Difference between revisions of "Aufgaben:Exercise 4.09: Recursive Systematic Convolutional Codes"

From LNTwww
 
(44 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Grundlegendes zu den Turbocodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/The_Basics_of_Turbo_Codes}}
  
[[File:|right|]]
+
[[File:P_ID3040__KC_A_4_9_v1.png|right|frame|State transition diagram <br>of an RSC code]]
 +
In&nbsp; [[Aufgaben:Exercise_4.08:_Repetition_to_the_Convolutional_Codes|$\text{Exercise 4.8}$]]&nbsp; important properties of convolutional codes have already been derived from the state transition diagram,&nbsp; assuming a non-recursive filter structure.
  
 +
Now a rate&nbsp; $1/2$&nbsp; RSC code is treated in a similar manner.&nbsp; Here&nbsp; $\rm RSC$&nbsp; stands for&nbsp; "recursive systematic convolutional".
  
 +
The transfer function matrix of an RSC convolutional code can be specified as follows:
 +
:$${\boldsymbol{\rm G}}(D) = \left [  1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D)  \right ]
 +
\hspace{0.05cm}.$$
  
===Fragebogen===
+
Otherwise,&nbsp; exactly the same conditions apply here as in Exercise 4.8.&nbsp; We refer again to the following theory pages:
 +
 
 +
#[[Channel_Coding/Algebraic_and_Polynomial_Description#Systematic_convolutional_codes|"Systematic convolutional codes"]]
 +
#[[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Representation_in_the_state_transition_diagram|"Representation in the state transition diagram"]]
 +
#[[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance|"Definition of the free distance"]]
 +
#[[Channel_Coding/Algebraic_and_Polynomial_Description#GF.282.29_description_forms_of_a_digital_filter|"GF(2) description forms of a digital filter"]]
 +
#[[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D.E2.80.93transform_to_rate_.7F.27.22.60UNIQ-MathJax158-QINU.60.22.27.7F_convolution_encoders| "Application of the&nbsp;  $D$–transform  to rate&nbsp;  $1/n$&nbsp; convolution encoders"]]
 +
#[[Channel_Coding/Algebraic_and_Polynomial_Description#Filter_structure_with_fractional.E2.80.93rational_transfer_function|"Filter structure with fractional–rational transfer function"]]
 +
 
 +
 
 +
In the state transition diagram,&nbsp; two arrows go from each state.&nbsp; The label is&nbsp; "$u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}$".&nbsp; For a systematic code,&nbsp; this involves:
 +
* The first code bit is identical to the information bit: &nbsp; $\hspace{0.2cm} x_i^{(1)} = u_i &#8712; \{0, \, 1\}$.
 +
* The second code bit is the parity-check bit: &nbsp; $\hspace{0.2cm} x_i^{(2)} = p_i &#8712; \{0, \, 1\}$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<u>Hints:</u>
 +
* The exercise refers to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Turbo_Codes|"Basics of Turbo Codes"]].
 +
 +
* The following vectorial quantities are used in the questions for this exercise:
 +
 
 +
:* the information sequence:&nbsp; $\hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} )$,
 +
:* the parity-check sequence:&nbsp; $\hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...} \hspace{0.05cm})$,
 +
:* the impulse response:&nbsp; $\hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...} \hspace{0.05cm} ); \hspace{0.2cm}$ this is equal to the parity sequence&nbsp; $\underline{p}$&nbsp; for&nbsp; $\underline{u} = (1, \, 0, \, 0, \text{...} \hspace{0.05cm} )$.
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{What is the impulse response&nbsp; $\underline{g}$&nbsp;?
 +
|type="()"}
 +
+&nbsp;  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...}  \hspace{0.05cm})$.
 +
-&nbsp;  $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
 +
 
 +
{It holds &nbsp; $\underline{u} = (1, \, 1, \, 0, \, 1)$.&nbsp; Which statements hold for the parity sequence&nbsp; $\underline{p}$&nbsp;?
 +
|type="[]"}
 +
-&nbsp;  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
 +
+&nbsp;  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...}  \hspace{0.05cm})$.
 +
- With limited information sequence&nbsp; $\underline{u}$ &nbsp; &rArr; &nbsp; $\underline{p}$&nbsp; is also limited.
 +
 
 +
{What is the&nbsp; $D$&ndash;transfer function&nbsp; $G(D)$?
 +
|type="[]"}
 +
+&nbsp;  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...}  \hspace{0.05cm}$.
 +
+&nbsp;  $G(D) = (1 + D^2)/(1 + D + D^2)$.
 +
-&nbsp;  $G(D) = (1 + D + D^2)/(1 + D^2)$.
 +
 
 +
{Now let&nbsp; $\underline{u} = (1, \, 1, \, 1)$.&nbsp; Which statements hold for the parity sequence&nbsp; $\underline{p}$?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+&nbsp;  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
- false
+
-&nbsp;  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...}  \hspace{0.05cm})$.
 +
- With limited information sequence&nbsp; $\underline{u}$ &nbsp; &rArr; &nbsp; $\underline{p}$&nbsp; is also limited.
  
{Input-Box Frage
+
{What is the free distance&nbsp; $d_{\rm F}$&nbsp; of this RSC encoder?
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$d_{\rm F} \ = \ ${ 5 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Tracing the transitions in the state diagram for the sequence &nbsp;  $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)$ &nbsp;  at the input,&nbsp; we get the path
'''(2)'''&nbsp;  
+
:$$S_0 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; \hspace{0.05cm}\text{...}  \hspace{0.05cm}$$
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
*For each transition,&nbsp; the first code symbol&nbsp; $x_i^{(1)}$&nbsp; is equal to the information bit&nbsp; $u_i$&nbsp; and the code symbol&nbsp; $x_i^{(2)}$&nbsp; indicates the parity-check bit&nbsp; $p_i$.
'''(5)'''&nbsp;  
+
 +
*This gives the result corresponding to <u>solution proposition 1</u>:
 +
:$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...}  \hspace{0.05cm})
 +
= \underline{g}\hspace{0.05cm}.$$
 +
 
 +
*For any RSC code,&nbsp; the impulse response&nbsp; $\underline{g}$&nbsp; is infinite in length and becomes periodic at some point,&nbsp; in this example with period&nbsp; $P = 3$&nbsp; and&nbsp; "$0, \, 1, \, 1$".
 +
 
 +
 
 +
 
 +
[[File:EN_KC_A_4_9b_v1.png|right|frame|Clarification of&nbsp;  $\underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}$]]
 +
'''(2)'''&nbsp; The graph shows the solution of this exercise according to the equation&nbsp; $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$.
 +
* Here the generator matrix&nbsp; $\mathbf{G}$&nbsp; is infinitely extended downward and to the right.
 +
 +
*The correct solution is&nbsp; <u>proposal 2</u>.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 1 and 2</u>:
 +
*Between the impulse response&nbsp; $\underline{g}$&nbsp; and the&nbsp; $D$&ndash;transfer function&nbsp; $\mathbf{G}(D)$&nbsp; there is the relation according to the first proposed solution:
 +
:$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}0\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}0\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
... ) \hspace{0.3cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet \hspace{0.3cm}
 +
G(D) =  1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 +  \text{...} .$$
 +
 
 +
*Let us now examine the second proposal:
 +
:$$G(D) = \frac{1+  D^2}{1+ D  + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
G(D) \cdot [1+ D  + D^2] = 1+  D^2 \hspace{0.05cm}.$$
 +
 
 +
*The following calculation shows that this equation is indeed true:
 +
:$$(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =$$
 +
:$$=1+ D+ D^2\hspace{1.05cm} +D^4 +  D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}$$
 +
:$$+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+  D^5 +  D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...} $$
 +
:$$+ \hspace{1.63cm} D^2+D^3+  D^4  \hspace{1.05cm}+  D^6 +D^7  \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}$$
 +
:$$=\underline{1\hspace{0.72
 +
cm}+ D^2} \hspace{0.05cm}.$$
 +
 
 +
*But since equation&nbsp; '''(2)'''&nbsp; is true,&nbsp; the last equation must be false.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct is only the&nbsp; <u>proposed solution 1</u>:
 +
*From &nbsp; $\underline{u} = (1, \, 1, \, 1)$ &nbsp; follows &nbsp; $U(D) = 1 + D + D^2$.&nbsp; Thus also holds:
 +
:$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm}
 +
\Rightarrow\hspace{0.3cm}  \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
 +
* If the variables &nbsp; $u_i$ &nbsp; and &nbsp; $g_i$ &nbsp; were real-valued,&nbsp; the&nbsp; $($discrete$)$&nbsp; convolution &nbsp; $\underline{p} = \underline{u} * \underline{g} $&nbsp;  would always lead to a broadening.
 +
[[File:EN_KC_A_4_9d_v1.png|right|frame|Clarification of&nbsp;  $\underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}$]]
 +
*In this case &nbsp; $\underline{p}$&nbsp; would be broader than &nbsp; $\underline{u}$ &nbsp; and also broader than &nbsp; $\underline{g}$.
 +
 
 +
* On the other hand,&nbsp;  for &nbsp; $u_i &#8712; {\rm GF}(2)$ &nbsp; and &nbsp; $g_i &#8712; {\rm GF}(2)$ &nbsp; it may&nbsp; $($but need not$)$&nbsp; happen that even with unlimited &nbsp;  $\underline{u}$ &nbsp; or for unlimited &nbsp; $\underline{g}$ &nbsp; the convolution product &nbsp; $\underline{p} = \underline{u} * \underline{g}$&nbsp; is limited.
 +
 
 +
*The result is finally checked according to the equation&nbsp; $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$&nbsp; is checked.&nbsp; See graph on the right.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Following a similar procedure as in&nbsp; [[Aufgaben:Exercise_4.08:_Repetition_to_the_Convolutional_Codes|$\text{Exercise A4.8}$,&nbsp; (4)]],&nbsp; one can see:
 +
*The free distance is again determined by the path&nbsp;
 +
:$$S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_0 &#8594; S_0 &#8594; \hspace{0.05cm}\text{...}\hspace{0.05cm}.$$
 +
*But the associated encoded sequence&nbsp; $\underline{x}$&nbsp; is now &nbsp;" $00 \ 11 \ 10 \ 11 \ 00 \ ... $".
 +
 +
*This gives the free distance to&nbsp; $d_{\rm F} \ \underline{= 5}$.
 +
 +
*In contrast,&nbsp; in the non-recursive code&nbsp; $($Exercise 4.8$)$,&nbsp; the free distance was&nbsp; $d_{\rm F} = 3$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^4.3 Grundlegendes zu den Turbocodes^]]
+
[[Category:Channel Coding: Exercises|^4.3 About the Turbo Codes^]]

Latest revision as of 17:06, 13 March 2023

State transition diagram
of an RSC code

In  $\text{Exercise 4.8}$  important properties of convolutional codes have already been derived from the state transition diagram,  assuming a non-recursive filter structure.

Now a rate  $1/2$  RSC code is treated in a similar manner.  Here  $\rm RSC$  stands for  "recursive systematic convolutional".

The transfer function matrix of an RSC convolutional code can be specified as follows:

$${\boldsymbol{\rm G}}(D) = \left [ 1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D) \right ] \hspace{0.05cm}.$$

Otherwise,  exactly the same conditions apply here as in Exercise 4.8.  We refer again to the following theory pages:

  1. "Systematic convolutional codes"
  2. "Representation in the state transition diagram"
  3. "Definition of the free distance"
  4. "GF(2) description forms of a digital filter"
  5. "Application of the  $D$–transform to rate  $1/n$  convolution encoders"
  6. "Filter structure with fractional–rational transfer function"


In the state transition diagram,  two arrows go from each state.  The label is  "$u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}$".  For a systematic code,  this involves:

  • The first code bit is identical to the information bit:   $\hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}$.
  • The second code bit is the parity-check bit:   $\hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}$.




Hints:

  • The following vectorial quantities are used in the questions for this exercise:
  • the information sequence:  $\hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} )$,
  • the parity-check sequence:  $\hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...} \hspace{0.05cm})$,
  • the impulse response:  $\hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...} \hspace{0.05cm} ); \hspace{0.2cm}$ this is equal to the parity sequence  $\underline{p}$  for  $\underline{u} = (1, \, 0, \, 0, \text{...} \hspace{0.05cm} )$.


Questions

1

What is the impulse response  $\underline{g}$ ?

  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...} \hspace{0.05cm})$.
  $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.

2

It holds   $\underline{u} = (1, \, 1, \, 0, \, 1)$.  Which statements hold for the parity sequence  $\underline{p}$ ?

  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.
  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm})$.
With limited information sequence  $\underline{u}$   ⇒   $\underline{p}$  is also limited.

3

What is the  $D$–transfer function  $G(D)$?

  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...} \hspace{0.05cm}$.
  $G(D) = (1 + D^2)/(1 + D + D^2)$.
  $G(D) = (1 + D + D^2)/(1 + D^2)$.

4

Now let  $\underline{u} = (1, \, 1, \, 1)$.  Which statements hold for the parity sequence  $\underline{p}$?

  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.
  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm})$.
With limited information sequence  $\underline{u}$   ⇒   $\underline{p}$  is also limited.

5

What is the free distance  $d_{\rm F}$  of this RSC encoder?

$d_{\rm F} \ = \ $


Solution

(1)  Tracing the transitions in the state diagram for the sequence   $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)$   at the input,  we get the path

$$S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...} \hspace{0.05cm}$$
  • For each transition,  the first code symbol  $x_i^{(1)}$  is equal to the information bit  $u_i$  and the code symbol  $x_i^{(2)}$  indicates the parity-check bit  $p_i$.
  • This gives the result corresponding to solution proposition 1:
$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm}) = \underline{g}\hspace{0.05cm}.$$
  • For any RSC code,  the impulse response  $\underline{g}$  is infinite in length and becomes periodic at some point,  in this example with period  $P = 3$  and  "$0, \, 1, \, 1$".


Clarification of  $\underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}$

(2)  The graph shows the solution of this exercise according to the equation  $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$.

  • Here the generator matrix  $\mathbf{G}$  is infinitely extended downward and to the right.
  • The correct solution is  proposal 2.


(3)  Correct are  the proposed solutions 1 and 2:

  • Between the impulse response  $\underline{g}$  and the  $D$–transfer function  $\mathbf{G}(D)$  there is the relation according to the first proposed solution:
$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}0\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}0\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, ... ) \hspace{0.3cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet \hspace{0.3cm} G(D) = 1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 + \text{...} .$$
  • Let us now examine the second proposal:
$$G(D) = \frac{1+ D^2}{1+ D + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G(D) \cdot [1+ D + D^2] = 1+ D^2 \hspace{0.05cm}.$$
  • The following calculation shows that this equation is indeed true:
$$(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =$$
$$=1+ D+ D^2\hspace{1.05cm} +D^4 + D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}$$
$$+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+ D^5 + D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...} $$
$$+ \hspace{1.63cm} D^2+D^3+ D^4 \hspace{1.05cm}+ D^6 +D^7 \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}$$
$$=\underline{1\hspace{0.72 cm}+ D^2} \hspace{0.05cm}.$$
  • But since equation  (2)  is true,  the last equation must be false.


(4)  Correct is only the  proposed solution 1:

  • From   $\underline{u} = (1, \, 1, \, 1)$   follows   $U(D) = 1 + D + D^2$.  Thus also holds:
$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
  • If the variables   $u_i$   and   $g_i$   were real-valued,  the  $($discrete$)$  convolution   $\underline{p} = \underline{u} * \underline{g} $  would always lead to a broadening.
Clarification of  $\underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}$
  • In this case   $\underline{p}$  would be broader than   $\underline{u}$   and also broader than   $\underline{g}$.
  • On the other hand,  for   $u_i ∈ {\rm GF}(2)$   and   $g_i ∈ {\rm GF}(2)$   it may  $($but need not$)$  happen that even with unlimited   $\underline{u}$   or for unlimited   $\underline{g}$   the convolution product   $\underline{p} = \underline{u} * \underline{g}$  is limited.
  • The result is finally checked according to the equation  $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$  is checked.  See graph on the right.


(5)  Following a similar procedure as in  $\text{Exercise A4.8}$,  (4),  one can see:

  • The free distance is again determined by the path 
$$S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \hspace{0.05cm}\text{...}\hspace{0.05cm}.$$
  • But the associated encoded sequence  $\underline{x}$  is now  " $00 \ 11 \ 10 \ 11 \ 00 \ ... $".
  • This gives the free distance to  $d_{\rm F} \ \underline{= 5}$.
  • In contrast,  in the non-recursive code  $($Exercise 4.8$)$,  the free distance was  $d_{\rm F} = 3$.