Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"

From LNTwww
 
(30 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Gegebenes Spektrum S+(f) des analytischen Signals]]
+
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]]
  
Wir betrachten ein ähnliches Übertragungsszenario wie in der [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|Aufgabe 4.4]] (aber nicht das gleiche):
+
We consider a similar transmission scenario as in  [[Aufgaben:Exercise_4.4:_Pointer_Diagram_for_DSB-AM|Exrcise 4.4]]  (but not the same):
* ein sinusförmiges Nachrichtensignal mit Amplitude AN=2 V  und  Frequenz fN=10 kHz,
+
* A sinusoidal source signal with amplitude  AN=2 V  and frequency  fN=10 kHz,
*ZSB-Amplitudenmodulation ohne Trägerunterdrückung mit Trägerfrequenz fT=50 kHz.
+
*Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  fT=50 kHz.
  
  
Nebenstehend sehen Sie die Spektralfunktion S+(f) des analytischen Signals s+(t) .  
+
Opposite you see the spectral function  S+(f)  of the analytical signal  s+(t).  
  
Berücksichtigen Sie bei der Lösung, dass das äquivalente Tiefpass-Signal auch in der Form
+
When solving, take into account that the equivalent low-pass signal is in the form
 
   
 
   
:sTP(t)=a(t)ejϕ(t)
+
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm}  a(t) ≥ 0.$$
  
dargestellt werden kann, wobei a(t)0 gelten soll. Für ϕ(t) ist der Wertebereich –\pi < \phi(t) \leq +\pi zulässig und es gilt die allgemeingültige Gleichung:
+
For&nbsp; \phi(t),&nbsp; the range&nbsp; –\pi < \phi(t) \leq +\pi&nbsp; is permissible and the generally valid equation applies:
 
   
 
   
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm
+
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}.$$
+
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
  
  
Line 25: Line 25:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
+
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
*Sie können Ihre Lösung mit dem Interaktionsmodul [[Ortskurve_–_Darstellung_des_äquivalenten_Tiefpass-Signals_(Applet)|Ortskurve – Darstellung des äquivalenten Tiefpass-Signals]] überprüfen.
+
*You can check your solution with the interactive applet&nbsp; [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]&nbsp; &nbsp; &rArr; &nbsp; "Locality Curve".
  
 
   
 
   
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das äquivalente Tiefpass-Signal s_{\rm TP}(t) im Frequenz– und Zeitbereich. Welchen Wert besitzt s_{\rm TP}(t) zum Startzeitpunkt t = 0?
+
{Calculate the equivalent low-pass signal&nbsp; s_{\rm TP}(t)&nbsp; in the frequency and time domain.&nbsp; What is the value of&nbsp; s_{\rm TP}(t)&nbsp; at the start time&nbsp; t = 0?
 
|type="{}"}
 
|type="{}"}
 
\text{Re}[s_{\text{TP}}(t=0)]\ = \   { 1 3% }  &nbsp;\text{V}
 
\text{Re}[s_{\text{TP}}(t=0)]\ = \   { 1 3% }  &nbsp;\text{V}
 
\text{Im}[s_{\text{TP}}(t=0 )]\ = \ { 0. } &nbsp;\text{V}
 
\text{Im}[s_{\text{TP}}(t=0 )]\ = \ { 0. } &nbsp;\text{V}
  
{Welche Werte weist s_{\rm TP}(t) zu den Zeitpunkten t = T_0/10, T_0/4, 3T_0/4 und $T_0 = 100 \ {\rm &micro;}s$ auf? Zeigen Sie, dass alle Werte rein reell sind.
+
{What are the values of&nbsp; s_{\rm TP}(t)&nbsp; at&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;s}$? <br>Show that all values are purely real.
 
|type="{}"}
 
|type="{}"}
 
\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ { 2.176 3% } &nbsp;\text{V}
 
\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ { 2.176 3% } &nbsp;\text{V}
Line 46: Line 46:
 
\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ { 1 3% } &nbsp;\text{V}
 
\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ { 1 3% } &nbsp;\text{V}
  
{Wie lautet die Betragsfunktion a(t)? Welche Werte ergeben sich zu den Zeiten t = 25 \ {\rm &micro;} \text{s} und t = 75 \ {\rm &micro;} \text{s}?
+
{What is the magnitude function&nbsp; a(t)&nbsp;  in the time domain?&nbsp; What are the values at times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
 
|type="{}"}
 
|type="{}"}
 
a(t=25 \ {\rm &micro;} \text{s})\ = \ { 3 3% } &nbsp;\text{V}
 
a(t=25 \ {\rm &micro;} \text{s})\ = \ { 3 3% } &nbsp;\text{V}
 
a(t=75 \ {\rm &micro;} \text{s})\ = \ { 1 3% } &nbsp;\text{V}
 
a(t=75 \ {\rm &micro;} \text{s})\ = \ { 1 3% } &nbsp;\text{V}
  
{Geben Sie die Phasenfunktion \phi(t) allgemein an. Welche Werte ergeben sich zu den Zeiten t = 25 \ {\rm &micro;} \text{s} und t = 75 \ {\rm &micro;} \text{s}?
+
{Give the phase function&nbsp; \phi(t)&nbsp;  in the time domain.&nbsp; What values result at the times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
 
|type="{}"}
 
|type="{}"}
 
\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ { 0. } &nbsp;\text{Grad}
 
\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ { 0. } &nbsp;\text{Grad}
Line 59: Line 59:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
  
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
[[File:P_ID755__Sig_A_4_5_a_neu.png|250px|right|frame|Ortskurve zur Zeit t = 0]]
+
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locality curve at time&nbsp; t = 0]]
'''(1)'''&nbsp; Verschiebt man alle Diraclinien jeweils um f_{\rm T} = 50 \ \text{kHz} nach links, so liegen diese bei $\hspace{-0.08cm}10 \ \text{kHz}, 0$ und +10 \ \text{kHz}. Die Gleichung s_{\rm TP}(t) lautet mit \omega_{10} = 2 \pi \cdot 10  \ \text{kHz}:
+
'''(1)'''&nbsp; If all Dirac delta lines are shifted to the left by&nbsp; f_{\rm T} = 50 \ \text{kHz}&nbsp;, they are located at&nbsp; $-\hspace{-0.08cm}10 \ \text{kHz}$,&nbsp; 0&nbsp; and&nbsp; +10 \ \text{kHz}.  
 +
*The equation for&nbsp; s_{\rm TP}(t)&nbsp; is with&nbsp; \omega_{10} = 2 \pi \cdot 10  \ \text{kHz}:
 
    
 
    
 
:$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1
 
:$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1
Line 80: Line 81:
  
  
'''(2)'''&nbsp; Obige Gleichung kann man nach dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] mit T_0 = 1/f_{\rm N} = 100 \ {\rm &micro;} \text{s} wie folgt umformen:
+
 
 +
'''(2)'''&nbsp; The above equation can be transformed according to&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]]&nbsp; with&nbsp; T_0 = 1/f_{\rm N} = 100 \ {\rm &micro;} \text{s}&nbsp; as follows:
 
   
 
   
 
:$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm
 
:$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm
Line 89: Line 91:
 
{t}/{T_0}) .$$
 
{t}/{T_0}) .$$
  
Damit ist gezeigt, dass s_{\rm TP}(t) für alle Zeiten t reell ist. Für die gesuchten Zahlenwerte erhält man:
+
*This shows that&nbsp; s_{\rm TP}(t)&nbsp; is real for all times&nbsp; t.  
 +
*We obtain for the numerical values we are looking for:
 
      
 
      
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
Line 107: Line 110:
  
  
'''(3)'''&nbsp; Definitionsgemäß gilt a(t) = |s_{\rm TP}(t)|. Damit erhält man folgende Zahlenwerte:
+
 
+
'''(3)'''&nbsp;   By definition,&nbsp; a(t) = |s_{\rm TP}(t)|. This gives the following numerical values:
 
:$$a(t = {\rm 25 \hspace{0.1cm} {\rm &micro;} s}) = s_{\rm TP}(t = {\rm 25
 
:$$a(t = {\rm 25 \hspace{0.1cm} {\rm &micro;} s}) = s_{\rm TP}(t = {\rm 25
 
\hspace{0.05cm}{\rm &micro;} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} ,
 
\hspace{0.05cm}{\rm &micro;} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} ,
Line 115: Line 118:
 
:$$a(t = {\rm 75 \hspace{0.1cm} {\rm &micro;} s}) = |s_{\rm TP}(t = {\rm 75
 
:$$a(t = {\rm 75 \hspace{0.1cm} {\rm &micro;} s}) = |s_{\rm TP}(t = {\rm 75
 
\hspace{0.05cm} {\rm &micro;} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$
 
\hspace{0.05cm} {\rm &micro;} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$
 +
 +
 
   
 
   
'''(4)'''&nbsp; Allgemein gilt für die Phasenfunktion:
+
'''(4)'''&nbsp; In general, the phase function is:
 
   
 
   
 
:$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan}
 
:$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan}
Line 122: Line 127:
 
Re}\left[s_{\rm TP}(t)\right]}$$
 
Re}\left[s_{\rm TP}(t)\right]}$$
  
Aufgrund der Tatsache, dass hier für alle Zeiten {\rm Im}[s_{\rm TP}(t)] = 0 ist, erhält man hieraus das Ergebnis:
+
Due to the fact that here&nbsp; {\rm Im}[s_{\rm TP}(t)] = 0&nbsp; for all times, one obtains:
* Falls {\rm Re}[s_{\rm TP}(t)] > 0 gilt, ist die Phase ist \phi(t) = 0.
+
* If&nbsp; {\rm Re}[s_{\rm TP}(t)] > 0&nbsp; holds, the phase&nbsp; \phi(t) = 0.
* Dagegen gilt bei negativem Realteil: &nbsp; \phi(t) = \pi.
+
* On the other hand, if the real part is negative: &nbsp; &nbsp; \phi(t) = \pi.
 
   
 
   
  
Wir beschränken uns hier auf den Zeitbereich einer Periode: 0 \leq t \leq T_0. Im Bereich zwischen t_1 und t_2 liegt eine Phase von 180^\circ vor, ansonsten gilt \text{Re}[s_{\rm TP}(t)] \geq 0.  
+
We restrict ourselves here to the time range of one period: &nbsp; 0 \leq t \leq T_0.  
 +
*In the range between&nbsp; t_1&nbsp; and&nbsp; t_2&nbsp; there is a phase of&nbsp; 180^\circ&nbsp; otherwise&nbsp; \text{Re}[s_{\rm TP}(t)] \geq 0.  
  
Zur Berechung von t_1 kann das Ergebnis der Teilaufgabe (2) herangezogen werden:
+
*To calculate&nbsp; t_1&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:
 
   
 
   
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
{7}/{12}\hspace{0.3cm}{\rm (entspricht}\hspace{0.2cm}210^\circ
+
{7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ
 
)$$
 
)$$
  
Daraus erhält man t_1 = 7/12 · T_0 = 58.33 \ {\rm &micro;} \text{s}. Durch ähnliche Überlegungen kommt man zum Ergebnis: t_2 = 11/12 · T_0 = 91.63  \ {\rm &micro;} \text{s}.
+
*From this one obtains&nbsp; t_1 = 7/12 · T_0 = 58.33 \ {\rm &micro;} \text{s}.  
 +
*By similar reasoning one arrives at the result:&nbsp; t_2 = 11/12 · T_0 = 91.63  \ {\rm &micro;} \text{s}.
 
   
 
   
Die gesuchten Werte sind somit \phi(t = 25 \ {\rm &micro;} \text{s}) \; \underline { = 0} und \phi(t = 75 \ {\rm &micro;} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).
+
 
 +
The values we are looking for are therefore:&nbsp;
 +
:$$\phi(t = 25 \ {\rm &micro;} \text{s}) \; \underline { = 0},$$
 +
:$$\phi(t = 75 \ {\rm &micro;} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 15:22, 18 January 2023

Spectrum of the analytical signal

We consider a similar transmission scenario as in  Exrcise 4.4  (but not the same):

  • A sinusoidal source signal with amplitude  A_{\rm N} = 2 \ \text{V}  and frequency  f_{\rm N} = 10 \ \text{kHz},
  • Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  f_{\rm T} = 50 \ \text{kHz}.


Opposite you see the spectral function  S_+(f)  of the analytical signal  s_+(t).

When solving, take into account that the equivalent low-pass signal is in the form

s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm} a(t) ≥ 0.

For  \phi(t),  the range  –\pi < \phi(t) \leq +\pi  is permissible and the generally valid equation applies:

\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.



Hints:


Questions

1

Calculate the equivalent low-pass signal  s_{\rm TP}(t)  in the frequency and time domain.  What is the value of  s_{\rm TP}(t)  at the start time  t = 0?

\text{Re}[s_{\text{TP}}(t=0)]\ = \

 \text{V}
\text{Im}[s_{\text{TP}}(t=0 )]\ = \

 \text{V}

2

What are the values of  s_{\rm TP}(t)  at  t = 10 \ {\rm µ} \text{s}= T_0/10,     t = 25 \ {\rm µ} \text{s}= T_0/4,     t = 75 \ {\rm µ} \text{s}= 3T_0/4  and  T_0 = 100 \ {\rm µs}?
Show that all values are purely real.

\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=25 \ {\rm µ} \text{s})] \ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=75 \ {\rm µ} \text{s})]\ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \

 \text{V}

3

What is the magnitude function  a(t)  in the time domain?  What are the values at times  t = 25 \ {\rm µ} \text{s}  and  t = 75 \ {\rm µ} \text{s}?

a(t=25 \ {\rm µ} \text{s})\ = \

 \text{V}
a(t=75 \ {\rm µ} \text{s})\ = \

 \text{V}

4

Give the phase function  \phi(t)  in the time domain.  What values result at the times  t = 25 \ {\rm µ} \text{s}  and  t = 75 \ {\rm µ} \text{s}?

\phi(t=25 \ {\rm µ} \text{s}) \ = \

 \text{Grad}
\phi(t=75\ {\rm µ} \text{s})\ = \

 \text{Grad}


Solution

Locality curve at time  t = 0

(1)  If all Dirac delta lines are shifted to the left by  f_{\rm T} = 50 \ \text{kHz} , they are located at  -\hspace{-0.08cm}10 \ \text{kHz}0  and  +10 \ \text{kHz}.

  • The equation for  s_{\rm TP}(t)  is with  \omega_{10} = 2 \pi \cdot 10 \ \text{kHz}:
s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.
\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .


(2)  The above equation can be transformed according to  Euler's theorem  with  T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s}  as follows:

\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .
  • This shows that  s_{\rm TP}(t)  is real for all times  t.
  • We obtain for the numerical values we are looking for:
s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.


(3)  By definition,  a(t) = |s_{\rm TP}(t)|. This gives the following numerical values:

a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}
a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .


(4)  In general, the phase function is:

\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}

Due to the fact that here  {\rm Im}[s_{\rm TP}(t)] = 0  for all times, one obtains:

  • If  {\rm Re}[s_{\rm TP}(t)] > 0  holds, the phase  \phi(t) = 0.
  • On the other hand, if the real part is negative:     \phi(t) = \pi.


We restrict ourselves here to the time range of one period:   0 \leq t \leq T_0.

  • In the range between  t_1  and  t_2  there is a phase of  180^\circ  otherwise  \text{Re}[s_{\rm TP}(t)] \geq 0.
  • To calculate  t_1 , the result of subtask  (2)  can be used:
\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ )
  • From this one obtains  t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}.
  • By similar reasoning one arrives at the result:  t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}.


The values we are looking for are therefore: 

\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},
\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).