Difference between revisions of "Aufgaben:Exercise 3.6Z: Two Imaginary Poles"

From LNTwww
 
(23 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Rücktransformation
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform
 
}}
 
}}
  
[[File:P_ID1786__LZI_Z_3_6.png|right|Zwei imaginäre Polstellen und eine Nullstelle ]]
+
[[File:P_ID1786__LZI_Z_3_6.png|right|frame|Two imaginary poles <br>and one zero ]]
In dieser Aufgabe betrachten wir ein kausales Signal $x(t)$ mit der Laplace&ndash;Transformierten
+
In this exercise,&nbsp; we consider a causal signal &nbsp;$x(t)$&nbsp; with the Laplace transform
$$X_{\rm L}(p) =
+
:$$X_{\rm L}(p) =
 
  \frac { p} { p^2 + 4 \pi^2}=
 
  \frac { p} { p^2 + 4 \pi^2}=
 
  \frac { p} { (p-{\rm j} \cdot 2\pi)(p+{\rm j} \cdot 2\pi)}
 
  \frac { p} { (p-{\rm j} \cdot 2\pi)(p+{\rm j} \cdot 2\pi)}
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
entsprechend der Grafik (eine rote Nullstelle und zwei grüne Pole).  
+
corresponding to the graph&nbsp; (one red zero and two green poles).  
  
Das Signal $y(t)$ besitze dagegen die Laplace&ndash;Spektralfunktion
+
*In contrast,&nbsp; the signal &nbsp;$y(t)$&nbsp; has the Laplace spectral function
 
:$$Y_{\rm L}(p) =
 
:$$Y_{\rm L}(p) =
 
  \frac { 1} { p^2 + 4 \pi^2}
 
  \frac { 1} { p^2 + 4 \pi^2}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Die rote Nullstelle gehört somit nicht zu $Y_{\rm L}(p)$.
+
:Thus,&nbsp; the red zero does not belong to &nbsp;$Y_{\rm L}(p)$.
  
Abschließend wird noch das Signal $z(t)$ mit der Laplace&ndash;Transformierten
+
*Finally, the signal &nbsp;$z(t)$&nbsp; with the Laplace tansform
$$Z_{\rm L}(p) =
+
:$$Z_{\rm L}(p) =
 
  \frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)}
 
  \frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)}
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
betrachtet, insbesondere der Grenzfall für $\beta &#8594; 0$.
+
:is considered, in particular the limiting case for &nbsp;$\beta &#8594; 0$.
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]].
+
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
 
*Die Frequenzvariable $p$ ist so normiert, dass nach Anwendung des Residuensatzes die Zeit $t$ in Mikrosekunden angegeben ist.  
+
 
*Ein Ergebnis $t = 1$ ist somit als $t = T$ mit $T = 1 \ \rm \mu s$ zu interpretieren.  
+
Please note:  
*Der [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatz]] lautet am Beispiel der Funktion $X_{\rm L}(p)$ mit zwei einfachen Polstellen bei $ \pm {\rm j} \cdot \beta$:
+
*The exercise belongs to the chapter&nbsp;   [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
:$$x(t)  =  X_{\rm L}(p) \cdot (p - {\rm j} \cdot \beta) \cdot  {\rm e}^{\hspace{0.03cm}p
+
*The frequency variable&nbsp; $p$ &nbsp; is normalized such that time&nbsp; $t$&nbsp; is in microseconds after applying the residue theorem.  
  \hspace{0.05cm}t}  \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm} \it
+
*A result &nbsp;$t = 1$&nbsp; is thus to be interpreted as &nbsp;$t = T$&nbsp; with &nbsp;$T = 1 \ \rm &micro; s$&nbsp;.  
 +
*The &nbsp;[[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]]&nbsp; is as follows using the example of the function &nbsp;$X_{\rm L}(p)$&nbsp; with two simple poles at &nbsp;$ \pm {\rm j} \cdot \beta$:
 +
:$$x(t)  =  X_{\rm L}(p) \cdot (p - {\rm j} \cdot \beta) \cdot  {\rm e}^{\hspace{0.03cm}p\hspace{0.05cm} \cdot
 +
  \hspace{0.05cm}t}  \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it
 
  \beta}}+X_{\rm L}(p) \cdot (p + {\rm j} \cdot \beta) \cdot  {\rm e}^{\hspace{0.03cm}p
 
  \beta}}+X_{\rm L}(p) \cdot (p + {\rm j} \cdot \beta) \cdot  {\rm e}^{\hspace{0.03cm}p
  \hspace{0.05cm}t}  \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{-\rm j \hspace{0.05cm} \it
+
  \hspace{0.05cm} \cdot\hspace{0.05cm}t}  \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{-\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it
 
  \beta}}
 
  \beta}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Signal $x(t)$. Welche der folgenden Aussagen sind richtig?
+
{Compute the signal &nbsp;$x(t)$.&nbsp; Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
+ $x(t)$ ist ein kausales Cosinussignal.
+
+ $x(t)$&nbsp; is a causal cosine signal.
- $x(t)$ ist ein kausales Sinussignal.
+
- $x(t)$&nbsp; is a causal sinusoidal signal.
+ Die Amplitude von $x(t)$ ist $1$.
+
+ The amplitude of&nbsp; $x(t)$&nbsp; is&nbsp; $1$.
+ Die Periodendauer von $x(t)$ ist $T = 1 \ \rm \mu s$.
+
+ The period of&nbsp; $x(t)$&nbsp; is&nbsp; $T = 1 \ \rm &micro; s$.
  
  
{Berechnen Sie das Signal $y(t)$. Welche der folgenden Aussagen sind richtig?
+
{Compute the signal &nbsp;$y(t)$. Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- $y(t)$ ist ein kausales Cosinussignal.
+
- $y(t)$&nbsp; is a causal cosine signal.
+ $y(t)$ ist ein kausales Sinussignal.
+
+ $y(t)$&nbsp; is a causal sinusoidal signal.
- Die Amplitude von $y(t)$ ist $1$.
+
- The amplitude of&nbsp; $y(t)$&nbsp; is&nbsp; $1$.
+ Die Periodendauer von $y(t)$ ist $T = 1 \ \rm \mu s$.
+
+ The period of&nbsp; $y(t)$&nbsp; is&nbsp; $T = 1 \ \rm &micro; s$.
  
  
{Welche Aussagen treffen für das Signal $z(t)$ zu?
+
{Which statements are true for the signal &nbsp;$z(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Für $ \beta > 0$ verläuft $z(t)$ cosinusförmig.
+
+ For &nbsp;$ \beta > 0$,&nbsp; &nbsp;$z(t)$&nbsp; is cosine-shaped.
- Für $ \beta > 0$ verläuft $z(t)$ sinusförmig.
+
- For &nbsp;$ \beta > 0$,&nbsp; &nbsp;$z(t)$&nbsp; is sinusoidal.
+ Der Grenzfall $\beta &#8594; 0$ führt zur Sprungfunktion $\gamma(t)$.
+
+ The limiting case &nbsp;$\beta &#8594; 0$&nbsp; results in the step function &nbsp;$\gamma(t)$.
  
  
Line 66: Line 69:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Durch Anwendung des Residuensatzes erhält man für das Signal $x(t)$ bei positiven Zeiten:
+
'''(1)'''&nbsp; The&nbsp; <u>suggested solutions 1, 3 and 4</u>&nbsp; are correct:
$$x_1(t)\hspace{0.25cm} =  \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}
+
*The following is obtained for signal&nbsp; $x(t)$&nbsp; for positive times by applying the residue theorem:
  \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}=
+
:$$x_1(t)\hspace{0.25cm} =  \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}
 +
  \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t}\}=
 
  \frac {p} { p+{\rm j} \cdot 2\pi}\cdot  {\rm e}^{\hspace{0.05cm}p
 
  \frac {p} { p+{\rm j} \cdot 2\pi}\cdot  {\rm e}^{\hspace{0.05cm}p
  \hspace{0.05cm}t}
+
  \hspace{0.05cm}\cdot \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}=
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}=
 
  \frac{1}{2} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\hspace{0.05cm} ,$$
 
  \frac{1}{2} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\hspace{0.05cm} ,$$
$$ x_2(t)\hspace{0.25cm} =  \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}
+
:$$ x_2(t)\hspace{0.25cm} =  \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}
  \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}=
+
  \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\}=
 
  \frac {p} { p-{\rm j} \cdot 2\pi}\cdot  {\rm e}^{\hspace{0.05cm}p
 
  \frac {p} { p-{\rm j} \cdot 2\pi}\cdot  {\rm e}^{\hspace{0.05cm}p
  \hspace{0.05cm}t}
+
  \hspace{0.05cm}\cdot \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= -{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}=
 
  \bigg |_{p \hspace{0.05cm}= -{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}=
 
  \frac{1}{2} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}
 
  \frac{1}{2} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
$$\Rightarrow  \hspace{0.3cm} x(t) = x_1(t) + x_2(t) =
+
:$$\Rightarrow  \hspace{0.3cm} x(t) = x_1(t) + x_2(t) =
 
  {1}/{2} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi
 
  {1}/{2} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi
 
  t}+{\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi
 
  t}+{\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi
 
  t}\right ] = \cos(2\pi t)
 
  t}\right ] = \cos(2\pi t)
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Richtig sind somit <u>die Lösungsvorschläge 1, 3 und 4</u>.
 
  
  
'''(2)'''&nbsp; Prinzipiell könnte diese Teilaufgabe in gleicher Weise gelöst werden wie die Teilaufgabe (1). Man kann aber auch den Integrationssatz heranziehen. Dieser besagt unter anderem, dass die Multiplikation mit $1p$ im Spektralbereich der Integration im Zeitbereich entspricht:
+
 
$$Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi
+
'''(2)'''&nbsp; The&nbsp; <u>suggested solutions 2 and 4</u>&nbsp; are correct:
 +
*In principle,&nbsp; this subtask could be solved in the same way as subtask&nbsp; '''(1)'''.  
 +
*However,&nbsp; the integration theorem can also be used.  
 +
*This says among other things that multiplication by&nbsp; $1/p$&nbsp; in the spectral domain corresponds to integration in the time domain:
 +
:$$Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi
 
  \tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t)
 
  \tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t)
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Richtig sind dementsprechend <u>die Lösungsalternativen 2 und 4</u>.
 
  
''Hinweis'': Das kausale Cosinussignal $x(t)$ sowie das hier berechnete kausale Sinussignal $y(t)$ sind auf dem Angabenblatt zu [[Aufgaben:3.6_Einschwingverhalten|Aufgabe 3.6]] als $c_{\rm K}(t)$ bzw. $s_{\rm K}(t)$ dargestellt.
+
Please note:&nbsp; The causal cosine signal&nbsp; $x(t)$&nbsp; and the causal sine signal&nbsp; $y(t)$&nbsp; are shown on the information page of&nbsp; [[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6]]&nbsp; as&nbsp; $c_{\rm K}(t)$&nbsp; and&nbsp; $s_{\rm K}(t)$,&nbsp; respectively.
  
  
'''(3)'''&nbsp; Ein Vergleich mit der Berechnung von $x(t)$ zeigt, dass $z(t) = \cos (\beta \cdot t)$ für $t \ge 0$ und $z(t) = 0$ für $t < 0$ gilt. Der Grenzübergang für $\beta &#8594; 0$ führt damit zur Sprungfunktion $\gamma(t)$ &nbsp; &#8658; &nbsp;  <u>Lösungsvorschläge 1 und 3</u>.
 
  
Zum gleichen Ergebnis kommt man durch die Betrachtung im Spektralbereich:
+
'''(3)'''&nbsp; The&nbsp; <u>suggested solutions 1 and 3</u>&nbsp; are correct:
$$Z_{\rm L}(p) = \lim_{\beta \hspace{0.05cm} \rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}\frac{p}{p^2 + \beta^2} = {1}/{p}
+
*A comparison with the computation of &nbsp;$x(t)$&nbsp; shows that &nbsp;$z(t) = \cos (\beta \cdot t)$&nbsp; holds for &nbsp;$t \ge 0$&nbsp; and &nbsp;$z(t) = 0$&nbsp; for &nbsp;$t < 0$.
 +
*The limit process for &nbsp;$\beta &#8594; 0$&nbsp; thus results in the step function &nbsp;$\gamma(t)$.
 +
*The same result is obtained by consideration in the spectral domain:
 +
:$$Z_{\rm L}(p) = \lim_{\beta \hspace{0.05cm} \rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}\frac{p}{p^2 + \beta^2} = {1}/{p}
 
  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm}
 
  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm}
 
   z(t) = \gamma(t)
 
   z(t) = \gamma(t)
Line 110: Line 118:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.3 Laplace–Rücktransformation^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.3 Inverse Laplace Transform^]]

Latest revision as of 17:33, 9 December 2021

Two imaginary poles
and one zero

In this exercise,  we consider a causal signal  $x(t)$  with the Laplace transform

$$X_{\rm L}(p) = \frac { p} { p^2 + 4 \pi^2}= \frac { p} { (p-{\rm j} \cdot 2\pi)(p+{\rm j} \cdot 2\pi)} \hspace{0.05cm}$$

corresponding to the graph  (one red zero and two green poles).

  • In contrast,  the signal  $y(t)$  has the Laplace spectral function
$$Y_{\rm L}(p) = \frac { 1} { p^2 + 4 \pi^2} \hspace{0.05cm}.$$
Thus,  the red zero does not belong to  $Y_{\rm L}(p)$.
  • Finally, the signal  $z(t)$  with the Laplace tansform
$$Z_{\rm L}(p) = \frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)} \hspace{0.05cm}$$
is considered, in particular the limiting case for  $\beta → 0$.



Please note:

  • The exercise belongs to the chapter  Inverse Laplace Transform.
  • The frequency variable  $p$   is normalized such that time  $t$  is in microseconds after applying the residue theorem.
  • A result  $t = 1$  is thus to be interpreted as  $t = T$  with  $T = 1 \ \rm µ s$ .
  • The  residue theorem  is as follows using the example of the function  $X_{\rm L}(p)$  with two simple poles at  $ \pm {\rm j} \cdot \beta$:
$$x(t) = X_{\rm L}(p) \cdot (p - {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p\hspace{0.05cm} \cdot \hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}}+X_{\rm L}(p) \cdot (p + {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm} \cdot\hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{-\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}} \hspace{0.05cm}.$$


Questions

1

Compute the signal  $x(t)$.  Which of the following statements are correct?

$x(t)$  is a causal cosine signal.
$x(t)$  is a causal sinusoidal signal.
The amplitude of  $x(t)$  is  $1$.
The period of  $x(t)$  is  $T = 1 \ \rm µ s$.

2

Compute the signal  $y(t)$. Which of the following statements are correct?

$y(t)$  is a causal cosine signal.
$y(t)$  is a causal sinusoidal signal.
The amplitude of  $y(t)$  is  $1$.
The period of  $y(t)$  is  $T = 1 \ \rm µ s$.

3

Which statements are true for the signal  $z(t)$ ?

For  $ \beta > 0$,   $z(t)$  is cosine-shaped.
For  $ \beta > 0$,   $z(t)$  is sinusoidal.
The limiting case  $\beta → 0$  results in the step function  $\gamma(t)$.


Solution

(1)  The  suggested solutions 1, 3 and 4  are correct:

  • The following is obtained for signal  $x(t)$  for positive times by applying the residue theorem:
$$x_1(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t}\}= \frac {p} { p+{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\hspace{0.05cm} ,$$
$$ x_2(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\}= \frac {p} { p-{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= -{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t} \hspace{0.05cm} .$$
$$\Rightarrow \hspace{0.3cm} x(t) = x_1(t) + x_2(t) = {1}/{2} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}+{\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\right ] = \cos(2\pi t) \hspace{0.05cm} .$$


(2)  The  suggested solutions 2 and 4  are correct:

  • In principle,  this subtask could be solved in the same way as subtask  (1).
  • However,  the integration theorem can also be used.
  • This says among other things that multiplication by  $1/p$  in the spectral domain corresponds to integration in the time domain:
$$Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi \tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t) \hspace{0.05cm} .$$

Please note:  The causal cosine signal  $x(t)$  and the causal sine signal  $y(t)$  are shown on the information page of  Exercise 3.6  as  $c_{\rm K}(t)$  and  $s_{\rm K}(t)$,  respectively.


(3)  The  suggested solutions 1 and 3  are correct:

  • A comparison with the computation of  $x(t)$  shows that  $z(t) = \cos (\beta \cdot t)$  holds for  $t \ge 0$  and  $z(t) = 0$  for  $t < 0$.
  • The limit process for  $\beta → 0$  thus results in the step function  $\gamma(t)$.
  • The same result is obtained by consideration in the spectral domain:
$$Z_{\rm L}(p) = \lim_{\beta \hspace{0.05cm} \rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}\frac{p}{p^2 + \beta^2} = {1}/{p} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z(t) = \gamma(t) \hspace{0.05cm} .$$