Difference between revisions of "Aufgaben:Exercise 3.7Z: Partial Fraction Decomposition"

From LNTwww
 
(30 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Rücktransformation
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform
 
}}
 
}}
  
[[File:P_ID1789__LZI_Z_3_7.png|right|Einige Pol–Nullstellen–Konfigurationen]]
+
[[File:P_ID1789__LZI_Z_3_7.png|right|frame|Pole-zero diagrams]]
In der Grafik sind vier Vierpole durch ihre Pol–Nullstellen–Diagramme $H_{\rm L}(p)$ gegeben. Sie alle haben gemein, dass die Anzahl $Z$ der Nullstellen gleich der Anzahl $N$ der Polstellen ist. Der konstante Faktor ist jeweils $K=1$.
+
In the graph,  four two-port networks are given by their pole–zero diagrams  $H_{\rm L}(p)$.
 +
* They all have in common that the number  $Z$  of zeros is equal to the number  $N$  of poles.  
 +
*The constant factor in each case is  $K=1$.
  
Im Sonderfall $Z = N$ kann zur Berechnung der Impulsantwort $h(t)$ der Residuensatz nicht direkt angewendet werden. Vielmehr muss vorher eine Partialbruchzerlegung entsprechend
+
 
$$H_{\rm L}(p)  =1- H_{\rm L}\hspace{0.05cm}'(p)
+
In the special case  $Z = N$  the residue theorem cannot be applied directly to compute the impulse response  $h(t)$.  
 +
 
 +
Rather,  a  "partial fraction decomposition"  corresponding to
 +
:$$H_{\rm L}(p)  =1- H_{\rm L}\hspace{0.05cm}'(p)
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
vorgenommen werden. Für die Impulsantwort gilt dann
+
must be made beforehand. Then,
$$h(t)  = \delta(t)- h\hspace{0.03cm}'(t)
+
:$$h(t)  = \delta(t)- h\hspace{0.03cm}'(t)
  \hspace{0.05cm},$$
+
  \hspace{0.05cm}$$  
wobei $h'(t)$ die Laplace&ndash;Rücktransformierte von $H_{\rm L}\hspace{0.05cm}'(p)$ angibt, bei der die Bedingung $Z' < N'$ erfüllt ist.
+
holds for the impulse response.
 +
&nbsp;$h\hspace{0.03cm}'(t)$&nbsp; is the inverse Laplace transform of &nbsp;$H_{\rm L}\hspace{0.05cm}'(p)$,&nbsp; where the condition &nbsp;$Z' < N'$&nbsp; is satisfied.
 +
 
 +
Two of the four configurations given are so-called&nbsp; "all-pass filters".
 +
*This refers to two-port networks for which the Fourier spectrum satisfies the condition &nbsp;$|H(f)| = 1$ &nbsp; &#8658; &nbsp; $a(f) = 0$&nbsp;.
 +
*In [[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|Exercise 3.4Z]] it is given how the poles and zeros of such an all-pass filter must be positioned.
  
Bei zwei der vier angegebenen Konfigurationen handelt es sich um so genannte ''Allpässe''.
 
*Darunter versteht man Vierpole, bei denen die Fourier&ndash;Spektralfunktion die Bedingung $|H(f)| = 1$ &nbsp; &#8658;  $a(f) = 0$ erfüllt.
 
*In der [[Aufgaben:3.4Z_Verschiedene_Allpässe|Zusatzaufgabe 3.4Z]] ist angegeben, wie die Pole und Nullstelle eines solchen Allpasses angeordnet sein müssen.
 
  
Weiterhin soll in dieser Aufgabe die $p$&ndash;Übertragungsfunktion
+
Furthermore,&nbsp; in this exercise the &nbsp;$p$&ndash;transfer function
$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2}
+
:$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2}
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
&rArr; &nbsp; &bdquo;Konfiguration (5)&rdquo; näher untersucht werden, die bei richtiger Wahl des Parameters $A$ durch eines der vier in der Grafik vorgegebenen Pol&ndash;Nullstellen&ndash;Diagramme dargestellt werden kann.
+
&rArr; &nbsp; "configuration $(5)$" will be examined in more detail,&nbsp; which can be represented by one of the four pole&ndash;zero diagrams given in the graph if the parameter &nbsp;$A$&nbsp; is chosen correctly.
 +
 
 +
 
 +
 
  
  
''Hinweise:''
+
Please note:  
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]].
+
*The exercise belongs to the chapter&nbsp;   [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
*In particular, reference is made to the page&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Partial_fraction_decomposition|Partial fraction decomposition]].
 +
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Bei welchen der skizzierten Vierpole handelt es sich um Allpässe?
+
{Which of the sketched two-port networks are all-pass filters?
 
|type="[]"}
 
|type="[]"}
+ Konfiguration (1),
+
+ Configuration &nbsp;$(1)$,
+ Konfiguration (2),
+
+ configuration &nbsp;$(2)$,
- Konfiguration (3),
+
- configuration &nbsp;$(3)$,
- Konfiguration (4).
+
- configuration &nbsp;$(4)$.
  
  
{Welcher Vierpol hat die Übertragungsfunktion $H_{\rm L}^{(5)}(p)$?
+
{Which two-port network has the transfer function &nbsp;$H_{\rm L}^{(5)}(p)$?
|type="[]"}
+
|type="()"}
- Konfiguration (1),
+
- Configuration &nbsp;$(1)$,
- Konfiguration (2),
+
- configuration &nbsp;$(2)$,
- Konfiguration (3),
+
- configuration &nbsp;$(3)$,
+ Konfiguration (4).
+
+ configuration &nbsp;$(4)$.
  
  
{Berechnen Sie die Funktion $H_{\rm L}\hspace{0.05cm}'(p)$ nach einer Partialbruchzerlegung für die Konfiguration '''(1)'''. Geben Sie den Funktionswert für $p = 0$ ein.
+
{Compute the function &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; after a partial fraction decomposition for configuration&nbsp; '''(1)'''.&nbsp; Enter the function value for &nbsp;$p = 0$.
 
|type="{}"}
 
|type="{}"}
${\rm Konfiguration}\ (1):\ \ H_L'(p = 0) \ = $  { 2 3% }
+
$H_{\rm L}\hspace{0.01cm}'(p = 0) \ = \ $  { 2 3% }
  
  
{Berechnen Sie  $H_{\rm L}\hspace{0.05cm}'(p)$ für Konfiguration '''(2)'''. Welche Aussagen treffen hier zu?
+
{Compute &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; for configuration &nbsp;$(2)$.&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
- $H_{\rm L}\hspace{0.05cm}'(p)$ besitzt die gleichen Nullstellen wie $H_{\rm L}(p)$.
+
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same zeros as &nbsp;$H_{\rm L}(p)$.
+ $H_{\rm L}\hspace{0.05cm}'(p)$ besitzt die gleichen Polstellen wie $H_{\rm L}(p)$.
+
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same poles as &nbsp;$H_{\rm L}(p)$.
+ Der konstante Faktor von $H_{\rm L}\hspace{0.05cm}'(p)$ ist $K' = 8$.
+
+ The constant factor of &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; is &nbsp;$K' = 8$.
  
  
{Berechnen Sie <i>H</i><sub>L</sub>'(<i>p</i>) für Konfiguration '''(3)'''. Welche Aussagen treffen hier zu?
+
{Compute &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; for configuration &nbsp;$(3)$.&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
- $H_{\rm L}\hspace{0.05cm}'(p)$ besitzt die gleichen Nullstellen wie $H_{\rm L}(p)$.
+
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same zeros as &nbsp;$H_{\rm L}(p)$.
+ $H_{\rm L}\hspace{0.05cm}'(p)$ besitzt die gleichen Polstellen wie $H_{\rm L}(p)$.
+
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same poles as &nbsp;$H_{\rm L}(p)$.
- Der konstante Faktor von $H_{\rm L}\hspace{0.05cm}'(p)$ ist $K' = 8$.
+
- The constant factor of &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; is &nbsp;$K' = 8$.
  
  
{Berechnen Sie <i>H</i><sub>L</sub>'(<i>p</i>) für Konfiguration '''(4)'''. Welche Aussagen treffen hier zu?
+
{Compute &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; for configuration &nbsp;$(4)$.&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
- $H_{\rm L}\hspace{0.05cm}'(p)$ besitzt die gleichen Nullstellen wie $H_{\rm L}(p)$.
+
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same zeros as &nbsp;$H_{\rm L}(p)$.
+ $H_{\rm L}\hspace{0.05cm}'(p)$ besitzt die gleichen Polstellen wie $H_{\rm L}(p)$.
+
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same poles as &nbsp;$H_{\rm L}(p)$.
- Der konstante Faktor von $H_{\rm L}\hspace{0.05cm}'(p)$ ist $K' = 8$.
+
- The constant factor of &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; is &nbsp;$K' = 8$.
  
  
Line 78: Line 89:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Nach den in der Zusatzaufgabe 3.4Z angegebenen Kriterien liegt immer dann ein Allpass vor, wenn es zu jeder Polstelle $p_{\rm x} = - A + {\rm j} \cdot B$ in der linken $p$&ndash;Halbebene eine entsprechende Nullstelle $p_{\rm o} = + A + {\rm j} \cdot B$ in der rechten Halbebene gibt. $K = 1$ ist dann die Dämpfungsfunktion $a(f) = 0 \ \rm  Np$ &nbsp; &#8658; &nbsp; $|H(f)| = 1$. Aus der Grafik auf der Angabenseite erkennt man, dass die beiden <u>Konfigurationen (1) und (2)</u> genau diese Symmetrieeigenschaften aufweisen.
+
'''(1)'''&nbsp; The&nbsp; <u> suggested solutions 1 and 2</u>&nbsp; are correct:
 +
*According to the criteria given in exercise 3.4Z,&nbsp; there is always an all-pass filter at hand <br>if there is a corresponding zero &nbsp;$p_{\rm o} = + A + {\rm j} \cdot B$&nbsp; in the right $p$&ndash;half-plane for each pole &nbsp;$p_{\rm x} = - A + {\rm j} \cdot B$&nbsp; in the left half-plane.  
 +
*Considering&nbsp; $K = 1$&nbsp; the attenuation function is then &nbsp;$a(f) = 0 \ \rm  Np$ &nbsp; &#8658; &nbsp; $|H(f)| = 1$.  
 +
*The following can be seen from the graph on the information page: &nbsp; The configurations &nbsp;$(1)$ and &nbsp;$(2)$ satisfy exactly these symmetry properties.
  
  
'''(2)'''&nbsp; Die Übertragungsfunktion $H_{\rm L}^{(5)}(p)$ wird ebenso durch <u>die Konfiguration '''(4)'''</u> beschrieben, wie die nachfolgende Rechnung zeigt:
+
 
$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} =  \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2}
+
'''(2)'''&nbsp; The&nbsp; <u> suggested solution 4</u>&nbsp; is correct:
 +
*The transfer function &nbsp;$H_{\rm L}^{(5)}(p)$&nbsp; is also described by configuration &nbsp;$(4)$&nbsp; as the following calculation shows:
 +
:$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} =  \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2}
 
  =\frac{p/A}{{p/A}+2+ {A/p}}
 
  =\frac{p/A}{{p/A}+2+ {A/p}}
 
   =  \hspace{0.2cm}\frac{p^2}{p^2 + 2A \cdot p + A^2} = \frac{p^2}{(p+A)^2
 
   =  \hspace{0.2cm}\frac{p^2}{p^2 + 2A \cdot p + A^2} = \frac{p^2}{(p+A)^2
 
  }= H_{\rm L}^{(4)}(p)
 
  }= H_{\rm L}^{(4)}(p)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Die doppelte Nullstelle liegt bei $p_{\rm o} = 0$, der doppelte Pol bei $p_{\rm x} = -A = -2$.
+
*The double zero is at &nbsp;$p_{\rm o} = 0$&nbsp; and the double pole at &nbsp;$p_{\rm x} = -A = -2$.
  
  
'''(3)'''&nbsp; Für die Konfiguration '''(1)''' gilt:
+
 
$$H_{\rm L}(p)  =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p)
+
'''(3)'''&nbsp; The following holds for configuration &nbsp;$(1)$:
 +
:$$H_{\rm L}(p)  =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p)
 
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p)  = \frac{4}{p+2}
 
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p)  = \frac{4}{p+2}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{H_{\rm L}\hspace{-0.05cm}'(p =0)
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{H_{\rm L}\hspace{-0.05cm}'(p =0)
Line 100: Line 117:
  
  
'''(4)'''&nbsp; In gleicher Weise ergibt sich für die Konfiguration '''(2)''':
+
 
$$H_{\rm L}(p)  =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}=
+
'''(4)'''&nbsp; Similarly,&nbsp; the following is obtained for configuration &nbsp;$(2)$:
 +
:$$H_{\rm L}(p)  =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}=
 
   \frac{p^2 -4\cdot p  +8 }{p^2 +4\cdot p  +8}=
 
   \frac{p^2 -4\cdot p  +8 }{p^2 +4\cdot p  +8}=
 
     \hspace{0.2cm}\frac{p^2 +4\cdot p  +8 -8\cdot p}{p^2 +4\cdot p
 
     \hspace{0.2cm}\frac{p^2 +4\cdot p  +8 -8\cdot p}{p^2 +4\cdot p
  +8} $$
+
  +8} =1- \frac{8\cdot p}{p^2 +4\cdot p  +8}=1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$H_{\rm L}(p)  =1- \frac{8\cdot p}{p^2 +4\cdot p  +8}=1- H_{\rm L}\hspace{-0.05cm}'(p)
+
:$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p)  = 8
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p)  = 8
 
 
  \cdot \frac{p}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}
 
  \cdot \frac{p}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Richtig sind <u>die beiden letzten Lösungsvorschläge</u> im Gegensatz zur Aussage 1:
+
 
* Während $H_{\rm L}(p)$ zwei konjugiert&ndash;komplexe Nullstellen aufweist,  
+
Thus,&nbsp; the&nbsp; <u> suggested solutions 2 and 3</u>&nbsp; are correct in contrast to statement 1:
*besitzt $H_{\rm L}'(p)$ nur eine einzige Nullstelle bei $p_{\rm o}' = 0$.
+
* While &nbsp;$H_{\rm L}(p)$&nbsp; has two conjugate complex zeros,  
 +
* $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; only has a single zero at &nbsp;$p_{\rm o}\hspace{0.01cm}' = 0$.
  
  
'''(5)'''&nbsp; Für die Konfiguration '''(3)''' gilt:
+
 
$$H_{\rm L}(p)  =
+
 
 +
'''(5)'''&nbsp; The following applies for configuration &nbsp;$(3)$&nbsp;:
 +
:$$H_{\rm L}(p)  =
 
   \frac{p^2 }{p^2 +4\cdot p  +8}=\frac{p^2 +4\cdot p  +8 -4\cdot p  -8 }{p^2 +4\cdot p  +8}
 
   \frac{p^2 }{p^2 +4\cdot p  +8}=\frac{p^2 +4\cdot p  +8 -4\cdot p  -8 }{p^2 +4\cdot p  +8}
 
  = 1- H_{\rm L}\hspace{-0.05cm}'(p)$$
 
  = 1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p)  = 4
+
:$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p)  = 4
 
  \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}
 
  \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Die Nullstelle von $H_{\rm L}'(p)$ liegt nun bei $p_{\rm o}' = -2$ . Die Konstante ist $K' = 4$ &nbsp; &#8658; &nbsp; richtig ist hier nur die <u>Aussage 2</u>.
+
*The zero of &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; is now at &nbsp;$p_{\rm o}\hspace{0.01cm}' = -2$.
 +
*The constant is &nbsp;$K\hspace{0.01cm}' = 4$ &nbsp; &#8658; &nbsp; only &nbsp; <u> suggested solution 2</u> &nbsp; is correct here.
 +
 
 +
 
  
'''(6)'''&nbsp; Schließlich gilt für die Konfiguration '''(4)''':
+
'''(6)'''&nbsp; Finally,&nbsp; the following holds for configuration &nbsp;$(4)$:
$$H_{\rm L}(p)  =  \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p  +4 -4\cdot p  -4 }{p^2 +4\cdot p  +4}
+
:$$H_{\rm L}(p)  =  \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p  +4 -4\cdot p  -4 }{p^2 +4\cdot p  +4}
 
   = 1- \frac{4\cdot p  +4 }{p^2 +4\cdot p  +4}
 
   = 1- \frac{4\cdot p  +4 }{p^2 +4\cdot p  +4}
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p)  = 4
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p)  = 4
 
  \cdot \frac{p+1}{(p+2)^2}
 
  \cdot \frac{p+1}{(p+2)^2}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Richtig ist auch hier <u>der Lösungsvorschlag 2</u>. Allgemein lässt sich sagen:  
+
<u>Suggested solution 2</u>&nbsp; is correct here.&nbsp; In general,&nbsp; it can be said that:  
*Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.  
+
*The partial fraction decomposition changes the number and position of the zeros.  
*Die Pole von $H_{\rm L}'(p)$ sind dagegen stets identisch mit denen von $H_{\rm L}(p)$.
+
* On the contrary,&nbsp; the poles of&nbsp; $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; are always identical to those of&nbsp; $H_{\rm L}(p)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.3 Laplace–Rücktransformation^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.3 Inverse Laplace Transform^]]

Latest revision as of 14:55, 25 January 2022

Pole-zero diagrams

In the graph,  four two-port networks are given by their pole–zero diagrams  $H_{\rm L}(p)$.

  • They all have in common that the number  $Z$  of zeros is equal to the number  $N$  of poles.
  • The constant factor in each case is  $K=1$.


In the special case  $Z = N$  the residue theorem cannot be applied directly to compute the impulse response  $h(t)$.

Rather,  a  "partial fraction decomposition"  corresponding to

$$H_{\rm L}(p) =1- H_{\rm L}\hspace{0.05cm}'(p) \hspace{0.05cm}$$

must be made beforehand. Then,

$$h(t) = \delta(t)- h\hspace{0.03cm}'(t) \hspace{0.05cm}$$

holds for the impulse response.  $h\hspace{0.03cm}'(t)$  is the inverse Laplace transform of  $H_{\rm L}\hspace{0.05cm}'(p)$,  where the condition  $Z' < N'$  is satisfied.

Two of the four configurations given are so-called  "all-pass filters".

  • This refers to two-port networks for which the Fourier spectrum satisfies the condition  $|H(f)| = 1$   ⇒   $a(f) = 0$ .
  • In Exercise 3.4Z it is given how the poles and zeros of such an all-pass filter must be positioned.


Furthermore,  in this exercise the  $p$–transfer function

$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2} \hspace{0.05cm}$$

⇒   "configuration $(5)$" will be examined in more detail,  which can be represented by one of the four pole–zero diagrams given in the graph if the parameter  $A$  is chosen correctly.



Please note:



Questions

1

Which of the sketched two-port networks are all-pass filters?

Configuration  $(1)$,
configuration  $(2)$,
configuration  $(3)$,
configuration  $(4)$.

2

Which two-port network has the transfer function  $H_{\rm L}^{(5)}(p)$?

Configuration  $(1)$,
configuration  $(2)$,
configuration  $(3)$,
configuration  $(4)$.

3

Compute the function  $H_{\rm L}\hspace{0.01cm}'(p)$  after a partial fraction decomposition for configuration  (1).  Enter the function value for  $p = 0$.

$H_{\rm L}\hspace{0.01cm}'(p = 0) \ = \ $

4

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for configuration  $(2)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.

5

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for configuration  $(3)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.

6

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for configuration  $(4)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.


Solution

(1)  The  suggested solutions 1 and 2  are correct:

  • According to the criteria given in exercise 3.4Z,  there is always an all-pass filter at hand
    if there is a corresponding zero  $p_{\rm o} = + A + {\rm j} \cdot B$  in the right $p$–half-plane for each pole  $p_{\rm x} = - A + {\rm j} \cdot B$  in the left half-plane.
  • Considering  $K = 1$  the attenuation function is then  $a(f) = 0 \ \rm Np$   ⇒   $|H(f)| = 1$.
  • The following can be seen from the graph on the information page:   The configurations  $(1)$ and  $(2)$ satisfy exactly these symmetry properties.


(2)  The  suggested solution 4  is correct:

  • The transfer function  $H_{\rm L}^{(5)}(p)$  is also described by configuration  $(4)$  as the following calculation shows:
$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} = \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2} =\frac{p/A}{{p/A}+2+ {A/p}} = \hspace{0.2cm}\frac{p^2}{p^2 + 2A \cdot p + A^2} = \frac{p^2}{(p+A)^2 }= H_{\rm L}^{(4)}(p) \hspace{0.05cm}.$$
  • The double zero is at  $p_{\rm o} = 0$  and the double pole at  $p_{\rm x} = -A = -2$.


(3)  The following holds for configuration  $(1)$:

$$H_{\rm L}(p) =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{4}{p+2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{H_{\rm L}\hspace{-0.05cm}'(p =0) =2} \hspace{0.05cm}.$$


(4)  Similarly,  the following is obtained for configuration  $(2)$:

$$H_{\rm L}(p) =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}= \frac{p^2 -4\cdot p +8 }{p^2 +4\cdot p +8}= \hspace{0.2cm}\frac{p^2 +4\cdot p +8 -8\cdot p}{p^2 +4\cdot p +8} =1- \frac{8\cdot p}{p^2 +4\cdot p +8}=1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 8 \cdot \frac{p}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$

Thus,  the  suggested solutions 2 and 3  are correct in contrast to statement 1:

  • While  $H_{\rm L}(p)$  has two conjugate complex zeros,
  • $H_{\rm L}\hspace{0.01cm}'(p)$  only has a single zero at  $p_{\rm o}\hspace{0.01cm}' = 0$.



(5)  The following applies for configuration  $(3)$ :

$$H_{\rm L}(p) = \frac{p^2 }{p^2 +4\cdot p +8}=\frac{p^2 +4\cdot p +8 -4\cdot p -8 }{p^2 +4\cdot p +8} = 1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = 4 \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$
  • The zero of  $H_{\rm L}\hspace{0.01cm}'(p)$  is now at  $p_{\rm o}\hspace{0.01cm}' = -2$.
  • The constant is  $K\hspace{0.01cm}' = 4$   ⇒   only   suggested solution 2   is correct here.


(6)  Finally,  the following holds for configuration  $(4)$:

$$H_{\rm L}(p) = \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p +4 -4\cdot p -4 }{p^2 +4\cdot p +4} = 1- \frac{4\cdot p +4 }{p^2 +4\cdot p +4} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 4 \cdot \frac{p+1}{(p+2)^2} \hspace{0.05cm}.$$

Suggested solution 2  is correct here.  In general,  it can be said that:

  • The partial fraction decomposition changes the number and position of the zeros.
  • On the contrary,  the poles of  $H_{\rm L}\hspace{0.01cm}'(p)$  are always identical to those of  $H_{\rm L}(p)$.