Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.5: PM and FM for Rectangular Signals"

From LNTwww
 
(24 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Frequenzmodulation (FM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Frequency_Modulation_(FM)
 
}}
 
}}
  
[[File:P_ID1099__Mod_A_3_5.png|right|frame|Signalverläufe bei PM und FM ]]
+
[[File:P_ID1099__Mod_A_3_5.png|right|frame|Two signal waveforms in angle modulation]]
Wir gehen von einem bipolaren und rechteckförmigen Quellensignal q(t) aus, welches im oberen Diagramm dargestellt ist.
+
Assume a bipolar and rectangular source signal q(t) , as shown in the upper diagram.  This signal can only take on the two signal values  ±A=±2 V  and the duration of the positive and negative rectangles are each T=1 ms.  The period of  q(t)  is therefore   T0=2 ms.
  
Dieses kann nur die beiden Signalwerte ±A=±2 V annehmen und die Dauer der positiven und negativen Rechtecke ist jeweils T=1 ms. Die Periodendauer von q(t) ist demzufolge T0=2 ms.
+
The signals s1(t)  and  s2(t)  display two transmitted signals with angle modulation  $\rm (WM)$, each of which can be represented as
 
+
:$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big [\psi (t) \big ]$$
Die Signale s1(t) und s2(t) zeigen zwei Sendesignale bei Winkelmodulation (WM), die jeweils in der Form
+
Here, we distinguish between phase modulation  $\rm (PM)$  with the angular function
:$$s(t) = A_{\rm T} \cdot \cos (\psi (t) )$$
 
darstellbar sind. Hierbei unterscheidet man zwischen der Phasenmodulation (PM) mit der Winkelfunktion
 
 
:ψ(t)=ωTt+ϕ(t)=ωTt+KPMq(t)
 
:ψ(t)=ωTt+ϕ(t)=ωTt+KPMq(t)
und der Frequenzmodulation (FM), bei der die Augenblicksfrequenz linear mit q(t) zusammenhängt:
+
and frequency modulation  $\rm (FM)$, where the instantaneous freqiency is linearly related to q(t):
 
:fA(t)=ωA(t)2π,ωA(t)=dψ(t)dt=ωT+KFMq(t).
 
:fA(t)=ωA(t)2π,ωA(t)=dψ(t)dt=ωT+KFMq(t).
KPM und KFM bezeichnen dimensionsbehaftete, durch die Realisierung des PM– bzw. FM–Modulators vorgegebene Konstante. Der Frequenzhub Δf_{\rm A} gibt die maximale Abweichung der Augenblicksfrequenz von der Trägerfrequenz an.
+
K_{\rm PM}  and  K_{\rm FM}  denote the dimensionally constrained constants given by the realizations of the PM and FM modulators, respectively.  The frequency deviation  Δf_{\rm A}  indicates the maximum deviation of the instantaneous frequency from the carrier frequency.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
''Hinweise:''
+
''Hints:''
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Frequenzmodulation_(FM)|Frequenzmodulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Frequency_Modulation_(FM)|Frequency Modulation]].
*Bezug genommen wird aber auch auf das Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
+
*Reference is also made to the chapter  [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Im Vorgriff auf das vierte Kapitel sei erwähnt, dass man die Phasenmodulation bei digitalem Eingangssignal auch als ''Phase Shift Keying'' (PSK) und entsprechend die Frequenzmodulation als ''Frequency Shift Keying'' ' (FSK) bezeichnet.
+
*In anticipation of the fourth chapter, it should be mentioned that phase modulation with a digital input signal is also called ''Phase Shift Keying''  $\rm (PSK)$  and frequency modulation is analogously called ''Frequency Shift Keying''  $\rm (FSK)$ .
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches der Signale ist durch Phasenmodulation, welches durch Frequenzmodulation entstanden?
+
{Which of the signals is due to phase modulation and which is due to frquency modulation?
|type="[]"}
+
|type="()"}
- s_1(t) beschreibt eine Phasenmodulation.
+
- s_1(t)&nbsp; represents a phase modulation.
+ s_1(t) beschreibt eine Frequenzmodulation.
+
+ s_1(t)&nbsp; represents a frequency modulation.
  
{Wie groß ist die Trägerphase ϕ_{\rm T}, die man ohne Nachrichtensignal &nbsp; &rArr;  &nbsp; $q(t) = 0$ messen könnte?
+
{What is the carrier phase &nbsp;ϕ_{\rm T} that could be measured without a message signal &nbsp; &rArr;  &nbsp; $q(t) \equiv 0$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
ϕ_{\rm T} \ = \ { 0. } \ \rm Grad  
 
ϕ_{\rm T} \ = \ { 0. } \ \rm Grad  
  
{Welche Trägerfrequenz (bezogen auf 1/T) wurde bei den Grafiken verwendet?
+
{What carrier frequency&nbsp; $($with respect to &nbsp;$1/T)$&nbsp; was used in the graphs?
 
|type="{}"}
 
|type="{}"}
 
f_{\rm T} · T \ = \ { 6 3% }  
 
f_{\rm T} · T \ = \ { 6 3% }  
  
{Die Phase des PM–Signals ist ±90^\circ. Wie groß ist die Modulatorkonstante?
+
{The phase of the PM signal is &nbsp;±90^\circ.&nbsp; What is the modulator constant?
 
|type="{}"}
 
|type="{}"}
 
K_{\rm PM} \ = \ { 0.785 3% } \ \rm V^{-1}  
 
K_{\rm PM} \ = \ { 0.785 3% } \ \rm V^{-1}  
  
{Wie groß ist der Frequenzhub Δf_{\rm A} des FM–Signals, bezogen auf 1/T?
+
{What is the frequency deviation &nbsp;Δf_{\rm A}&nbsp; of the FM signal with respect to &nbsp;1/T?
 
|type="{}"}
 
|type="{}"}
 
Δf_{\rm A} · T \ = \ { 2 3% }  
 
Δf_{\rm A} · T \ = \ { 2 3% }  
  
{Wie groß ist die FM–Modulatorkonstante?
+
{What is the FM modulator constant?
 
|type="{}"}
 
|type="{}"}
 
K_{\rm FM} \ = \ { 6283 3% } \ \rm (Vs)^{-1}
 
K_{\rm FM} \ = \ { 6283 3% } \ \rm (Vs)^{-1}
Line 57: Line 61:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist die <u>Antwort 2</u>:
+
'''(1)'''&nbsp; <u>Answer 2</u> is correct:
*Bei einem rechteckförmigen (digitalen) Quellensignal erkennt man die Phasenmodulation (PM) an den typischen Phasensprüngen siehe Signalverlauf s_2(t).  
+
*For a rectangular (digital) source signal, phase modulation (PM) can be recognised by the typical phase jumps see the signal waveform&nbsp; s_2(t).  
*Die Frequenzmodulation (FM) hat dagegen zu den verschiedenen Zeiten unterschiedliche Augenblicksfrequenzen wie bei s_1(t).
+
*Frequency modulation (FM), on the other hand, has diverse instantaneous frequencies at different times, as in&nbsp; s_1(t).
  
  
'''(2)'''&nbsp;  Mit q(t) = 0 erhält man entsprechend den gegebenen Gleichungen sowohl für PM als auch für FM
+
 
 +
'''(2)'''&nbsp;  When&nbsp; q(t) = 0&nbsp;, the equations provided for both PM and FM give
 
:s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t ) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \phi_{\rm T} \hspace{0.15cm}\underline {= 0}\hspace{0.05cm}.
 
:s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t ) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \phi_{\rm T} \hspace{0.15cm}\underline {= 0}\hspace{0.05cm}.
  
'''(3)'''&nbsp;  Die Trägerfrequenz f_{\rm T} kann direkt nur aus dem PM–Signal s_2(t) ermittelt werden.
 
*Durch Abzählen der Schwingungen von s_2(t) im Zeitintervall T erkennt man, dass f_{\rm T} · T\hspace{0.15cm}\underline{ = 6} verwendet wurde.
 
*Bei der Frequenzmodulation eines bipolaren Quellensignals tritt f_{\rm T} nicht direkt auf. Die Grafiken lassen allerdings darauf schließen, dass hier ebenfalls  f_{\rm T} · T = 6 zugrunde liegt.
 
  
  
'''(4)'''&nbsp;  Der Amplitudenwert A = 2 \ \rm V führt zur Phase 90^\circ bzw. π/2 (Minus–Sinusverlauf). Daraus folgt:
+
'''(3)'''&nbsp;  The carrier frequency&nbsp; f_{\rm T}&nbsp; can be directly determined only from the PM signal &nbsp; s_2(t)&nbsp;.
 +
*By counting the oscillations of&nbsp; s_2(t)&nbsp; in the time interval&nbsp; T&nbsp;, it can be seen that&nbsp; f_{\rm T} · T\hspace{0.15cm}\underline{ = 6}&nbsp; was used.
 +
*When frequency modulating a bipolar source signal, &nbsp; f_{\rm T}&nbsp; does not occur directly.
 +
*However, the graphs do indicate that &nbsp;  f_{\rm T} · T = 6&nbsp; is also used here.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp;  The amplitude value&nbsp; A = 2 \ \rm V&nbsp; results in the phase&nbsp; 90^\circ&nbsp; or&nbsp; π/2&nbsp; (minus sine wave).&nbsp; This gives:
 
:K_{\rm PM} = \frac {\pi /2}{2\,{\rm V}} \hspace{0.15cm}\underline {= 0.785\,{\rm V}^{-1}} \hspace{0.05cm}.
 
:K_{\rm PM} = \frac {\pi /2}{2\,{\rm V}} \hspace{0.15cm}\underline {= 0.785\,{\rm V}^{-1}} \hspace{0.05cm}.
  
  
'''(5)'''&nbsp;  Die Grafik für s_1(t) zeigt, dass innerhalb eines Zeitintervalls T entweder vier oder acht Schwingungen auftreten: &nbsp; 4 \le f_{\rm A}(t) \cdot T \le 8\hspace{0.05cm}.
+
 
Unter Berücksichtigung der (normiertern) Trägerfrequenz f_{\rm T} · T = 6 ergibt sich für den (normierten) Frequenzhub:
+
'''(5)'''&nbsp;  The graph for&nbsp; s_1(t)&nbsp; shows that either four or eight oscillations arise within a time interval&nbsp; T&nbsp;: &nbsp; 4 \le f_{\rm A}(t) \cdot T \le 8\hspace{0.05cm}.
 +
*Considering the (normalized) carrier frequency&nbsp; f_{\rm T} · T = 6&nbsp;, the (normalized) frequency deviation is:
 
:\Delta f_{\rm A} \cdot T \hspace{0.15cm}\underline {=2}\hspace{0.05cm}.
 
:\Delta f_{\rm A} \cdot T \hspace{0.15cm}\underline {=2}\hspace{0.05cm}.
  
'''(6)'''&nbsp;  Der Frequenzhub kann auch wie folgt dargestellt werden:
+
 
\Delta f_{\rm A} = \frac {K_{\rm FM}}{2\pi}\cdot A \hspace{0.05cm}.
+
 
Mit $Δf_A · {\rm A}  = 2$ erhält man somit
+
'''(6)'''&nbsp;  The frequency deviation can also be represented as follows:
 +
:\Delta f_{\rm A} = \frac {K_{\rm FM}}{2\pi}\cdot A \hspace{0.05cm}.
 +
*With &nbsp; $Δf_{\rm A} · {\rm A}  = 2$&nbsp; we thus get:
 
:K_{\rm FM} = \frac {2 \cdot 2\pi}{A \cdot T}= \frac {4\pi}{2\,{\rm V} \cdot 1\,{\rm ms}}\hspace{0.15cm}\underline {= 6283 \,{\rm V}^{-1}{\rm s}^{-1}} \hspace{0.05cm}.
 
:K_{\rm FM} = \frac {2 \cdot 2\pi}{A \cdot T}= \frac {4\pi}{2\,{\rm V} \cdot 1\,{\rm ms}}\hspace{0.15cm}\underline {= 6283 \,{\rm V}^{-1}{\rm s}^{-1}} \hspace{0.05cm}.
  
Line 89: Line 102:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.2 Frequenzmodulation (FM)^]]
+
[[Category:Modulation Methods: Exercises|^3.2 Frequency Modulation^]]

Latest revision as of 17:19, 23 January 2023

Two signal waveforms in angle modulation

Assume a bipolar and rectangular source signal q(t) , as shown in the upper diagram.  This signal can only take on the two signal values  ±A = ±2 \ \rm V  and the duration of the positive and negative rectangles are each T = 1 \ \rm ms.  The period of  q(t)  is therefore  T_0 = 2 \ \rm ms.

The signals s_1(t)  and  s_2(t)  display two transmitted signals with angle modulation  \rm (WM), each of which can be represented as

s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big [\psi (t) \big ]

Here, we distinguish between phase modulation  \rm (PM)  with the angular function

\psi(t) = \omega_{\rm T} \cdot t + \phi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t)

and frequency modulation  \rm (FM), where the instantaneous freqiency is linearly related to q(t):

f_{\rm A}(t) = \frac{\omega_{\rm A}(t)}{2\pi}, \hspace{0.3cm} \omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm FM} \cdot q(t)\hspace{0.05cm}.

K_{\rm PM}  and  K_{\rm FM}  denote the dimensionally constrained constants given by the realizations of the PM and FM modulators, respectively.  The frequency deviation  Δf_{\rm A}  indicates the maximum deviation of the instantaneous frequency from the carrier frequency.





Hints:

  • In anticipation of the fourth chapter, it should be mentioned that phase modulation with a digital input signal is also called Phase Shift Keying  \rm (PSK)  and frequency modulation is analogously called Frequency Shift Keying  \rm (FSK) .


Questions

1

Which of the signals is due to phase modulation and which is due to frquency modulation?

s_1(t)  represents a phase modulation.
s_1(t)  represents a frequency modulation.

2

What is the carrier phase  ϕ_{\rm T} that could be measured without a message signal   ⇒   q(t) \equiv 0 ?

ϕ_{\rm T} \ = \

\ \rm Grad

3

What carrier frequency  (with respect to  1/T)  was used in the graphs?

f_{\rm T} · T \ = \

4

The phase of the PM signal is  ±90^\circ.  What is the modulator constant?

K_{\rm PM} \ = \

\ \rm V^{-1}

5

What is the frequency deviation  Δf_{\rm A}  of the FM signal with respect to  1/T?

Δf_{\rm A} · T \ = \

6

What is the FM modulator constant?

K_{\rm FM} \ = \

\ \rm (Vs)^{-1}


Solution

(1)  Answer 2 is correct:

  • For a rectangular (digital) source signal, phase modulation (PM) can be recognised by the typical phase jumps – see the signal waveform  s_2(t).
  • Frequency modulation (FM), on the other hand, has diverse instantaneous frequencies at different times, as in  s_1(t).


(2)  When  q(t) = 0 , the equations provided for both PM and FM give

s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t ) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \phi_{\rm T} \hspace{0.15cm}\underline {= 0}\hspace{0.05cm}.


(3)  The carrier frequency  f_{\rm T}  can be directly determined only from the PM signal   s_2(t) .

  • By counting the oscillations of  s_2(t)  in the time interval  T , it can be seen that  f_{\rm T} · T\hspace{0.15cm}\underline{ = 6}  was used.
  • When frequency modulating a bipolar source signal,   f_{\rm T}  does not occur directly.
  • However, the graphs do indicate that   f_{\rm T} · T = 6  is also used here.



(4)  The amplitude value  A = 2 \ \rm V  results in the phase  90^\circ  or  π/2  (minus sine wave).  This gives:

K_{\rm PM} = \frac {\pi /2}{2\,{\rm V}} \hspace{0.15cm}\underline {= 0.785\,{\rm V}^{-1}} \hspace{0.05cm}.


(5)  The graph for  s_1(t)  shows that either four or eight oscillations arise within a time interval  T :   4 \le f_{\rm A}(t) \cdot T \le 8\hspace{0.05cm}.

  • Considering the (normalized) carrier frequency  f_{\rm T} · T = 6 , the (normalized) frequency deviation is:
\Delta f_{\rm A} \cdot T \hspace{0.15cm}\underline {=2}\hspace{0.05cm}.


(6)  The frequency deviation can also be represented as follows:

\Delta f_{\rm A} = \frac {K_{\rm FM}}{2\pi}\cdot A \hspace{0.05cm}.
  • With   Δf_{\rm A} · {\rm A} = 2  we thus get:
K_{\rm FM} = \frac {2 \cdot 2\pi}{A \cdot T}= \frac {4\pi}{2\,{\rm V} \cdot 1\,{\rm ms}}\hspace{0.15cm}\underline {= 6283 \,{\rm V}^{-1}{\rm s}^{-1}} \hspace{0.05cm}.