Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"
(30 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function |
}} | }} | ||
− | [[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame| | + | [[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]] |
− | + | We consider a similar transmission scenario as in [[Aufgaben:Exercise_4.4:_Pointer_Diagram_for_DSB-AM|Exrcise 4.4]] (but not the same): | |
− | * | + | * A sinusoidal source signal with amplitude AN=2 V and frequency fN=10 kHz, |
− | * | + | *Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency fT=50 kHz. |
− | + | Opposite you see the spectral function S+(f) of the analytical signal s+(t). | |
− | + | When solving, take into account that the equivalent low-pass signal is in the form | |
− | :sTP(t)=a(t)⋅ejϕ(t) | + | :$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm} a(t) ≥ 0.$$ |
− | + | For \phi(t), the range –\pi < \phi(t) \leq +\pi is permissible and the generally valid equation applies: | |
− | :$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\ | + | :$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm |
− | TP}(t)\ | + | TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$ |
Line 25: | Line 25: | ||
− | '' | + | ''Hints:'' |
− | * | + | *This exercise belongs to the chapter [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]]. |
− | * | + | |
− | + | *You can check your solution with the interactive applet [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]] ⇒ "Locality Curve". | |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the equivalent low-pass signal s_{\rm TP}(t) in the frequency and time domain. What is the value of s_{\rm TP}(t) at the start time t = 0? |
|type="{}"} | |type="{}"} | ||
\text{Re}[s_{\text{TP}}(t=0)]\ = \ { 1 3% } \text{V} | \text{Re}[s_{\text{TP}}(t=0)]\ = \ { 1 3% } \text{V} | ||
\text{Im}[s_{\text{TP}}(t=0 )]\ = \ { 0. } \text{V} | \text{Im}[s_{\text{TP}}(t=0 )]\ = \ { 0. } \text{V} | ||
− | { | + | {What are the values of s_{\rm TP}(t) at $t = 10 \ {\rm µ} \text{s}= T_0/10$, $t = 25 \ {\rm µ} \text{s}= T_0/4$, $t = 75 \ {\rm µ} \text{s}= 3T_0/4$ and $T_0 = 100 \ {\rm µs}$? <br>Show that all values are purely real. |
|type="{}"} | |type="{}"} | ||
\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \ { 2.176 3% } \text{V} | \text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \ { 2.176 3% } \text{V} | ||
Line 46: | Line 46: | ||
\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \ { 1 3% } \text{V} | \text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \ { 1 3% } \text{V} | ||
− | { | + | {What is the magnitude function a(t) in the time domain? What are the values at times t = 25 \ {\rm µ} \text{s} and t = 75 \ {\rm µ} \text{s}? |
|type="{}"} | |type="{}"} | ||
a(t=25 \ {\rm µ} \text{s})\ = \ { 3 3% } \text{V} | a(t=25 \ {\rm µ} \text{s})\ = \ { 3 3% } \text{V} | ||
a(t=75 \ {\rm µ} \text{s})\ = \ { 1 3% } \text{V} | a(t=75 \ {\rm µ} \text{s})\ = \ { 1 3% } \text{V} | ||
− | { | + | {Give the phase function \phi(t) in the time domain. What values result at the times t = 25 \ {\rm µ} \text{s} and t = 75 \ {\rm µ} \text{s}? |
|type="{}"} | |type="{}"} | ||
\phi(t=25 \ {\rm µ} \text{s}) \ = \ { 0. } \text{Grad} | \phi(t=25 \ {\rm µ} \text{s}) \ = \ { 0. } \text{Grad} | ||
Line 59: | Line 59: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | [[File: | + | [[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locality curve at time t = 0]] |
− | '''(1)''' | + | '''(1)''' If all Dirac delta lines are shifted to the left by f_{\rm T} = 50 \ \text{kHz} , they are located at $-\hspace{-0.08cm}10 \ \text{kHz}$, 0 and +10 \ \text{kHz}. |
+ | *The equation for s_{\rm TP}(t) is with \omega_{10} = 2 \pi \cdot 10 \ \text{kHz}: | ||
:$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 | :$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 | ||
Line 80: | Line 81: | ||
− | '''(2)''' | + | |
+ | '''(2)''' The above equation can be transformed according to [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]] with T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s} as follows: | ||
:$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm | :$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm | ||
Line 89: | Line 91: | ||
{t}/{T_0}) .$$ | {t}/{T_0}) .$$ | ||
− | + | *This shows that s_{\rm TP}(t) is real for all times t. | |
+ | *We obtain for the numerical values we are looking for: | ||
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 | :$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 | ||
Line 107: | Line 110: | ||
− | '''(3)''' | + | |
− | + | '''(3)''' By definition, a(t) = |s_{\rm TP}(t)|. This gives the following numerical values: | |
:$$a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 | :$$a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 | ||
\hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , | \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , | ||
Line 115: | Line 118: | ||
:$$a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 | :$$a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 | ||
\hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$ | \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$ | ||
+ | |||
+ | |||
− | '''(4)''' | + | '''(4)''' In general, the phase function is: |
:$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} | :$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} | ||
Line 122: | Line 127: | ||
Re}\left[s_{\rm TP}(t)\right]}$$ | Re}\left[s_{\rm TP}(t)\right]}$$ | ||
− | + | Due to the fact that here {\rm Im}[s_{\rm TP}(t)] = 0 for all times, one obtains: | |
− | * | + | * If {\rm Re}[s_{\rm TP}(t)] > 0 holds, the phase \phi(t) = 0. |
− | * | + | * On the other hand, if the real part is negative: \phi(t) = \pi. |
− | + | We restrict ourselves here to the time range of one period: 0 \leq t \leq T_0. | |
+ | *In the range between t_1 and t_2 there is a phase of 180^\circ otherwise \text{Re}[s_{\rm TP}(t)] \geq 0. | ||
− | + | *To calculate t_1 , the result of subtask '''(2)''' can be used: | |
:$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow | :$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow | ||
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot | \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot | ||
− | {7}/{12}\hspace{0.3cm}{\ | + | {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ |
)$$ | )$$ | ||
− | + | *From this one obtains t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}. | |
+ | *By similar reasoning one arrives at the result: t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}. | ||
− | + | ||
+ | The values we are looking for are therefore: | ||
+ | :$$\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},$$ | ||
+ | :$$\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]] |
Latest revision as of 15:22, 18 January 2023
We consider a similar transmission scenario as in Exrcise 4.4 (but not the same):
- A sinusoidal source signal with amplitude A_{\rm N} = 2 \ \text{V} and frequency f_{\rm N} = 10 \ \text{kHz},
- Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency f_{\rm T} = 50 \ \text{kHz}.
Opposite you see the spectral function S_+(f) of the analytical signal s_+(t).
When solving, take into account that the equivalent low-pass signal is in the form
- s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm} a(t) ≥ 0.
For \phi(t), the range –\pi < \phi(t) \leq +\pi is permissible and the generally valid equation applies:
- \phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.
Hints:
- This exercise belongs to the chapter Equivalent Low-Pass Signal and its Spectral Function.
- You can check your solution with the interactive applet Physical Signal & Equivalent Low-Pass Signal ⇒ "Locality Curve".
Questions
Solution
(1) If all Dirac delta lines are shifted to the left by f_{\rm T} = 50 \ \text{kHz} , they are located at -\hspace{-0.08cm}10 \ \text{kHz}, 0 and +10 \ \text{kHz}.
- The equation for s_{\rm TP}(t) is with \omega_{10} = 2 \pi \cdot 10 \ \text{kHz}:
- s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }
- \Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.
- \Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .
(2) The above equation can be transformed according to Euler's theorem with T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s} as follows:
- \frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .
- This shows that s_{\rm TP}(t) is real for all times t.
- We obtain for the numerical values we are looking for:
- s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},
- s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},
- s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},
- s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.
(3) By definition, a(t) = |s_{\rm TP}(t)|. This gives the following numerical values:
- a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}
- a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .
(4) In general, the phase function is:
- \phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}
Due to the fact that here {\rm Im}[s_{\rm TP}(t)] = 0 for all times, one obtains:
- If {\rm Re}[s_{\rm TP}(t)] > 0 holds, the phase \phi(t) = 0.
- On the other hand, if the real part is negative: \phi(t) = \pi.
We restrict ourselves here to the time range of one period: 0 \leq t \leq T_0.
- In the range between t_1 and t_2 there is a phase of 180^\circ otherwise \text{Re}[s_{\rm TP}(t)] \geq 0.
- To calculate t_1 , the result of subtask (2) can be used:
- \sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ )
- From this one obtains t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}.
- By similar reasoning one arrives at the result: t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}.
The values we are looking for are therefore:
- \phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},
- \phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).