...)$, die sich bis ins Unendliche erstreckt. Richtig ist somit allein der <u>Lösungsvorschlag 1</u>.
+
'''(3)'''&nbsp; Only the&nbsp; <u>proposed solution 1</u>&nbsp; is correct:
 +
*The polynomial division&nbsp; $(1 + D + D^3)$&nbsp; by&nbsp; $(1 + D)$&nbsp; is not possible in the binary Galois field without a remainder.
 +
 +
*You get&nbsp; $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $ &nbsp; &#8658; &nbsp; output sequence&nbsp; $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$&nbsp; which extends to infinity.  
  
  
'''(4)'''&nbsp; Die Übertragungsfunktionsmatrix <span style="color: rgb(51, 0, 255);"><b>von Coder A</b></span> lautet:
+
'''(4)'''&nbsp; Only the&nbsp; <u>proposed solution 1</u>&nbsp; is correct:
 +
*The transfer function matrix of $\text{ coder A }$ is:
 
:$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
 
:$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
 +
*The first code bit in each case is therefore given by the sequence corresponding to subtask&nbsp; '''(3)'''&nbsp; and the second bit by the sequence corresponding to subtask&nbsp; '''(1)''':
 +
:$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm}
 +
\underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}  \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}
 +
\underline{x}= (11,\hspace{0.05cm} 00,\hspace{0.05cm} 01,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm}  \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.05cm}.$$
 +
 +
 +
 +
'''(5)'''&nbsp; Applicable are the&nbsp; <u>suggested solutions 2 and 4</u>:
 +
*The transfer function of $\text{ encoder B }$ is&nbsp; $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.
 +
 +
*The first code sequence now results according to subtask&nbsp; '''(2)''',&nbsp; while&nbsp; $\underline{x}^{(2)}$&nbsp; still corresponds to subtask&nbsp; '''(1)'''.
 +
 +
*Thus we get here&nbsp; $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$ &nbsp; &#8658; &nbsp; solution suggestion 2.
 +
 +
*But solution proposition 4 is also correct.&nbsp; Under the assumption&nbsp; $\underline{u} = \underline{1}$&nbsp;  made here the code sequence&nbsp; $\underline{x}$&nbsp; contains only five&nbsp; "ones".
  
Das jeweils erste Codebit ist deshalb durch die Sequenz entsprechend Teilaufgabe (3) gegeben und das zweite Bit durch die Sequenz entsprechend Teilaufgabe (1):
+
*In the next subtask this fact is taken up again.
:$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, $$
 
:$$\underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})$$
 
:$$\Rightarrow \hspace{0.3cm}
 
\underline{x}= (11,\hspace{0.05cm} 00,\hspace{0.05cm} 01,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
 
  
Dies entspricht dem <u>Lösungsvorschlag 1</u>.
 
  
  
'''(5)'''&nbsp; Die Übertragungsfunktion von <span style="color: rgb(51, 0, 255);"><b>Coder B</b></span> lautet $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$. Die erste Codesequenz ergibt sich nun entsprechend Teilaufgabe (2), während $\underline{x}^{(2)}$ weiterhin der Teilaufgabe (1) entspricht. Somit erhält man hier $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, ...)$ &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>.
 
  
Richtig ist aber auch der <u>Lösungsvorschlag 4</u>. Unter der hier getroffenen Annahme, dass die Einsfolge gesendet wurde $(\underline{u} = \underline{1})$, beinhaltet die Codesequenz $\underline{x}$ nur fünf Einsen. In der nächsten Teilaufgabe wird dieser Sachverhalt nochmals aufgegriffen.
+
'''(6)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 2 and 3</u>:
  
 +
As can be seen from state diagram 1,&nbsp; here the information sequence &nbsp; $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$ &nbsp; to the code sequence &nbsp; $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$.&nbsp; This means:
 +
* The $\text{ diagram 1}$&nbsp; belongs to $\text{ encoder A}$.
  
'''(6)'''&nbsp; Wie aus dem Diagramm 1 hervorgeht, führt hier die Informationssequenz $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, ...)$ zur Codesequenz $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$. Dies bedeutet:
+
* The $\text{ diagram 2}$&nbsp; belongs to $\text{ encoder B }$ &nbsp; &#8658; &nbsp; Proposed solution 2.
* Zum Coder A gehört das Zustandsübergangsdiagramm 1.
 
* Zum Coder B gehört das Zustandsübergangsdiagramm 2.
 
  
  
Für den <span style="color: rgb(51, 0, 255);"><b>Coder B</b></span> gelten dabei folgende Aussagen:
+
For $\text{ encoder B }$,&nbsp; the following statements hold:
* $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, ...) \, \, \Rightarrow \, \, $\underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, ...)$,
+
* $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$,
* $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, ...) \hspace{1cm} \Rightarrow \hspace{1cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, ...)$.
+
* $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.
  
  
Das bedeutet: Mit nur fünf Bitfehlern an den Positionen 1, 2, 3, 5, 6 wird die Nullfolge als Einsfolge decodiert und umgekehrt. Einen solchen Code nennt man <span style="color: rgb(51, 0, 255);"><b>katastrophal</b></span> &nbsp;&#8658;&nbsp; <u>Lösungsvorschläge 2 und 3</u>.
+
That means:  
 +
*With only five bit errors at positions 1,&nbsp; 2,&nbsp; 3,&nbsp; 5,&nbsp; 6,&nbsp; the&nbsp; "zero sequence"&nbsp; is decoded as a&nbsp; "one sequence"&nbsp; and vice versa.
 +
 +
*Such a code is called&nbsp; "<b>catastrophic</b>" &nbsp; &#8658; &nbsp; solution 3.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.3 Codebeschreibung mit Zustands– und Trellisdiagramm^]]
+
[[Category:Channel Coding: Exercises|^3.3 State and Trellis Diagram^]]

Latest revision as of 16:45, 14 November 2022

Encoder for  $m = 3$ 
and state transition diagram.

The adjacent graph shows

  • two different $\text{ encoder A }$ and $\text{ enoder B}$,  each with memory  $m = 3$  $($top$)$,
  • two state transition diagrams,  labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$  $($bottom$)$.


In the last subtask,  you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$.

First,  the three transfer functions

  • $G(D) = 1 + D + D^2 + D^3$,
  • $G(D) = 1 + D^3$,  and
  • $G(D) = 1 + D + D^3$


are analyzed and then the initial sequences  $\underline{x}$  is calculated under the condition

$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.35cm} U(D)= \frac{1}{1+D}.$$

These transfer functions are directly related to the outlined encoders.

  • Furthermore, it remains to be clarified which of the two codes is "catastrophic".
  • One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors.



Hints:

  • Two more polynomial products in  ${\rm GF}(2)$  are given:
$$(1+D) \cdot (1+D^2) = 1+D +D^2+D^3\hspace{0.05cm},$$
$$(1+D) \cdot (1+D+D^2) = 1+D^3\hspace{0.05cm}.$$





Questions

1

What output sequence   $\underline{x}$   results fo r  $\underline{u} = \underline{1}$   and   $G(D) = 1 + D + D^2 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$.
The output sequence   $\underline{x}$   is time-limited.

2

What output sequence   $\underline{x}$   results for   $\underline{u} = \underline{1}$   and   $G(D) = 1 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence  $\underline{x}$  is time-limited.

3

What output sequence   $\underline{x}$   results for   $\underline{u} = \underline{1}$   and   $G(D) = 1 + D + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence   $\underline{x}$  is finite in time.

4

What is the code sequence  $\underline{x}$  of $\text{ encoder A }$ for the sequence of ones at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$.
The code sequence  $\underline{x}$  contains finitely many  "ones".

5

What is the code sequence   $\underline{x}$   of $\text{ encoder B }$ for the  "sequence of ones"  at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$.
The code sequence $\underline{x}$ contains finitely many  "ones".

6

Which statements are true for $\text{ encoder B }$?

The $\text{ diagram 1}$  belongs to $\text{ encoder B }$.
The $\text{ diagram 2}$  belongs to $\text{ encoder B }$.
$\text{Encoder B }$ is catastrophic.


Solution

(1)  Applicable are the  solutions 2 and 4:

  • The D–transform of the code sequence  $\underline{x}$  is given by  $U(D) = 1/(1+ D)$.
$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
  • Consider  $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.


(2)  Because of   $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$,  solutions 3 and 4  are applicable here:

$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$


(3)  Only the  proposed solution 1  is correct:

  • The polynomial division  $(1 + D + D^3)$  by  $(1 + D)$  is not possible in the binary Galois field without a remainder.
  • You get  $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $   ⇒   output sequence  $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$  which extends to infinity.


(4)  Only the  proposed solution 1  is correct:

  • The transfer function matrix of $\text{ coder A }$ is:
$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
  • The first code bit in each case is therefore given by the sequence corresponding to subtask  (3)  and the second bit by the sequence corresponding to subtask  (1):
$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm} \underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}= (11,\hspace{0.05cm} 00,\hspace{0.05cm} 01,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.05cm}.$$


(5)  Applicable are the  suggested solutions 2 and 4:

  • The transfer function of $\text{ encoder B }$ is  $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.
  • The first code sequence now results according to subtask  (2),  while  $\underline{x}^{(2)}$  still corresponds to subtask  (1).
  • Thus we get here  $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$   ⇒   solution suggestion 2.
  • But solution proposition 4 is also correct.  Under the assumption  $\underline{u} = \underline{1}$  made here the code sequence  $\underline{x}$  contains only five  "ones".
  • In the next subtask this fact is taken up again.



(6)  Correct are the  proposed solutions 2 and 3:

As can be seen from state diagram 1,  here the information sequence   $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$   to the code sequence   $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$.  This means:

  • The $\text{ diagram 1}$  belongs to $\text{ encoder A}$.
  • The $\text{ diagram 2}$  belongs to $\text{ encoder B }$   ⇒   Proposed solution 2.


For $\text{ encoder B }$,  the following statements hold:

  • $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$,
  • $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.


That means:

  • With only five bit errors at positions 1,  2,  3,  5,  6,  the  "zero sequence"  is decoded as a  "one sequence"  and vice versa.
  • Such a code is called  "catastrophic"   ⇒   solution 3.