Difference between revisions of "Aufgaben:Exercise 2.2: Distortion Power"

From LNTwww
m (Guenter verschob die Seite 2.2 Verzerrungsleistung nach Aufgabe 2.2: Verzerrungsleistung)
 
(34 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Klassifizierung der Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions
 
}}
 
}}
  
[[File:P_ID883__LZI_A_2_2.png|right|Eingangssignal und Ausgangssignale]]
+
[[File:P_ID883__LZI_A_2_2.png|right|frame|Input signal and output signals]]
Am Eingang eines Nachrichtensystems $S_1$ wird ein Rechteckimpuls $x(t)$ mit der Amplitude $1 \ \rm  V$ und der Dauer $4 \ \rm  ms$ angelegt. Am Systemausgang wird dann der Impuls $y_1(t)$ gemessen, dessen Signalparameter der mittleren Skizze entnommen werden können.
+
A rectangular pulse $x(t)$  with amplitude $1 \hspace{0.08cm} \rm  V$  and duration $4 \hspace{0.08cm} \rm  ms$  is applied to the input of a communication system. Then, the pulse $y_1(t)$ , whose signal parameters can be taken from the middle sketch, is measured at the system output.
  
Am Ausgang eines anderen Systems $S_2$ stellt sich bei gleichem Eingangssignal $x(t)$ das in dem unteren Bild dargestellte Signal  $y_2(t)$ ein.
+
At the output of another system  $S_2$ , the signal $y_2(t)$  shown in the lower sketch is obtained with the same input signal $x(t)$ .
  
Für das in dieser Aufgabe verwendete Fehlersignal gelte folgende Definition:
+
Let the following definition apply to the error signal used in this task:
$$\varepsilon(t) = y(t) - \alpha \cdot x(t - \tau) .$$
+
:$$\varepsilon(t) = y(t) - \alpha \cdot x(t - \tau) .$$
Die Parameter $\alpha$ und $\tau$ sind so zu bestimmen, dass die Verzerrungsleistung (der mittlere quadratische Fehler) minimal ist. Für diese gilt:
+
The parameters $\alpha$  and  $\tau$  are to be determined such that the distortion power (the mean squared error) is minimal. For this, the following holds:
$$P_{\rm V}  = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int\limits_{ ( T_{\rm M})}
+
:$$P_{\rm V}  = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int\limits_{ ( T_{\rm M})}
 
  {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t$$
 
  {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t$$
  
Bei diesen Definitionen ist bereits berücksichtigt, dass eine frequenzunabhängige Dämpfung ebenso wie eine für alle Frequenzen konstante Laufzeit nicht zur Verzerrung beiträgt.
+
These definitions already take into account that a frequency-independent damping just as a runtime which is constant for all frequencies does not contribute to the distortion.
  
Das Integrationsintervall ist jeweils geeignet zu wählen. Benutzen Sie für $y_1(t)$ den Bereich von $0 ... 4 \ \rm ms$ und für $y_2(t)$ das Intervall $1 \ {\rm ms} ... 5 \ \rm ms$ Damit  beträgt in beiden Fällen die Messdauer $T_{\rm M} = 4 \ \rm ms$. Es ist offensichtlich, dass bezüglich $y_1(t)$ die Parameter $\alpha = 1$ und $\tau = 0$ jeweils zur minimalen Verzerrungsleistung führen.
+
The integration interval has to be chosen appropriately in each case:
 +
*Use the interval  $0$ ... $4 \hspace{0.08cm} \rm ms$  for $y_1(t)$  and the interval  $1 \hspace{0.08cm} {\rm ms}$ ... $5 \hspace{0.08cm} \rm ms$ for   $y_2(t)$ .
 +
*Thus, the measurement time is $T_{\rm M} = 4 \hspace{0.08cm} \rm ms$ in both cases.  
 +
*It is obvious that with respect to $y_1(t)$  the parameters  $\alpha = 1$  and  $\tau = 0$  respectively result in the minimum distortion power.
  
Das so genannte Signal–zu–Verzerrungs–Leistungsverhältnis berechnet sich im allgemeinen Fall zu
 
$$\rho_{\rm V} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} \hspace{0.05cm}.$$
 
  
Hierbei bezeichnet
+
In general, the so-called signal–to–distortion–power ratio is given by the following formula
*$P_x$ die Leistung des Signals $x(t)$, und
+
:$$\rho_{\rm V} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} \hspace{0.05cm}.$$
*$\alpha^2 \cdot P_x$ die Leistung von $y(t) = \alpha \cdot x(t - \tau)$<i, die sich bei Abwesenheit von Verzerrungen ergeben würde.
 
  
Meist &ndash; so auch in dieser Aufgabe &ndash; wird dieses S/N-Verhältnis $\rho_{\rm V}$ logarithmisch in $\rm dB$ angegeben.
+
Here,
 +
*$P_x$&nbsp; denotes the power of the signal&nbsp;$x(t)$, and
 +
*$\alpha^2 \cdot P_x$&nbsp; denotes the power of&nbsp;$y(t) = \alpha \cdot x(t - \tau)$, that would arise as aresult in the absence of distortion.  
  
''Hinweise:''
 
*Die Aufgabe bezieht sich auf das Kapitel  [[Lineare_zeitinvariante_Systeme/Klassifizierung_der_Verzerrungen|Klassifizierung der Verzerrungen]].
 
*Berücksichtigen Sie insbesondere die Seiten [[Lineare_zeitinvariante_Systeme/Klassifizierung_der_Verzerrungen#Quantitatives_Ma.C3.9F_f.C3.BCr_die_Signalverzerrungen| Quantitatives Maß für die Signalverzerrungen]] &nbsp;sowie &nbsp; [[Lineare_zeitinvariante_Systeme/Klassifizierung_der_Verzerrungen#Ber.C3.BCcksichtigung_von_D.C3.A4mpfung_und_Laufzeit|Berücksichtigung von Dämpfung und Laufzeit]]
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
 +
Usually, &ndash; as also in this task&ndash; this S/N-ratio&nbsp; $\rho_{\rm V}$&nbsp; is given logarithmically in&nbsp; $\rm dB$&nbsp;.
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
''Please note:''
 +
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions|Classification of the Distortions]].
 +
*In particular, consider the pages&nbsp;
 +
::[[Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions#Quantitative_measure_for_the_signal_distortions|Quantitative measure for the signal distortions]] &nbsp;and also &nbsp;
 +
::[[Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions#Ber.C3.BCcksichtigung_von_D.C3.A4mpfung_und_Laufzeit|Berücksichtigung von Dämpfung und Laufzeit]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie die Verzerrungsleistung des Systems <i>S</i><sub>1</sub>.
+
{Determine the distortion power of the system&nbsp; $S_1$.
 
|type="{}"}
 
|type="{}"}
$P_{\rm V1} \ = $  { 5 3% } $\ \cdot 10^{-3} \ {\rm V}^2$
+
$P_{\rm V1} \ = \ $  { 5 3% } $\ \cdot 10^{-3} \ {\rm V}^2$
  
  
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis für System <i>S</i><sub>1</sub>.
+
{Compute the signal&ndash;to&ndash;distortion&ndash;power ratio for system&nbsp; $S_1$.
 
|type="{}"}
 
|type="{}"}
$10 \cdot {\rm lg} \ \rho_\text{V1} \ =$  { 23.01 3% } $\ \rm dB$
+
$10 \cdot {\rm lg} \ \rho_\text{V1} \ = \ $  { 23.01 3% } $\ \rm dB$
  
  
{Welche Parameter <i>&alpha;</i> und <i>&tau;</i> sollten zur Berechnung der Verzerrungsleistung des Systems <i>S</i><sub>2</sub> herangezogen werden? Begründen Sie Ihr Ergebnis.
+
{What parameters&nbsp; $\alpha$&nbsp; and&nbsp; $\tau$&nbsp; should be used to calculate the distortion power of the system&nbsp; $S_2$&nbsp;? <br>Justify your result.
 
|type="{}"}
 
|type="{}"}
$\alpha \ = $  { 0.5 3% }
+
$\alpha \ = \ $  { 0.5 3% }
$\tau \ = $  { 1 3% } $\ \rm ms$
+
$\tau \ = \ $  { 1 3% } $\ \rm ms$
  
  
{Ermitteln Sie die Verzerrungsleistung des Systems <i>S</i><sub>2</sub>.
+
{Determine the distortion power of the system&nbsp; $S_2$.
 
|type="{}"}
 
|type="{}"}
$P_{\rm V2} \ = $  { 5 3% } $\ \cdot 10^{-3} \ {\rm V}^2$
+
$P_{\rm V2} \ = \ $  { 5 3% } $\ \cdot 10^{-3} \ {\rm V}^2$
  
  
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis für das System <i>S</i><sub>2</sub>. Interpretieren Sie die unterschiedlichen Ergebnisse.
+
{Compute the signal&ndash;to&ndash;distortion&ndash;power ratio for the system&nbsp; $S_2$. <br>Interpret the different results.
 
|type="{}"}
 
|type="{}"}
$10 \cdot {\rm lg} \ \rho_\text{V2} \ =$ { 16.99 3% } $\ \rm dB$
+
$10 \cdot {\rm lg} \ \rho_\text{V2} \ = \ $ { 16.99 3% } $\ \rm dB$
  
  
Line 65: Line 77:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID915__LZI_A_2_2_a.png|right|Resultierende Fehlersignale]]
+
[[File:P_ID915__LZI_A_2_2_a.png|right|frame|Resulting error signals]]
'''(1)'''&nbsp; Mit den gegebenen Parametern $\alpha = 1$ und $\tau= 0$ erhält man das in der Grafik dargestellte Fehlersignal $\varepsilon(t)$. Die Verzerrungsleistung ist somit gleich:
+
'''(1)'''&nbsp; The error signal&nbsp; $\varepsilon_1(t)$ shown in the graph is obtained with the given parameters&nbsp;$\alpha = 1$&nbsp; and &nbsp;$\tau= 0$&nbsp;. The distortion power is thus equal to:
$$P_{\rm V1}  =  \frac{ {1 \, \rm ms}}{4 \, \rm ms} \cdot \left[ ({0.1 \, \rm V})^2  +
+
:$$P_{\rm V1}  =  \frac{ {1 \, \rm ms}}{4 \, \rm ms} \cdot \big[ ({0.1 \, \rm V})^2  +
   ({-0.1 \, \rm V})^2\right]\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}. $$
+
   ({-0.1 \, \rm V})^2\big]\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}. $$
 +
 
  
  
'''(2)'''&nbsp; Die Leistung des Eingangssignals beträgt:
+
'''(2)'''&nbsp; The power of the input signal is:
$$P_{x}  =  \frac{1}{4 \, \rm ms} \cdot ({1 \, \rm V})^2 \cdot {4 \, \rm ms}\hspace{0.15cm}{ = {1 \, \rm  V^2}}.$$
+
:$$P_{x}  =  \frac{1}{4 \, \rm ms} \cdot ({1 \, \rm V})^2 \cdot {4 \, \rm ms}\hspace{0.15cm}{ = {1 \, \rm  V^2}}.$$
  
Mit dem Ergebnis aus (1) erhält man somit für das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis:
+
*The following is obtained for the signal&ndash;to&ndash;distortion&ndash;power ratio with the result from&nbsp; '''(1)'''&nbsp;:
 
$$\rho_{\rm V1} = \frac{  P_{x}}{P_{\rm V1}}= \frac{  {1 \, \rm
 
$$\rho_{\rm V1} = \frac{  P_{x}}{P_{\rm V1}}= \frac{  {1 \, \rm
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 200\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 200\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}\hspace{0.15cm}\underline{ = {23.01 \, \rm dB}}.$$
 
   10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}\hspace{0.15cm}\underline{ = {23.01 \, \rm dB}}.$$
  
'''(3)'''&nbsp; Die Skizze auf dem Angabenblatt macht deutlich, dass sich auch ohne die auftretenden Verzerrungen, sondern allein durch Dämpfung und Laufzeit das Signal $y(t)$ von $x(t)$ deutlich unterscheiden würde. Es würde sich $y(t) = 0.5 \cdot x(t-1\ {\rm ms}) $  ergeben.
 
  
Wenn jemand diese Werte nicht sofort aus der Grafik erkennt, so müsste er für sehr (unendlich) viele $\alpha$&ndash; und $\tau$&ndash;Werte zunächst das Fehlersignal
 
$$\varepsilon_2(t) = y_2(t) - \alpha \cdot x(t - \tau)$$
 
  
und anschließend den mitteleren quadratischen Fehler ermitteln, wobei das Integrationsintervall jeweils an $\tau$ anzupassen ist. Auch dann würde man das kleinstmögliche Ergebnis für $\alpha \; \underline{= 0.5}$ und $\tau \; \underline{= 1 \ \rm ms}$ erhalten. Für diese Optimierung von $\alpha$ und $\tau$ sollte man sich allerdings schon ein Computerprogramm gönnen.
+
'''(3)'''&nbsp; The sketch on the information sheet makes it clear that even without the distortions occuring &ndash; but due to attenuation and runtime alone &ndash; the signal&nbsp;$y(t)$&nbsp; would differ significantly from&nbsp;$x(t)$&nbsp;.
 +
*The following would arise as a result: &nbsp;$y(t) = 0.5 \cdot x(t-1\ {\rm ms}) $&nbsp;.
 +
 
 +
*If someone does not immediately perceive these values from the graph, then first the error signal
 +
:$$\varepsilon_2(t) = y_2(t) - \alpha \cdot x(t - \tau)$$
 +
 
 +
:and afterwards the mean squared error for very (infinitely) many&nbsp;$\alpha$&ndash;&nbsp; and &nbsp;$\tau$&ndash;values would have to be determined, in doing so the integration interval is to be adjusted to&nbsp;$\tau$&nbsp; in each case.  
 +
*Then, the smallest possible result would also be obtained for&nbsp;$\alpha \; \underline{= 0.5}$&nbsp; and &nbsp;$\tau \; \underline{= 1 \ \rm ms}$&nbsp;. However, for this optimization of&nbsp;$\alpha$&nbsp; and &nbsp;$\tau$&nbsp; the useage of a computer program should be granted.
  
'''(4)'''&nbsp; Die obige Skizze zeigt, dass $\varepsilon_2(t)$ bis auf eine Verschiebung um $1 \ \rm ms$ gleich dem Fehlersignal $\varepsilon_1(t)$ ist. Mit dem Integrationsintervall $1 \ {\rm ms} ... 5 \ {\rm ms}$ ergibt sich somit auch die gleiche Verzerrungsleistung:
+
 
 +
 
 +
'''(4)'''&nbsp; The above sketch shows that&nbsp;$\varepsilon_2(t)$&nbsp; is equal to the error signal&nbsp;$\varepsilon_1(t)$&nbsp; except for a shift by&nbsp;$1 \ \rm ms$&nbsp;. Considering the integration interval&nbsp;$1 \ {\rm ms}$ ... $5 \ {\rm ms}$&nbsp; the same distortion power is obtained:
 
:$$P_{\rm V2}  =  P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}.$$
 
:$$P_{\rm V2}  =  P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}.$$
  
'''(5)'''&nbsp; Entsprechend dem Angabenblatt gilt:
+
 
$$\rho_{\rm V2} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V2}}= \frac{ 0.5^2 \cdot {1 \, \rm
+
 
 +
'''(5)'''&nbsp; According to the information sheet the following holds:
 +
:$$\rho_{\rm V2} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V2}}= \frac{ 0.5^2 \cdot {1 \, \rm
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 50\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 50\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2} \hspace{0.15cm}\underline{= {16.99 \, \rm dB}}.$$
 
   10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2} \hspace{0.15cm}\underline{= {16.99 \, \rm dB}}.$$
  
Trotz gleicher Verzerrungsleistung ist $10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2}$ gegenüber $10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}$ um etwa $6 \ \rm dB$ geringer. Das Signal $y_2(t)$ ist also hinsichtlich des SNR deutlich ungünstiger als $y_1(t)$. Hierbei ist berücksichtigt, dass nun wegen $\alpha {= 0.5}$ die Leistung des Ausgangssignals nur noch ein Viertel der Eingangsleistung beträgt.
+
*Despite the same distortion power&nbsp;$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2}$&nbsp; is less than &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}$&nbsp; by about&nbsp;$6 \ \rm dB$&nbsp;.  
 +
*The signal&nbsp;$y_2(t)$&nbsp; is thus significantly less favourable in terms of SNR than&nbsp;$y_1(t)$.
 +
*It is considered that now the power of the output signal is only a quarter of the input power due to &nbsp;$\alpha = 0.5$&nbsp;.
 +
*If this attenuation at the output was to be compensated by amplifying it by $1/\alpha$, the distortion power would indeed increase by $\alpha^2$.  
  
Würde man diese Dämpfung am Ausgang durch eine Verstärkung um $1/\alpha$ kompensieren, so würde zwar die Verzerrungsleistung um $\alpha^2$ größer. Das Signal-zu-Verzerrungs-Leistungsverhältnis <i>&rho;</i><sub>V2</sub> bliebe jedoch erhalten, weil auch das &bdquo;Nutzsignal&rdquo; um den gleichen Betrag angehoben wird.
+
*The signal-to-distortion-power ratio $\rho_{\rm V2}$ would, however, remain the same because the "useful signal" would also be increased by the same value.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^2.1 Klassifizierung der Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.1 Classification of the Distortions^]]

Latest revision as of 21:51, 12 September 2021

Input signal and output signals

A rectangular pulse $x(t)$  with amplitude $1 \hspace{0.08cm} \rm V$  and duration $4 \hspace{0.08cm} \rm ms$  is applied to the input of a communication system. Then, the pulse $y_1(t)$ , whose signal parameters can be taken from the middle sketch, is measured at the system output.

At the output of another system  $S_2$ , the signal $y_2(t)$  shown in the lower sketch is obtained with the same input signal $x(t)$ .

Let the following definition apply to the error signal used in this task:

$$\varepsilon(t) = y(t) - \alpha \cdot x(t - \tau) .$$

The parameters $\alpha$  and  $\tau$  are to be determined such that the distortion power (the mean squared error) is minimal. For this, the following holds:

$$P_{\rm V} = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int\limits_{ ( T_{\rm M})} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t$$

These definitions already take into account that a frequency-independent damping just as a runtime which is constant for all frequencies does not contribute to the distortion.

The integration interval has to be chosen appropriately in each case:

  • Use the interval  $0$ ... $4 \hspace{0.08cm} \rm ms$  for $y_1(t)$  and the interval  $1 \hspace{0.08cm} {\rm ms}$ ... $5 \hspace{0.08cm} \rm ms$ for   $y_2(t)$ .
  • Thus, the measurement time is $T_{\rm M} = 4 \hspace{0.08cm} \rm ms$ in both cases.
  • It is obvious that with respect to $y_1(t)$  the parameters  $\alpha = 1$  and  $\tau = 0$  respectively result in the minimum distortion power.


In general, the so-called signal–to–distortion–power ratio is given by the following formula

$$\rho_{\rm V} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} \hspace{0.05cm}.$$

Here,

  • $P_x$  denotes the power of the signal $x(t)$, and
  • $\alpha^2 \cdot P_x$  denotes the power of $y(t) = \alpha \cdot x(t - \tau)$, that would arise as aresult in the absence of distortion.


Usually, – as also in this task– this S/N-ratio  $\rho_{\rm V}$  is given logarithmically in  $\rm dB$ .




Please note:

Quantitative measure for the signal distortions  and also  
Berücksichtigung von Dämpfung und Laufzeit.


Questions

1

Determine the distortion power of the system  $S_1$.

$P_{\rm V1} \ = \ $

$\ \cdot 10^{-3} \ {\rm V}^2$

2

Compute the signal–to–distortion–power ratio for system  $S_1$.

$10 \cdot {\rm lg} \ \rho_\text{V1} \ = \ $

$\ \rm dB$

3

What parameters  $\alpha$  and  $\tau$  should be used to calculate the distortion power of the system  $S_2$ ?
Justify your result.

$\alpha \ = \ $

$\tau \ = \ $

$\ \rm ms$

4

Determine the distortion power of the system  $S_2$.

$P_{\rm V2} \ = \ $

$\ \cdot 10^{-3} \ {\rm V}^2$

5

Compute the signal–to–distortion–power ratio for the system  $S_2$.
Interpret the different results.

$10 \cdot {\rm lg} \ \rho_\text{V2} \ = \ $

$\ \rm dB$


Solution

Resulting error signals

(1)  The error signal  $\varepsilon_1(t)$ shown in the graph is obtained with the given parameters $\alpha = 1$  and  $\tau= 0$ . The distortion power is thus equal to:

$$P_{\rm V1} = \frac{ {1 \, \rm ms}}{4 \, \rm ms} \cdot \big[ ({0.1 \, \rm V})^2 + ({-0.1 \, \rm V})^2\big]\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm V1} \hspace{0.15cm}\underline{ = 5 \cdot 10^{-3} \, \rm V^2}. $$


(2)  The power of the input signal is:

$$P_{x} = \frac{1}{4 \, \rm ms} \cdot ({1 \, \rm V})^2 \cdot {4 \, \rm ms}\hspace{0.15cm}{ = {1 \, \rm V^2}}.$$
  • The following is obtained for the signal–to–distortion–power ratio with the result from  (1) :

$$\rho_{\rm V1} = \frac{ P_{x}}{P_{\rm V1}}= \frac{ {1 \, \rm V^2}}{0.005 \, \rm V^2}\hspace{0.05cm}\rm = 200\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}\hspace{0.15cm}\underline{ = {23.01 \, \rm dB}}.$$


(3)  The sketch on the information sheet makes it clear that even without the distortions occuring – but due to attenuation and runtime alone – the signal $y(t)$  would differ significantly from $x(t)$ .

  • The following would arise as a result:  $y(t) = 0.5 \cdot x(t-1\ {\rm ms}) $ .
  • If someone does not immediately perceive these values from the graph, then first the error signal
$$\varepsilon_2(t) = y_2(t) - \alpha \cdot x(t - \tau)$$
and afterwards the mean squared error for very (infinitely) many $\alpha$–  and  $\tau$–values would have to be determined, in doing so the integration interval is to be adjusted to $\tau$  in each case.
  • Then, the smallest possible result would also be obtained for $\alpha \; \underline{= 0.5}$  and  $\tau \; \underline{= 1 \ \rm ms}$ . However, for this optimization of $\alpha$  and  $\tau$  the useage of a computer program should be granted.


(4)  The above sketch shows that $\varepsilon_2(t)$  is equal to the error signal $\varepsilon_1(t)$  except for a shift by $1 \ \rm ms$ . Considering the integration interval $1 \ {\rm ms}$ ... $5 \ {\rm ms}$  the same distortion power is obtained:

$$P_{\rm V2} = P_{\rm V1} \hspace{0.15cm}\underline{ = 5 \cdot 10^{-3} \, \rm V^2}.$$


(5)  According to the information sheet the following holds:

$$\rho_{\rm V2} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V2}}= \frac{ 0.5^2 \cdot {1 \, \rm V^2}}{0.005 \, \rm V^2}\hspace{0.05cm}\rm = 50\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2} \hspace{0.15cm}\underline{= {16.99 \, \rm dB}}.$$
  • Despite the same distortion power $10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2}$  is less than  $10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}$  by about $6 \ \rm dB$ .
  • The signal $y_2(t)$  is thus significantly less favourable in terms of SNR than $y_1(t)$.
  • It is considered that now the power of the output signal is only a quarter of the input power due to  $\alpha = 0.5$ .
  • If this attenuation at the output was to be compensated by amplifying it by $1/\alpha$, the distortion power would indeed increase by $\alpha^2$.
  • The signal-to-distortion-power ratio $\rho_{\rm V2}$ would, however, remain the same because the "useful signal" would also be increased by the same value.