Difference between revisions of "Aufgaben:Exercise 3.4Z: Continuous Phase Frequency Shift Keying"

From LNTwww
 
(23 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Funkschnittstelle
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Radio_Interface
 
}}  
 
}}  
  
[[File:P_ID1231__Bei_Z_3_4.png|right|frame|Continuous Phase FSK]]
+
[[File:P_ID1231__Bei_Z_3_4.png|right|frame|Signals for  $\text{CP-FSK}$]]
Die Grafik zeigt drei FSK–Sendesignale, die sich hinsichtlich Frequenzhub $\Delta f_{\rm A}$ und somit auch durch ihren Modulationsindex
+
The graph shows three frequency shift keying  $\rm (FSK)$  transmitted signals which differ with respect to the frequency deviation  $\Delta f_{\rm A}$  distinguish and thus also by their modulation index
:$$h = 2 \cdot \Delta f_{\rm A} \cdot T$$
+
:$$h = 2 \cdot \Delta f_{\rm A} \cdot T.$$
unterscheiden. Das digitale Quellensignal $q(t)$, das den Signalen $s_{\rm A}(t), s_{\rm B}(t)$ und $s_{\rm C}(t)$ zugrundeliegt, ist oben dargestellt. Alle betrachteten Signale sind auf die Amplitude $1$ und die Zeitdauer $T$ normiert und basieren auf einem Cosinusträger mit der Frequenz $f_{\rm T}$.
+
  
Bei binärer FSK (''Binary Frequency Shift Keying'') treten bitweise nur zwei verschiedene Frequenzen
+
The digital source signal  $q(t)$ underlying the signals  $s_{\rm A}(t),  s_{\rm B}(t)$  and  $s_{\rm C}(t)$  is shown above.  All considered signals are normalized to amplitude  $1$  and time duration  $T$  and based on a cosine carrier with frequency  $f_{\rm T}$.
*$f_{1}$ (falls $a_{\nu} = +1$) und
 
*$f_{2}$ (falls $a_{\nu} = –1$)
 
auf. Ist der Modulationsindex kein Vielfaches von $2$, so ist eine kontinuierliche Phasenanpassung erforderlich, um Phasensprünge zu vermeiden.
 
  
Ein wichtiger Sonderfall stellt die binäre FSK mit dem Modulationsindex $h = 0.5$ dar, die auch als $\color{red}{\rm Minimum \ Shift \  Keying}$ (MSK) bezeichnet wird. Diese wird in dieser Aufgabe eingehend behandelt.
+
With binary FSK  $($"Binary Frequency Shift Keying"$)$  only two different frequencies occur,  each of which remains constant over a bit duration:
 +
*$f_{1}$  $($if  $a_{\nu} = +1)$,
  
 +
*$f_{2}$  $($if  $a_{\nu} = -1)$.
  
''Hinweis:''
 
  
Diese Aufgabe gehört zum [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]. Die hier behandelte Thematik findet sich in dem nachfolgend aufgeführten Interaktionsmodul:
+
If the modulation index is not a multiple of  $2$,  continuous phase adjustment is required to avoid phase jumps.  This is called  "Continuous Phase Frequency Shift Keying"   $(\text{CP-FSK)}$.
[[Frequency Shift Keying und CPM]]
+
 
===Fragebogen===
+
An important special case is represented by binary FSK with modulation index  $h = 0.5$  which is also called  "Minimum Shift Keying"  $(\rm MSK)$.  This will be discussed in this exercise. 
 +
 
 +
 
 +
 
 +
 
 +
<u>Hints:</u>
 +
 
 +
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Radio_Interface|"Radio Interface"]].
 +
 
 +
*Reference is made in particular to the section&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Continuous_phase_adjustment_with_FSK|"Continuous phase adjustment with FSK]].
 +
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{Which statements are true for FSK and specifically for MSK?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ FSK is generally a nonlinear modulation method.
+ Richtig
+
+ MSK can be implemented as offset QPSK and is therefore linear.
 +
- This results in the same bit error rate as for QPSK.
 +
+ A band limitation is less disturbing than with QPSK.
 +
+ The MSK envelope is constant even with spectral shaping.
 +
 +
{What frequencies&nbsp; $f_{1}$&nbsp; $($for amplitude coefficient&nbsp; $a_{\nu} = +1)$&nbsp; and $f_{2}$&nbsp; $($for&nbsp; $a_{\nu} = -1)$&nbsp; does the signal&nbsp; $s_{\rm A}(t)$&nbsp; contain?
 +
|type="{}"}
 +
$f_{1} \cdot T \ = \ $ { 5 3% }
 +
$f_{2} \cdot T \ = \ $ { 3 3% }
  
 +
{What are the carrier frequency&nbsp; $f_{\rm T}$,&nbsp; the frequency deviation&nbsp; $\Delta f_{\rm A}$&nbsp; and the modulation index&nbsp; $h$&nbsp; for signal&nbsp; $s_{\rm A}(t)$?
 +
|type="{}"}
 +
$f_{\rm T} \cdot T \ = \ $ { 4 3% }
 +
$\Delta f_{\rm A} \cdot T \ = \ $ { 1 3% }
 +
$h \ = \ $ { 2 3% }
  
{Input-Box Frage
+
{What is the modulation index for signal&nbsp; $s_{\rm B}(t)$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$h \ = \ $ { 1 3% }
  
 +
{What is the modulation index for signal&nbsp; $s_{\rm C}(t)$?
 +
|type="{}"}
 +
$h \ = \ $ { 0.5 3% }
 +
 +
{Which signals required continuous phase adjustment?
 +
|type="[]"}
 +
- $s_{\rm A}(t)$,
 +
+ $s_{\rm B}(t)$,
 +
+ $s_{\rm C}(t)$.
 +
 +
{What signals describe&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$?
 +
|type="[]"}
 +
- $s_{\rm A}(t)$,
 +
- $s_{\rm B}(t)$,
 +
+ $s_{\rm C}(t)$.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; <u>All statements except the third are true</u>:
'''(2)'''&nbsp;  
+
*Generally nonlinear FSK can only be demodulated coherently,&nbsp; while MSK can also use a noncoherent demodulation method.
'''(3)'''&nbsp;  
+
'''(4)'''&nbsp;  
+
*Compared to QPSK with coherent demodulation,&nbsp; MSK requires&nbsp; $3 \ \rm dB$&nbsp; more&nbsp; $E_{\rm B}/N_{0}$&nbsp; $($energy per bit related to the noise power density$)$&nbsp; for the same bit error rate.
'''(5)'''&nbsp;  
+
 
'''(6)'''&nbsp;  
+
*The first zero in the power-spectral density occurs in MSK later than in QSPK,&nbsp; but it shows a faster asymptotic decay than in QSPK.
'''(7)'''&nbsp;  
+
 +
*The constant envelope of MSK means that nonlinearities in the transmission line do not play a role.&nbsp; This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; One can see from the graph five and three oscillations per symbol duration,&nbsp; respectively:
 +
:$$f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; For FSK with rectangular pulse shape,&nbsp; only the two instantaneous frequencies&nbsp; $f_{1} = f_{\rm T} + \Delta f_{\rm A}$&nbsp; and&nbsp; $f_{2} = f_{\rm T} - \Delta f_{\rm A}$&nbsp; occur.
 +
*With the result from subtask&nbsp; '''(2)'''&nbsp; we thus obtain:
 +
:$$f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
 +
:$$ \Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},$$
 +
:$$h \ = \ 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; From the graph one can see the frequencies&nbsp; $f_{1} \cdot T = 4.5$&nbsp; and&nbsp; $f_{2} \cdot T = 3.5$.
 +
*This results in the frequency deviation&nbsp; $\Delta f_{\rm A} \cdot T = 0.5$&nbsp; and the modulation index&nbsp; $\underline{h = 1}$.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Here the two&nbsp; $($normalized$)$&nbsp; frequencies&nbsp; $f_{1} \cdot T = 4.25$&nbsp; and&nbsp; $f_{2} \cdot T = 3.75$&nbsp; occur,
 +
*which results in the frequency deviation&nbsp; $\Delta f_{\rm A} \cdot T = 0.25$&nbsp; and the modulation index&nbsp; $\underline{h = 0.5}$.
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; Correct are the&nbsp; <u>solutions 2 and 3</u>:
 +
*Only at&nbsp; $s_{\rm A}(t)$&nbsp; was no phase adjustment made.&nbsp; Here,&nbsp; the signal waveforms in the region of the first and second bit&nbsp; $(a_{1} = a_{2} = +1)$&nbsp; are each cosinusoidal like the carrier signal&nbsp; $($with respect to the symbol boundary$)$.
 +
 +
*In contrast,&nbsp; in the second symbol of&nbsp; $s_{\rm B}(t)$&nbsp; a minus-cosine-shaped course&nbsp; $($initial phase&nbsp; $\phi_{0} = π$,&nbsp; corresponding to&nbsp; $180^\circ)$&nbsp; can be seen and in the second symbol of&nbsp; $s_{\rm C}(t)$&nbsp; a minus-sine-shaped course&nbsp; $(\phi_{0} = π /2$&nbsp; or&nbsp; $90^\circ)$.
 +
 +
*For $s_{\rm A}(t)$&nbsp; the initial phase is always zero,&nbsp; for&nbsp; $s_{\rm B}(t)$&nbsp; either zero or&nbsp; $π$,&nbsp; while for the signal $s_{\rm C}(t)$&nbsp; with modulation index&nbsp; $h = 0.5$&nbsp; a total of four initial phases are possible:&nbsp; $0^\circ, \ 90^\circ, \ 180^\circ$&nbsp; and&nbsp; $270^\circ$.
 +
 
 +
 
 +
 
 +
'''(7)'''&nbsp; Correct is the&nbsp; <u>last proposed solution</u>,&nbsp; since for this signal &nbsp; &rArr; &nbsp; $h = 0.5$.
 +
*This is the smallest possible modulation index for which there is orthogonality between&nbsp; $f_{1}$&nbsp; and&nbsp; $f_{2}$&nbsp; within the symbol duration&nbsp; $T$.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^3.2 Funkschnittstelle^]]
+
[[Category:Examples of Communication Systems: Exercises|^3.2 Radio Interface^]]

Latest revision as of 15:21, 22 January 2023

Signals for  $\text{CP-FSK}$

The graph shows three frequency shift keying  $\rm (FSK)$  transmitted signals which differ with respect to the frequency deviation  $\Delta f_{\rm A}$  distinguish and thus also by their modulation index

$$h = 2 \cdot \Delta f_{\rm A} \cdot T.$$


The digital source signal  $q(t)$ underlying the signals  $s_{\rm A}(t),  s_{\rm B}(t)$  and  $s_{\rm C}(t)$  is shown above.  All considered signals are normalized to amplitude  $1$  and time duration  $T$  and based on a cosine carrier with frequency  $f_{\rm T}$.

With binary FSK  $($"Binary Frequency Shift Keying"$)$  only two different frequencies occur,  each of which remains constant over a bit duration:

  • $f_{1}$  $($if  $a_{\nu} = +1)$,
  • $f_{2}$  $($if  $a_{\nu} = -1)$.


If the modulation index is not a multiple of  $2$,  continuous phase adjustment is required to avoid phase jumps.  This is called  "Continuous Phase Frequency Shift Keying"   $(\text{CP-FSK)}$.

An important special case is represented by binary FSK with modulation index  $h = 0.5$  which is also called  "Minimum Shift Keying"  $(\rm MSK)$.  This will be discussed in this exercise.



Hints:


Questions

1

Which statements are true for FSK and specifically for MSK?

FSK is generally a nonlinear modulation method.
MSK can be implemented as offset QPSK and is therefore linear.
This results in the same bit error rate as for QPSK.
A band limitation is less disturbing than with QPSK.
The MSK envelope is constant even with spectral shaping.

2

What frequencies  $f_{1}$  $($for amplitude coefficient  $a_{\nu} = +1)$  and $f_{2}$  $($for  $a_{\nu} = -1)$  does the signal  $s_{\rm A}(t)$  contain?

$f_{1} \cdot T \ = \ $

$f_{2} \cdot T \ = \ $

3

What are the carrier frequency  $f_{\rm T}$,  the frequency deviation  $\Delta f_{\rm A}$  and the modulation index  $h$  for signal  $s_{\rm A}(t)$?

$f_{\rm T} \cdot T \ = \ $

$\Delta f_{\rm A} \cdot T \ = \ $

$h \ = \ $

4

What is the modulation index for signal  $s_{\rm B}(t)$?

$h \ = \ $

5

What is the modulation index for signal  $s_{\rm C}(t)$?

$h \ = \ $

6

Which signals required continuous phase adjustment?

$s_{\rm A}(t)$,
$s_{\rm B}(t)$,
$s_{\rm C}(t)$.

7

What signals describe  "Minimum Shift Keying"  $\rm (MSK)$?

$s_{\rm A}(t)$,
$s_{\rm B}(t)$,
$s_{\rm C}(t)$.


Solution

(1)  All statements except the third are true:

  • Generally nonlinear FSK can only be demodulated coherently,  while MSK can also use a noncoherent demodulation method.
  • Compared to QPSK with coherent demodulation,  MSK requires  $3 \ \rm dB$  more  $E_{\rm B}/N_{0}$  $($energy per bit related to the noise power density$)$  for the same bit error rate.
  • The first zero in the power-spectral density occurs in MSK later than in QSPK,  but it shows a faster asymptotic decay than in QSPK.
  • The constant envelope of MSK means that nonlinearities in the transmission line do not play a role.  This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.


(2)  One can see from the graph five and three oscillations per symbol duration,  respectively:

$$f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.$$


(3)  For FSK with rectangular pulse shape,  only the two instantaneous frequencies  $f_{1} = f_{\rm T} + \Delta f_{\rm A}$  and  $f_{2} = f_{\rm T} - \Delta f_{\rm A}$  occur.

  • With the result from subtask  (2)  we thus obtain:
$$f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
$$ \Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},$$
$$h \ = \ 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}.$$


(4)  From the graph one can see the frequencies  $f_{1} \cdot T = 4.5$  and  $f_{2} \cdot T = 3.5$.

  • This results in the frequency deviation  $\Delta f_{\rm A} \cdot T = 0.5$  and the modulation index  $\underline{h = 1}$.


(5)  Here the two  $($normalized$)$  frequencies  $f_{1} \cdot T = 4.25$  and  $f_{2} \cdot T = 3.75$  occur,

  • which results in the frequency deviation  $\Delta f_{\rm A} \cdot T = 0.25$  and the modulation index  $\underline{h = 0.5}$.


(6)  Correct are the  solutions 2 and 3:

  • Only at  $s_{\rm A}(t)$  was no phase adjustment made.  Here,  the signal waveforms in the region of the first and second bit  $(a_{1} = a_{2} = +1)$  are each cosinusoidal like the carrier signal  $($with respect to the symbol boundary$)$.
  • In contrast,  in the second symbol of  $s_{\rm B}(t)$  a minus-cosine-shaped course  $($initial phase  $\phi_{0} = π$,  corresponding to  $180^\circ)$  can be seen and in the second symbol of  $s_{\rm C}(t)$  a minus-sine-shaped course  $(\phi_{0} = π /2$  or  $90^\circ)$.
  • For $s_{\rm A}(t)$  the initial phase is always zero,  for  $s_{\rm B}(t)$  either zero or  $π$,  while for the signal $s_{\rm C}(t)$  with modulation index  $h = 0.5$  a total of four initial phases are possible:  $0^\circ, \ 90^\circ, \ 180^\circ$  and  $270^\circ$.


(7)  Correct is the  last proposed solution,  since for this signal   ⇒   $h = 0.5$.

  • This is the smallest possible modulation index for which there is orthogonality between  $f_{1}$  and  $f_{2}$  within the symbol duration  $T$.