Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.4Z: Continuous Phase Frequency Shift Keying"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Funkschnittstelle }} [[File:|right|frame|]] ===Fragebogen=== <quiz display=simple> {Multiple-C…“)
 
 
(24 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Funkschnittstelle
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Radio_Interface
 
}}  
 
}}  
  
[[File:|right|frame|]]
+
[[File:P_ID1231__Bei_Z_3_4.png|right|frame|Signals for&nbsp; CP-FSK]]
 +
The graph shows three frequency shift keying&nbsp; (FSK)&nbsp; transmitted signals which differ with respect to the frequency deviation&nbsp; ΔfA&nbsp; distinguish and thus also by their modulation index
 +
:h=2ΔfAT.
 +
  
 +
The digital source signal&nbsp; q(t) underlying the signals&nbsp; s_{\rm A}(t),&nbsp; s_{\rm B}(t)&nbsp; and&nbsp; sC(t)&nbsp; is shown above.&nbsp; All considered signals are normalized to amplitude&nbsp; 1&nbsp; and time duration&nbsp; T&nbsp; and based on a cosine carrier with frequency&nbsp; fT.
  
===Fragebogen===
+
With binary FSK&nbsp; ("Binary Frequency Shift Keying")&nbsp; only two different frequencies occur,&nbsp; each of which remains constant over a bit duration:
 +
*f1&nbsp; (if&nbsp; $a_{\nu} = +1)$,
 +
 
 +
*f2&nbsp; (if&nbsp; $a_{\nu} = -1)$.
 +
 
 +
 
 +
If the modulation index is not a multiple of&nbsp; 2,&nbsp; continuous phase adjustment is required to avoid phase jumps.&nbsp; This is called&nbsp; "Continuous Phase Frequency Shift Keying" &nbsp; (CP-FSK).
 +
 
 +
An important special case is represented by binary FSK with modulation index&nbsp; $h = 0.5&nbsp; which is also called&nbsp; "Minimum Shift Keying"&nbsp;(\rm MSK)$.&nbsp; This will be discussed in this exercise. 
 +
 
 +
 
 +
 
 +
 
 +
<u>Hints:</u>
 +
 
 +
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Radio_Interface|"Radio Interface"]].
 +
 
 +
*Reference is made in particular to the section&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Continuous_phase_adjustment_with_FSK|"Continuous phase adjustment with FSK]].
 +
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{Which statements are true for FSK and specifically for MSK?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ FSK is generally a nonlinear modulation method.
+ Richtig
+
+ MSK can be implemented as offset QPSK and is therefore linear.
 +
- This results in the same bit error rate as for QPSK.
 +
+ A band limitation is less disturbing than with QPSK.
 +
+ The MSK envelope is constant even with spectral shaping.
 +
 +
{What frequencies&nbsp; f1&nbsp; (for amplitude coefficient&nbsp; aν=+1)&nbsp; and f2&nbsp; (for&nbsp; aν=1)&nbsp; does the signal&nbsp; sA(t)&nbsp; contain?
 +
|type="{}"}
 +
f1T =  { 5 3% }
 +
f2T =  { 3 3% }
  
 +
{What are the carrier frequency&nbsp; fT,&nbsp; the frequency deviation&nbsp; ΔfA&nbsp; and the modulation index&nbsp; h&nbsp; for signal&nbsp; sA(t)?
 +
|type="{}"}
 +
fTT =  { 4 3% }
 +
ΔfAT =  { 1 3% }
 +
h =  { 2 3% }
  
{Input-Box Frage
+
{What is the modulation index for signal&nbsp; sB(t)?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$h \ = \ $ { 1 3% }
  
 +
{What is the modulation index for signal&nbsp; sC(t)?
 +
|type="{}"}
 +
h =  { 0.5 3% }
 +
 +
{Which signals required continuous phase adjustment?
 +
|type="[]"}
 +
- sA(t),
 +
+ sB(t),
 +
+ sC(t).
 +
 +
{What signals describe&nbsp; "Minimum Shift Keying"&nbsp; (MSK)?
 +
|type="[]"}
 +
- sA(t),
 +
- sB(t),
 +
+ sC(t).
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; <u>All statements except the third are true</u>:
'''(2)'''&nbsp;  
+
*Generally nonlinear FSK can only be demodulated coherently,&nbsp; while MSK can also use a noncoherent demodulation method.
'''(3)'''&nbsp;  
+
'''(4)'''&nbsp;  
+
*Compared to QPSK with coherent demodulation,&nbsp; MSK requires&nbsp; 3 dB&nbsp; more&nbsp; EB/N0&nbsp; (energy per bit related to the noise power density)&nbsp; for the same bit error rate.
'''(5)'''&nbsp;  
+
 
'''(6)'''&nbsp;  
+
*The first zero in the power-spectral density occurs in MSK later than in QSPK,&nbsp; but it shows a faster asymptotic decay than in QSPK.
'''(7)'''&nbsp;  
+
 +
*The constant envelope of MSK means that nonlinearities in the transmission line do not play a role.&nbsp; This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; One can see from the graph five and three oscillations per symbol duration,&nbsp; respectively:
 +
:f1T=5_,f2T=3_.
 +
 
 +
 
 +
'''(3)'''&nbsp; For FSK with rectangular pulse shape,&nbsp; only the two instantaneous frequencies&nbsp; f1=fT+ΔfA&nbsp; and&nbsp; f2=fTΔfA&nbsp; occur.
 +
*With the result from subtask&nbsp; '''(2)'''&nbsp; we thus obtain:
 +
:fT = f1+f22fTT=4_,
 +
:ΔfA = f1f22ΔfAT=1_,
 +
:h = 2ΔfAT=2_.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; From the graph one can see the frequencies&nbsp; f1T=4.5&nbsp; and&nbsp; f2T=3.5.
 +
*This results in the frequency deviation&nbsp; ΔfAT=0.5&nbsp; and the modulation index&nbsp; h=1_.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Here the two&nbsp; (normalized)&nbsp; frequencies&nbsp; f1T=4.25&nbsp; and&nbsp; f2T=3.75&nbsp; occur,
 +
*which results in the frequency deviation&nbsp; ΔfAT=0.25&nbsp; and the modulation index&nbsp; h=0.5_.
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; Correct are the&nbsp; <u>solutions 2 and 3</u>:
 +
*Only at&nbsp; sA(t)&nbsp; was no phase adjustment made.&nbsp; Here,&nbsp; the signal waveforms in the region of the first and second bit&nbsp; (a1=a2=+1)&nbsp; are each cosinusoidal like the carrier signal&nbsp; (with respect to the symbol boundary).
 +
 +
*In contrast,&nbsp; in the second symbol of&nbsp; sB(t)&nbsp; a minus-cosine-shaped course&nbsp; (initial phase&nbsp; \phi_{0} = π,&nbsp; corresponding to&nbsp; 180^\circ)&nbsp; can be seen and in the second symbol of&nbsp; s_{\rm C}(t)&nbsp; a minus-sine-shaped course&nbsp; (\phi_{0} = π /2&nbsp; or&nbsp; 90^\circ).
 +
 +
*For s_{\rm A}(t)&nbsp; the initial phase is always zero,&nbsp; for&nbsp; s_{\rm B}(t)&nbsp; either zero or&nbsp; π,&nbsp; while for the signal s_{\rm C}(t)&nbsp; with modulation index&nbsp; h = 0.5&nbsp; a total of four initial phases are possible:&nbsp; 0^\circ, \ 90^\circ, \ 180^\circ&nbsp; and&nbsp; 270^\circ.
 +
 
 +
 
 +
 
 +
'''(7)'''&nbsp; Correct is the&nbsp; <u>last proposed solution</u>,&nbsp; since for this signal &nbsp; &rArr; &nbsp; h = 0.5.
 +
*This is the smallest possible modulation index for which there is orthogonality between&nbsp; f_{1}&nbsp; and&nbsp; f_{2}&nbsp; within the symbol duration&nbsp; T.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^3.2 Funkschnittstelle^]]
+
[[Category:Examples of Communication Systems: Exercises|^3.2 Radio Interface^]]

Latest revision as of 16:21, 22 January 2023

Signals for  \text{CP-FSK}

The graph shows three frequency shift keying  \rm (FSK)  transmitted signals which differ with respect to the frequency deviation  \Delta f_{\rm A}  distinguish and thus also by their modulation index

h = 2 \cdot \Delta f_{\rm A} \cdot T.


The digital source signal  q(t) underlying the signals  s_{\rm A}(t),  s_{\rm B}(t)  and  s_{\rm C}(t)  is shown above.  All considered signals are normalized to amplitude  1  and time duration  T  and based on a cosine carrier with frequency  f_{\rm T}.

With binary FSK  ("Binary Frequency Shift Keying")  only two different frequencies occur,  each of which remains constant over a bit duration:

  • f_{1}  (if  a_{\nu} = +1),
  • f_{2}  (if  a_{\nu} = -1).


If the modulation index is not a multiple of  2,  continuous phase adjustment is required to avoid phase jumps.  This is called  "Continuous Phase Frequency Shift Keying"   (\text{CP-FSK)}.

An important special case is represented by binary FSK with modulation index  h = 0.5  which is also called  "Minimum Shift Keying"  (\rm MSK).  This will be discussed in this exercise.



Hints:


Questions

1

Which statements are true for FSK and specifically for MSK?

FSK is generally a nonlinear modulation method.
MSK can be implemented as offset QPSK and is therefore linear.
This results in the same bit error rate as for QPSK.
A band limitation is less disturbing than with QPSK.
The MSK envelope is constant even with spectral shaping.

2

What frequencies  f_{1}  (for amplitude coefficient  a_{\nu} = +1)  and f_{2}  (for  a_{\nu} = -1)  does the signal  s_{\rm A}(t)  contain?

f_{1} \cdot T \ = \

f_{2} \cdot T \ = \

3

What are the carrier frequency  f_{\rm T},  the frequency deviation  \Delta f_{\rm A}  and the modulation index  h  for signal  s_{\rm A}(t)?

f_{\rm T} \cdot T \ = \

\Delta f_{\rm A} \cdot T \ = \

h \ = \

4

What is the modulation index for signal  s_{\rm B}(t)?

h \ = \

5

What is the modulation index for signal  s_{\rm C}(t)?

h \ = \

6

Which signals required continuous phase adjustment?

s_{\rm A}(t),
s_{\rm B}(t),
s_{\rm C}(t).

7

What signals describe  "Minimum Shift Keying"  \rm (MSK)?

s_{\rm A}(t),
s_{\rm B}(t),
s_{\rm C}(t).


Solution

(1)  All statements except the third are true:

  • Generally nonlinear FSK can only be demodulated coherently,  while MSK can also use a noncoherent demodulation method.
  • Compared to QPSK with coherent demodulation,  MSK requires  3 \ \rm dB  more  E_{\rm B}/N_{0}  (energy per bit related to the noise power density)  for the same bit error rate.
  • The first zero in the power-spectral density occurs in MSK later than in QSPK,  but it shows a faster asymptotic decay than in QSPK.
  • The constant envelope of MSK means that nonlinearities in the transmission line do not play a role.  This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.


(2)  One can see from the graph five and three oscillations per symbol duration,  respectively:

f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.


(3)  For FSK with rectangular pulse shape,  only the two instantaneous frequencies  f_{1} = f_{\rm T} + \Delta f_{\rm A}  and  f_{2} = f_{\rm T} - \Delta f_{\rm A}  occur.

  • With the result from subtask  (2)  we thus obtain:
f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},
\Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},
h \ = \ 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}.


(4)  From the graph one can see the frequencies  f_{1} \cdot T = 4.5  and  f_{2} \cdot T = 3.5.

  • This results in the frequency deviation  \Delta f_{\rm A} \cdot T = 0.5  and the modulation index  \underline{h = 1}.


(5)  Here the two  (normalized)  frequencies  f_{1} \cdot T = 4.25  and  f_{2} \cdot T = 3.75  occur,

  • which results in the frequency deviation  \Delta f_{\rm A} \cdot T = 0.25  and the modulation index  \underline{h = 0.5}.


(6)  Correct are the  solutions 2 and 3:

  • Only at  s_{\rm A}(t)  was no phase adjustment made.  Here,  the signal waveforms in the region of the first and second bit  (a_{1} = a_{2} = +1)  are each cosinusoidal like the carrier signal  (with respect to the symbol boundary).
  • In contrast,  in the second symbol of  s_{\rm B}(t)  a minus-cosine-shaped course  (initial phase  \phi_{0} = π,  corresponding to  180^\circ)  can be seen and in the second symbol of  s_{\rm C}(t)  a minus-sine-shaped course  (\phi_{0} = π /2  or  90^\circ).
  • For s_{\rm A}(t)  the initial phase is always zero,  for  s_{\rm B}(t)  either zero or  π,  while for the signal s_{\rm C}(t)  with modulation index  h = 0.5  a total of four initial phases are possible:  0^\circ, \ 90^\circ, \ 180^\circ  and  270^\circ.


(7)  Correct is the  last proposed solution,  since for this signal   ⇒   h = 0.5.

  • This is the smallest possible modulation index for which there is orthogonality between  f_{1}  and  f_{2}  within the symbol duration  T.