Difference between revisions of "Aufgaben:Exercise 2.9: Symmetrical Distortions"

From LNTwww
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Modulationsverfahren/Hüllkurvendemodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Envelope_Demodulation
 
}}
 
}}
  
[[File:P_ID1040__Mod_Z_2_8.png|right|frame|Sende– und Empfangsspektrum im äquivalenten TP-Bereich]]
+
[[File:P_ID1040__Mod_Z_2_8.png|right|frame|Transmitter and receiver spectrum in the equivalent low-pass region]]
Das aus zwei Anteilen zusammengesetzte Quellensignal
+
The source signal made up of two components
 
:$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$
 
:$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$
wird amplitudenmoduliert und über einen linear verzerrenden Übertragungskanal übertragen. Die Trägerfrequenz ist $f_{\rm T}$ und der zugesetzte Gleichanteil $A_{\rm T}$. Es liegt also eine  ''Zweiseitenband-Amplitudenmoduluation'' (ZSB–AM) ''mit Träger''  vor.
+
is amplitude modulated and transmitted through a linearly distorting transmission channel. 
 +
*The carrier frequency is   $f_{\rm T}$  and the added DC component  $A_{\rm T}$.   
 +
*Thus,  a  "double-sideband amplitude moduluation"  $\rm (DSB–AM)$ with carrier"  is present.
  
Die obere Grafik zeigt das Spektrum $S_{\rm TP}(f)$ des äquivalenten TP–Signals in schematischer Form. Das bedeutet, dass die Längen der gezeichneten Diraclinien nicht den tatsächlichen Werten von $A_{\rm T}$, $A_1/2$ und $A_2/2$ entsprechen.
 
  
 +
The upper graph shows the spectrum  $S_{\rm TP}(f)$  of the equivalent low-pass signal in schematic form.  This means that the lengths of the Dirac delta lines drawn do not correspond to the actual values of   $A_{\rm T}$,  $A_1/2$  and  $A_2/2$.
  
Messtechnisch erfasst wurde die Spektralfunktion $R(f)$ des Empfangssignals. In der unteren Grafik sehen Sie das daraus berechnete äquivalente Tiefpass–Spektrum $R_{\rm TP}(f)$.
 
  
Der Kanalfrequenzgang ist durch einige Stützwerte ausreichend genau beschrieben:
+
The spectral function  $R(f)$  of the received signal was measured.  In the lower graph we can observe the equivalent low-pass spectrum  $R_{\rm TP}(f)$ calculated from this.
:$$ H_{\rm K}(f = f_{\rm T}) = 0.5,\hspace{0.3cm}H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,\hspace{0.3cm} H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$
 
  
 +
The channel frequency response is characterized with sufficient accuracy with a few auxiliary values:
 +
:$$ H_{\rm K}(f = f_{\rm T}) = 0.5,$$
 +
:$$H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,$$
 +
:$$ H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Hüllkurvendemodulation|Hüllkurvendemodulation]].
 
*Bezug genommen wird insbesondere auf das Kapitel  [[Modulationsverfahren/Hüllkurvendemodulation#Beschreibung_mit_Hilfe_des_.C3.A4quivalenten_TP.E2.80.93Signals|Beschreibung mit Hilfe des äquivalenten Tiefpass-Signals]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
===Fragebogen===
+
 
 +
Hints:
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Envelope_Demodulation|Envelope Demodulation]].
 +
*Particular reference is made to the section  [[Modulation_Methods/Envelope_Demodulation#Description_using_the_equivalent_low-pass_signal|Description using the equivalent low-pass signal]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{ Ermitteln Sie die Amplituden von Träger– und Quellensignal.
+
{Give the amplitudes of the carrier and source signal.
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm T} \ = \hspace{0.17cm} $  { 4 3% } $\ \rm V$  
 
$A_{\rm T} \ = \hspace{0.17cm} $  { 4 3% } $\ \rm V$  
Line 32: Line 39:
 
$A_2 \ = \ $ { 4 3% } $\ \rm V$  
 
$A_2 \ = \ $ { 4 3% } $\ \rm V$  
  
{Zu welcher Art von Verzerrung hätte der Einsatz eines Hüllkurvendemodulators bei idealem Kanal &nbsp; &rArr; &nbsp; $H_{\rm K}(f) = 1$ geführt?
+
{Which kind of distortion would the application of an envelope demodulator in an ideal channel &nbsp; &rArr; &nbsp; $H_{\rm K}(f) = 1$&nbsp; lead to?
|type="[]"}
+
|type="()"}
- Keine Verzerrungen.
+
- No distortion.
- Lineare Verzerrungen.
+
- Linear distortions.
+ Nichtlineare Verzerrungen.
+
+ Nonlinear distortions.
  
{Berechnen Sie das äquivalente Tiefpass–Signal und beantworten Sie folgende Fragen. Ist es zutreffend, dass
+
{Calculate the equivalent low-pass signal and answer the following questions. Is it true that...
 
|type="[]"}
 
|type="[]"}
+ $r_{\rm TP}(t)$ stets reell ist,
+
+ $r_{\rm TP}(t)$&nbsp; is always real,
+ $r_{\rm TP}(t)$ stets größer oder gleich 0 ist,
+
+ $r_{\rm TP}(t)$&nbsp; is always greater than or equal to zero,
- die Phasenfunktion $ϕ(t)$ die Werte $0^\circ$ und $180^\circ$ annehmen kann.
+
- the phase function &nbsp;$ϕ(t)$&nbsp; can take on the values &nbsp;$0^\circ$&nbsp; and &nbsp;$180^\circ$&nbsp;.
  
{Zu welchen Verzerrungen führt der Hüllkurvendemodulator beim betrachteten Übertragungskanal?
+
{Which kind of distortion does the envelope demodulator in the observed transmission channel lead to?
|type="[]"}
+
|type="()"}
- Keine Verzerrungen.
+
- No distortion.
+ Lineare Verzerrungen.
+
+ Linear distortions.
- Nichtlineare Verzerrungen.
+
- Nonlinear distortions.<br>
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Anhand der Grafiken auf der Angabenseite sind folgende Aussagen möglich:
+
'''(1)'''&nbsp; On the basis of the graphs on the exercise page,&nbsp; the following statements can be made:
 
:$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$  
 
:$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$  
 
:$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
 
:$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
 
:$${A_{\rm 2}}/{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$
 
:$${A_{\rm 2}}/{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:
 
*Der Modulationsgrad ergibt sich zu $m = (A_1 + A_2)/A_T = 1.75$.
 
*Damit ergeben sich bei Verwendung eines Hüllkurvendemodulators starke nichtlineare Verzerrungen.
 
*Ein Klirrfaktor kann aber nicht angegeben werden, da das Quellensignal zwei Frequenzanteile beinhaltet.
 
  
  
'''(3)'''&nbsp; Richtig sind <u>die Aussagen 1 und 2</u>:
+
'''(2)'''&nbsp; <u>Answer 3</u>&nbsp; is correct:
Die Fourierrücktransformation von $R_{\rm TP}(f)$ führt zum Ergebnis:
+
*The resulting modulation depth is &nbsp; $m = (A_1 + A_2)/A_T = 1.75 >1$.
 +
*This leads to strong nonlinear distortion when using an envelope demodulator.
 +
*A distortion factor cannot be specified because the source signal contains two frequency components.
 +
 
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; <u>Answers 1 and 2</u> are correct:
 +
*The Fourier retransform of &nbsp; $R_{\rm TP}(f)$&nbsp; gives us the result:
 
:$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
 
:$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
*Diese Funktion ist stets reell und nicht–negativ.  
+
*This function is always real and non-negative.  
*Damit gilt gleichzeitig $ϕ(t) = 0$. Dagegen ist $ϕ(t) = 180^\circ$ nicht möglich.  
+
*Thus,&nbsp; $ϕ(t) = 0$&nbsp; holds simultaneously,&nbsp; whereas&nbsp; $ϕ(t) = 180^\circ$&nbsp; is not possible.
 +
 
 +
 
  
  
'''(4)'''&nbsp; Ein Vergleich der beiden Signale
+
'''(4)'''&nbsp; A comparison of the two signals
 
:$$q(t)  =  3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
 
:$$q(t)  =  3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
 
:$$ v(t)  =  0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
 
:$$ v(t)  =  0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
zeigt, dass nun lineare Verzerrungen – genauer gesagt Dämpfungsverzerrungen – auftreten &nbsp; &rArr; &nbsp;  <u>Lösungsvorschlag 2</u>.
+
:shows,&nbsp; that linear (attenuation) distortions now arise  &nbsp; &rArr; &nbsp;  <u>Answer 2</u>.
  
*Der Kanal $H_{\rm K}(f)$ hat hier den positiven Effekt, dass anstelle von irreversiblen nichtlinearen Verzerrungen nun nichtlineare Verzerrungen entstehen, die durch ein nachgeschaltetes Filter eliminiert werden können.  
+
*Here, the channel&nbsp; $H_{\rm K}(f)$&nbsp; has the positive effect,&nbsp; that instead of irreversible nonlinear distortions,&nbsp; only linear distortions arise,&nbsp; and these can be eliminated by a downstream filter.
*Dies ist darauf zurückzuführen, dass durch die stärkere Dämpfung des Quellensignals $q(t)$ im Vergleich zum Trägersignal $z(t)$ der Modulationsgrad von $m = 1.75$ auf $m = (0.4 · 3 \ \rm  V + 0.2 · 4 \ \rm  V)/(0.5 · 4 \ \rm  V) = 1$ herabgesetzt wird.
+
*This is due to the fact that the higher attenuation of the source signal&nbsp; $q(t)$&nbsp; compared to the carrier signal&nbsp; $z(t)$&nbsp; lowers the modulation depth from &nbsp; $m = 1.75$&nbsp; to&nbsp;
 +
:$$m = (0.4 · 3 \ \rm  V + 0.2 · 4 \ \rm  V)/(0.5 · 4 \ \rm  V) = 1.$$
  
  
Line 85: Line 99:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.3 Hüllkurvendemodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.3 Envelope Demodulation^]]

Latest revision as of 15:20, 18 January 2023

Transmitter and receiver spectrum in the equivalent low-pass region

The source signal made up of two components

$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$

is amplitude modulated and transmitted through a linearly distorting transmission channel. 

  • The carrier frequency is  $f_{\rm T}$  and the added DC component  $A_{\rm T}$. 
  • Thus,  a  "double-sideband amplitude moduluation"  $\rm (DSB–AM)$ with carrier"  is present.


The upper graph shows the spectrum  $S_{\rm TP}(f)$  of the equivalent low-pass signal in schematic form.  This means that the lengths of the Dirac delta lines drawn do not correspond to the actual values of  $A_{\rm T}$,  $A_1/2$  and  $A_2/2$.


The spectral function  $R(f)$  of the received signal was measured.  In the lower graph we can observe the equivalent low-pass spectrum  $R_{\rm TP}(f)$ calculated from this.

The channel frequency response is characterized with sufficient accuracy with a few auxiliary values:

$$ H_{\rm K}(f = f_{\rm T}) = 0.5,$$
$$H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,$$
$$ H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$



Hints:


Questions

1

Give the amplitudes of the carrier and source signal.

$A_{\rm T} \ = \hspace{0.17cm} $

$\ \rm V$
$A_1 \ = \ $

$\ \rm V$
$A_2 \ = \ $

$\ \rm V$

2

Which kind of distortion would the application of an envelope demodulator in an ideal channel   ⇒   $H_{\rm K}(f) = 1$  lead to?

No distortion.
Linear distortions.
Nonlinear distortions.

3

Calculate the equivalent low-pass signal and answer the following questions. Is it true that...

$r_{\rm TP}(t)$  is always real,
$r_{\rm TP}(t)$  is always greater than or equal to zero,
the phase function  $ϕ(t)$  can take on the values  $0^\circ$  and  $180^\circ$ .

4

Which kind of distortion does the envelope demodulator in the observed transmission channel lead to?

No distortion.
Linear distortions.
Nonlinear distortions.


Solution

(1)  On the basis of the graphs on the exercise page,  the following statements can be made:

$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$
$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
$${A_{\rm 2}}/{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$


(2)  Answer 3  is correct:

  • The resulting modulation depth is   $m = (A_1 + A_2)/A_T = 1.75 >1$.
  • This leads to strong nonlinear distortion when using an envelope demodulator.
  • A distortion factor cannot be specified because the source signal contains two frequency components.



(3)  Answers 1 and 2 are correct:

  • The Fourier retransform of   $R_{\rm TP}(f)$  gives us the result:
$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
  • This function is always real and non-negative.
  • Thus,  $ϕ(t) = 0$  holds simultaneously,  whereas  $ϕ(t) = 180^\circ$  is not possible.



(4)  A comparison of the two signals

$$q(t) = 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
$$ v(t) = 0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
shows,  that linear (attenuation) distortions now arise   ⇒   Answer 2.
  • Here, the channel  $H_{\rm K}(f)$  has the positive effect,  that instead of irreversible nonlinear distortions,  only linear distortions arise,  and these can be eliminated by a downstream filter.
  • This is due to the fact that the higher attenuation of the source signal  $q(t)$  compared to the carrier signal  $z(t)$  lowers the modulation depth from   $m = 1.75$  to 
$$m = (0.4 · 3 \ \rm V + 0.2 · 4 \ \rm V)/(0.5 · 4 \ \rm V) = 1.$$