Difference between revisions of "Examples of Communication Systems/Further Developments of the GSM"

From LNTwww
 
(28 intermediate revisions by 6 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=GSM – Global System for Mobile Communications
 
|Untermenü=GSM – Global System for Mobile Communications
|Vorherige Seite=Gesamtes GSM–Übertragungssystem
+
|Vorherige Seite=Entire GSM Transmission System
 
|Nächste Seite=Allgemeine Beschreibung von UMTS
 
|Nächste Seite=Allgemeine Beschreibung von UMTS
 
}}
 
}}
  
  
==Die verschiedenen Generationen des GSM==   
+
==The different phases of the GSM standardization==   
 
<br>
 
<br>
GSM wurde ursprünglich als ein paneuropäisches Mobilfunknetz konzipiert und entwickelt, vor allem für Telefongespräche und Fax. Die Datenübertragung bei konstanter niedriger Datenrate war sekundär.
+
GSM was originally designed and developed as a pan-European mobile communications network,&nbsp; primarily for telephone calls and fax.&nbsp; Data transmission at a constant low data rate was secondary.&nbsp; The GSM standard was further developed in&nbsp; &raquo;'''various phases'''&laquo;&nbsp; after its presentation.&nbsp; The&nbsp; $\rm GSM$&nbsp; system described so far in the third main chapter is limited to the first two phases.
Der GSM–Standard wurde nach der Darstellung in verschiedenen Phasen weiter entwickelt. So wurden neue Dienste ermöglicht.
 
  
[[File:P_ID1234__Bei_T_3_5_S1_v3.png|right|frame|Die verschiedenen Generationen des GSM]]
+
&rArr; &nbsp; The&nbsp; &raquo;'''phase 1'''&laquo;&nbsp; included only basic teleservices and a few additional services that could be offered on a mandatory basis by all network operators at that time when GSM was launched in 1991.<br>
  
Die Grafik aus [EVB01]<ref name='EVB01'>Eberspächer, J.; Vögel, H.J.; Bettstetter, C.: ''Global System for Mobile Communication''. 3. Auflage. Stuttgart: Teubner, 2001.</ref> zeigt die Weiterentwicklungen von GSM:
+
&rArr; &nbsp; The standardization of the&nbsp; &raquo;'''phase 2'''&laquo;&nbsp; in the years from 1995 to 1997 already included the first further developments of the GSM standard.&nbsp; As a result,&nbsp; the additional services known from&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|$\text{ISDN}$]]&nbsp; were also gradually made available for GSM and supplemented by some new features,&nbsp; such as&nbsp; "call waiting"&nbsp; or&nbsp; "hold".
*Das bisher im dritten  Hauptkapiteln beschriebene $\rm GSM$&ndash;System beschränkt sich auf die beiden ersten Generationen. Die $\rm Phase \ 1$ beinhaltet grundlegende Teledienste und einige wenige Zusatzdienste, die zur Markteinführung von GSM im Jahr 1991 verbindlich von allen damaligen Netzbetreibern angeboten werden konnten.
+
 
*Bereits die Standardisierung der $\rm Phase \ 2$ in den Jahren von 1995 bis 1997 beinhaltete erste Weiterentwicklungen des GSM–Standards. Dadurch wurden die von [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|ISDN]] her bekannten Zusatzdienste auch für GSM schrittweise verfügbar gemacht und um einige neue Leistungsmerkmale ergänzt, so etwa Anklopfen (''Call Waiting'') oder Halten (''Hold'').
+
&rArr; &nbsp; In the years 1997-2000,&nbsp; new data services with higher data rates were developed,&nbsp; which are allocated to the&nbsp; &raquo;'''phase 2+'''&laquo;.&nbsp; These new data services include:
*In den Jahren 1997–2000 wurden neue Datendienste mit höherer Datenrate entwickelt, wie zum Beispiel
+
#&nbsp; [[Examples_of_Communication_Systems/Further_Developments_of_the_GSM#High_Speed_Circuit.E2.80.93Switched_Data_.28HSCSD.29|$\text{High Speed Circuit-Switched Data}$]]&nbsp; $\rm (HSCSD)$,  
::  [[Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_des_GSM#High_Speed_Circuit.E2.80.93Switched_Data_.28HSCSD.29|High Speed Circuit–Switched Data]] (HSCSD),  
+
#&nbsp; [[Examples_of_Communication_Systems/Further_Developments_of_the_GSM#General_Packet_Radio_Service_.28GPRS.29|$\text{General Packet Radio Service}$]]&nbsp; $\rm (GPRS)$,  
::  [[Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_des_GSM#General_Packet_Radio_Service_.28GPRS.29|General Packet Radio Service]] (GPRS), und
+
#&nbsp; [[Examples_of_Communication_Systems/Further_Developments_of_the_GSM#Enhanced_Data_Rates_for_GSM_Evolution|$\text{Enhanced Data Rates for GSM Evolution}$]]&nbsp; $\rm (EDGE)$.
::  [[Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_des_GSM#Enhanced_Data_Rates_for_GSM_Evolution|Enhanced Data Rates für GSM Evolution]] (EDGE).
+
 
*Diese neuen Datendienste werden der $\rm Phase \ 2+$ (oder Generation 2.5) zugerechnet und sind in der Grafik grün hinterlegt.
+
 
*Zur dritten Mobilfunkgeneration gehört unter anderem  [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS|UMTS]] (''Universal Mobile Telecommunications System''). Dieser Standard ermöglicht deutlich höhere Datenübertragungsraten, als dies mit dem GSM–Standard möglich ist. Er wird im vierten Hauptkapitel dieses Buches eingehend behandelt. In obiger Grafik ist dieses System der dritten Generation rot hinterlegt.
+
<u>Note:</u> &nbsp; Please do not confuse the terms&nbsp; "phase"&nbsp; and&nbsp; "generation":
 +
* GSM is a second generation&nbsp; $\rm (2G)$&nbsp; mobile communications system,&nbsp; independent of the standardization phase.
 +
 
 +
*The third generation&nbsp; $\rm (3G)$&nbsp; includes&nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS|$\text{UMTS}$]].&nbsp;  This standard enabled significantly higher data transmission rates than were possible with GSM.
 +
 
 +
*"Phase 2+"&nbsp; systems are in terms of performance between&nbsp; $\rm 2G$&nbsp; and&nbsp; $\rm 2G$.&nbsp; That is why we speak of&nbsp; $\rm 2.5G$.&nbsp; The innovations of the&nbsp; "phase 2+"&nbsp; affect almost all aspects of GSM,&nbsp;  from&nbsp; "radio transmission"&nbsp; to&nbsp; "call control".  
  
  
Die Neuerungen der $\rm Phase \ 2+$ betreffen fast alle Aspekte von GSM, von der Funkübertragung bis hin zur Verbindungssteuerung. Die damit möglichen neuen Datendienste werden auf den folgenden Seiten näher erklärt.
 
  
 
 
 
 
 
==High Speed Circuit–Switched Data (HSCSD)==   
 
==High Speed Circuit–Switched Data (HSCSD)==   
 
<br>
 
<br>
[[File:P_ID1235__Bei_T_3_5_S3_v1.png|right|frame|Bündelung mehrerer Zeitschlitze bei HSCSD]]
+
The GSM data transmission standard&nbsp; &raquo;'''high speed circuit-switched data'''&laquo;&nbsp; $\rm (HSCSD)$,&nbsp; introduced in 1999,&nbsp; allowed the user data rate per connection to be increased from&nbsp; $9.6 \ \rm kbit/s$&nbsp; to&nbsp; $14.4 \ \rm kbit/s$&nbsp; when transmission conditions permitted.
Durch den 1999 eingeführten GSM–Datenübertragungsstandard $\rm High \ Speed \ Circuit–Switched \  Data$ (HSCSD) kann durch eine verbesserte Kanalcodierung die Nutzdatenrate pro Verbindung von $9.6 \ \rm kbit/s$ auf $14.4 \ \rm kbit/s$ erhöht werden, wenn es die Übertragungsbedingungen erlauben.  
+
 
 +
*By bundling several adjacent time slots,&nbsp; the data rate could be increased even further.
 +
 
 +
*The data rate depends on how many channels the network operator provides for bundling or how many channels the HSCSD cell phone can process.
  
Durch die Bündelung mehrerer benachbarter Zeitschlitze kann die Datenrate noch weiter gesteigert werden.
 
  
Die Datenratehängt davon ab, wie viele Kanäle der Netzbetreiber für die Bündelung zur Verfügung stellt bzw. wie viele Kanäle das HSCSD–Handy verarbeiten kann.
+
The graphic explains the principle of bundling multiple timeslots:
<br clear=all>
 
  
Die Grafik erklärt das Prinzip der Bündelung mehrerer Zeitschlitze:
+
[[File:P_ID1235__Bei_T_3_5_S3_v1.png|right|frame|Bundling of multiple time slots in HSCSD]]
  
*Jeder der acht physikalischen Kanäle (Zeitschlitze) eines Rahmens bietet maximal $14.4 \ \rm kbit/s$ für die Datenkommunikation. HSCSD ermöglicht eine Kanalbündelung durch die Kombination mehrerer Zeitschlitze, die auch bei ISDN verwendet wird. Man spricht in diesem Zusammenhang von ''Multislot Capability''.
+
#Each of the eight physical channels&nbsp; $($time slots$)$&nbsp; in a frame provides&nbsp; $14.4 \ \rm kbit/s$&nbsp; for data communication.&nbsp; HSCSD enables channel bundling by combining multiple time slots,&nbsp; as is also used in ISDN.&nbsp; This is referred to as&nbsp; "multi-slot capability".
*Durch das Zusammenschalten aller acht Kanäle ergäben sich somit $\rm 8 · 14.4 \ kbit/s = 115.2 \ kbit/s$. Da jedoch die Verbindung zwischen dem ''Base Station Controller'' (BSC) und dem ''Mobile Switching Center'' (MSC) auf $64 \ \rm kbit/s$ begrenzt ist, beschränkt man sich auf die Bündelung von vier Zeitschlitzen, woraus sich die maximale Übertragungsrate zu $57.6 \ \rm kbit/s$ ergibt.
+
#Connecting all eight channels together would thus result in&nbsp; $\rm 115.2 \ kbit/s$.&nbsp; But since the connection between the base station controller&nbsp; $\rm (BSC)$&nbsp; and the mobile switching center&nbsp; $\rm (MSC)$&nbsp; is limited to&nbsp; $64 \ \rm kbit/s$,&nbsp; one is limited to bundling four time slots,&nbsp; resulting in a maximum transmission rate of&nbsp; $57.6 \ \rm kbit/s$&nbsp;.
*Ein Vorteil der HSCSD–Technik gegenüber dem paketorientierten GPRS (siehe nächste Seite) ist die leitungsorientierte Datenübertragung. Dies ist insbesondere für Anwendungen von Vorteil, die gleichmäßige Bandbreiten benötigen, da hier der Übertragungskanal mit niemandem geteilt werden muss. Beispiele hierfür sind die Video– und die Bildübertragung.
+
#An advantage of HSCSD technology over packet-switched GPRS&nbsp; $($next section$)$&nbsp; is the circuit–switched data transmission. This is particularly advantageous for applications with uniform bandwidth,&nbsp; since here the channel does not have to be shared with anyone. Examples include video and image transmission.
*Nachteilig sind allerdings die höheren Übertragungskosten durch die Belegung mehrerer Kanäle. Diese Kanäle stehen somit für andere Mobilfunkteilnehmer nicht mehr zu Verfügung. In einer Funkzelle mit hoher Kanalauslastung kann es deshalb passieren, dass die Bündelung mehrerer Kanäle vom Netzbetreiber unterbunden wird.
+
#However,&nbsp; the higher transmission costs due to the occupancy of multiple channels are disadvantageous.&nbsp; These channels are therefore no longer available to other users.&nbsp; So in a radio cell with high channel utilization,&nbsp; it can happen that the bundling of multiple channels is prevented by the network operator.
  
 
 
 
 
 
==General Packet Radio Service (GPRS)== 
 
==General Packet Radio Service (GPRS)== 
 
<br>
 
<br>
Mit der GSM–Erweiterung $\rm General \ Packet \ Radio \ Service$ (GPRS) wurde 2000 erstmals eine paketorientierte Datenübertragung ermöglicht. GPRS unterstützt sehr viele Protokolle (Internet Protocol, X.25, Datex–P, usw.) und erlaubt dem Mobilfunkteilnehmer, mit fremden Datennetzen (Internet oder firmeninternen Intranets) zu kommunizieren. GPRS war ein wichtiger Zwischenschritt in der Evolution der zellularen Mobilfunknetze in Richtung dritter Generation und hin zum mobilen Internet.
+
With the GSM extension&nbsp; &raquo;'''general packet radio service'''&laquo;&nbsp; $\rm (GPRS)$,&nbsp; packet-switched data transmission was made possible for the first time in 2000.  
 +
*GPRS supports a large number of protocols&nbsp; $($Internet Protocol,&nbsp; X.25,&nbsp; Datex-P, etc.$)$&nbsp; and allows mobile subscribers to communicate with external data networks&nbsp; $($the internet or internal company intranets$)$.  
  
Ein GPRS–Benutzer profitiert von kürzeren Zugriffzeiten und der höheren Datenrate (bis $21.4 \ \rm kbit/s$) gegenüber dem herkömmlichen GSM  $(9.6 \ \rm kbit/s)$ und HSCSD $(14.4 \ \rm kbit/s)$. Die Gebühren ergeben sich bei GPRS nicht aus der Verbindungsdauer, sondern aus der tatsächlich übertragenen Datenmenge. Deshalb muss nicht (wie bei HSCSD) ein Funkkanal dauerhaft für einen Benutzer reserviert werden.
+
*GPRS was an important intermediate step in the evolution of cellular mobile networks towards third generation and towards the mobile internet.
  
[[File:P_ID1236__Bei_T_3_5_S3_v3.png|right|frame|GPRS–Systemarchitektur]]
 
  
Zur Einführung von GPRS waren einige Modifikationen und Ergänzungen im GSM–Netz notwendig, die in der Grafik „GPRS–Systemarchitektur” aus [BVE99]<ref name ='BVE99'>Bettstetter, C.; Vögel, H.J.; Eberspächer, J.: ''GSM Phase 2+ General Packet Radio Service GPRS: Architecture, Protocols, and Air Interface''. In: IEEE Communications Surveys & Tutorials, Vol. 2 (1999) No. 3, S. 2-14.</ref> zusammengefasst sind:  
+
A GPRS user benefits from shorter access times and the higher data rate&nbsp; $($to&nbsp; $21.4 \ \rm kbit/s)$&nbsp; compared
*Blaue Linien beschreiben Nutz– und Signalisierungsdaten.  
+
[[File:EN_Bei_T_3_5_S3_v2.png|right|frame|GPRS system architecture]]
*Die orange–gepunkteten Verbindungen kennzeichnen Signalisierungsdaten.
+
*'''Gb''', '''Gc''', '''Gd''', usw. geben Schnittstellen von GPRS an.  
+
*to conventional GSM&nbsp; $(9.6 \ \rm kbit/s)$&nbsp;
  
 +
*and HSCSD&nbsp; $(14.4 \ \rm kbit/s)$.
  
Zur Integration von GPRS in die bestehende GSM–Systemarchitektur wird diese um eine neue Klasse von Netzknoten erweitert.
 
  
 +
&rArr; &nbsp; With GPRS,&nbsp; the charges are not based on the connection duration,&nbsp; but on the actual amount of data transferred.&nbsp; Therefore,&nbsp; a radio channel does not have to be permanently reserved for a user&nbsp; $($as is the case with HSCSD$)$.
  
Die zusätzlichen GPRS–Komponenten – in der Grafik durch rote Kreise hervorgehoben – werden hier nur stichpunktartig erklärt:
+
To introduce GPRS,&nbsp; some modifications and additions to the GSM network were necessary,&nbsp; as shown in the graph&nbsp; "GPRS System Architecture"&nbsp; from&nbsp; [BVE99]<ref name ='BVE99'>Bettstetter, C.; Vögel, H.J.; Eberspächer, J.:&nbsp; GSM Phase 2+ General Packet Radio Service GPRS:&nbsp; Architecture, Protocols,&nbsp; and Air Interface.&nbsp; In: IEEE Communications Surveys & Tutorials, Vol. 2 (1999) No. 3, pp. 2-14.</ref>:
*Die '''GPRS Support Nodes''' (GSN) sind für die Übertragung und die Verkehrslenkung (''Routing'') der Datenpakete zwischen den Mobilstationen und den externen paketvermittelten Datennetzen verantwortlich. Hierbei unterscheidet man zwischen SGSN und GGSN, die miteinander über ein IP–basiertes GPRS–Backbone–Netz kommunizieren.
+
*Blue lines describe payload and signaling data.
*Der '''Serving GPRS Support Node''' (SGSN) ist für das Mobilitätsmanagement zuständig und übernimmt für die Paketdatendienste eine ähnliche Funktion wie das ''Mobile Switching Center'' (MSC) für die verbindungsorientierten Sprachsignale.
 
*Der '''Gateway GPRS Support Node''' (GGSN) ist die Schnittstelle zu fremden paketorientierten Datennetzen. Er konvertiert die vom SGSN kommenden GPRS–Pakete in das entsprechende Protokoll (IP, X.25, ...) und sendet diese an das '''Packet Data Network''' (PDN) aus.
 
  
 +
*The orange dotted connections denote signaling data.
  
 +
*$\rm Gb$,&nbsp; $\rm Gc$,&nbsp; $\rm Gd$,&nbsp; ... indicate interfaces of GPRS.
  
'''GPRS–Luftschnittstelle''' 
 
  
Ein GPRS–Handy führt beim Einschalten als erstes die Prozedur „Cell Selection” durch, indem es nach einem Frequenzkanal mit GPRS–Daten sucht. Wurde ein solcher Kanal gefunden, so muss je nach Handyklasse das Handy manuell auf GPRS–Dienste eingestellt werden oder es kann automatisch und dynamisch zwischen GPRS und GSM umschalten. Man unterscheidet:
+
&rArr; &nbsp; To integrate GPRS into the existing GSM system architecture,&nbsp; a new class of network nodes has to be added.  
*Geräte der Klasse $\rm A$ können GPRS–Datendienste und GSM–Übertragungsdienste gleichzeitig übernehmen; die Kanalressourcen werden parallel paket– und durchschaltevermittelt überwacht.
 
*Bei Klasse $\rm B$ werden die Signalisierungskanäle von GSM und GPRS gleichzeitig überwacht, solange kein Dienst durchgestellt ist. Der parallele GSM/GPRS–Betrieb ist aber nicht möglich.
 
*In der Klasse $\rm C$ muss sich der Teilnehmer vorher entscheiden, ob er das Handy für GSM oder GPRS nutzen möchte, da Signalisierungskanäle nicht mehr simultan überwacht werden können.
 
  
  
Um die GSM–Funkschnittstelle auf den paketorientierten GPRS–Betrieb umstellen zu können, mussten die logischen Kanäle erweitert werden. Logische GPRS–Kanäle erkennt man an einem vorangestellten „P”, das die paketorientierte Betriebsart indiziert. Fast für alle logischen GSM–Kanäle gibt es das entsprechende GPRS–Äquivalent:
+
The additional GPRS components&nbsp; $($highlighted by red circles in the diagram$)$&nbsp;  are explained here only in bullet points:
*Der ''Packet Data Traffic Channel'' (PDTCH) wird bei GPRS als '''Verkehrskanal''' für den Nutzdatentransfer verwendet. Der entsprechende GSM–Kanal heißt TCH.
 
*Die '''Signalisierungskanäle''' werden wie bei GSM in den ''Packet Broadcast Control Channel'' (PBCCH), den ''Packet Common Control Channel'' (PCCCH) und den ''Packet Dedicated Control Channel'' (PDCCH) unterteilt.
 
  
 +
#The&nbsp; &raquo;'''GPRS Support Nodes'''&laquo;&nbsp; $\rm (GSN)$&nbsp; are responsible for the transmission and traffic routing  of data packets between the mobile stations and the external packet-switched data networks.&nbsp; Here,&nbsp; a distinction is made between SGSN and GGSN,&nbsp; which communicate with each other via an IP-based GPRS backbone network.<br><br>
 +
#The&nbsp; &raquo;'''Serving GPRS Support Node'''&laquo;&nbsp; $\rm (SGSN)$&nbsp; is responsible for mobility management and performs a similar function for packet data services as the&nbsp; &raquo;'''Mobile Switching Center'''&laquo;&nbsp; $\rm (MSC)$&nbsp; does for connection-oriented speech signals.<br><br>
 +
#The&nbsp; &raquo;'''Gateway GPRS Support Node'''&laquo;&nbsp; $\rm (GGSN)$&nbsp; is the interface to foreign packet-oriented data networks.&nbsp; It converts the GPRS packets coming from the SGSN into the appropriate protocol&nbsp; $($IP,&nbsp; X.25,&nbsp; ...$)$&nbsp; and sends them out to the&nbsp; &raquo;'''Packet Data Network'''&laquo;&nbsp; $\rm (PDN)$.
  
GPRS ermöglicht den Teilnehmern, Daten mit öffentlichen Datennetzen auszutauschen und verwendet dazu wie GSM die GMSK-Modulation und die FDMA/TDMA–Kombination mit acht Zeitschlitzen pro TDMA-Rahmen. Es ergeben sich folgende Unterschiede:
+
 
*Im GSM–Standard wird jeder aktiven Mobilstation genau ein Zeitschlitz eines TDMA–Rahmens zugewiesen. Dieser physikalische Kanal ist für die gesamte Dauer eines Rufes sowohl im Uplink als auch im Downlink für die Mobilstation reserviert.
+
 
*Bei GPRS können zur Ratensteigerung bis zu acht Zeitschlitze kombiniert werden. Außerdem werden Up– und Downlink separat zugewiesen. Die physikalischen Kanäle werden nur für die Dauer der Übertragung von Datenpaketen reserviert und anschließend wieder frei gegeben.
+
==GPRS air interface== 
 +
<br>
 +
When a GPRS cell phone is switched on,&nbsp; it first performs the&nbsp; "cell selection"&nbsp; procedure by searching for a frequency channel with GPRS data.&nbsp;
 +
 
 +
If such a channel has been found,&nbsp; then depending on the cell phone class,&nbsp; the cell phone must be manually set to GPRS services or it can automatically and dynamically switch between GPRS and GSM.&nbsp; A distinction is made between:
 +
*Class&nbsp; $\rm A$&nbsp; devices can handle GPRS data services and GSM transmission services simultaneously;&nbsp; channel resources are monitored in parallel in a packet-switched and circuit-switched manner.
 +
 
 +
*In class&nbsp; $\rm B$&nbsp; the signaling channels of GSM and GPRS are monitored simultaneously as long as no service is switched through.&nbsp; However,&nbsp; parallel GSM/GPRS operation is not possible.
 +
 
 +
*In class&nbsp; $\rm C$&nbsp; the subscriber must decide beforehand whether to use the mobile for GSM or GPRS,&nbsp; since signaling channels can no longer be monitored simultaneously.
 +
 
 +
 
 +
&rArr; &nbsp; To be able to switch the GSM radio interface to packet-oriented GPRS operation,&nbsp; the logical channels had to be extended.&nbsp; Logical GPRS channels can be recognized by a preceding&nbsp; "$\rm P$",&nbsp; which indicates the packet-oriented operating mode.&nbsp; Almost for all logical GSM channels there is the corresponding GPRS equivalent:
 +
*The&nbsp; "Packet Data Traffic Channel"&nbsp; $\rm (PDTCH)$&nbsp; is used in GPRS as&nbsp; &raquo;'''traffic channel'''&laquo;&nbsp; for user data transfer.&nbsp; The corresponding GSM channel is called&nbsp; $\rm TCH$.
 +
 
 +
*The&nbsp; &raquo;'''signaling channels'''&laquo;&nbsp; are divided as in GSM into
 +
#&nbsp; the&nbsp; "Packet Broadcast Control Channel"&nbsp; $\rm (PBCCH)$,&nbsp;
 +
#&nbsp; the&nbsp; "'Packet Common Control Channel"&nbsp; $\rm (PCCCH)$,&nbsp; 
 +
#&nbsp; the&nbsp; "Packet Dedicated Control Channel"&nbsp; $\rm (PDCCH)$.
 +
 
 +
 
 +
 
 +
&rArr; &nbsp; GPRS allows subscribers to exchange data with public data networks and uses&nbsp; $($like GSM$)$&nbsp; GMSK modulation and the FDMA/TDMA combination with eight time slots per TDMA frame.&nbsp;  The differences are as follows:
 +
*In the GSM standard,&nbsp; each active mobile station is assigned exactly one time slot of a TDMA frame.&nbsp; This physical channel is reserved for the mobile station for the entire duration of a call,&nbsp; both in uplink and  downlink.
 +
 
 +
*In GPRS,&nbsp; up to eight time slots can be combined for rate enhancement.&nbsp; In addition,&nbsp; uplink and downlink are allocated separately.&nbsp; The physical channels are reserved only for the duration of the transmission of data packets and then released again.
  
  
 
   
 
   
'''GPRS–Kanalcodierung'''
+
==GPRS channel coding==
 +
 
 +
In contrast to conventional GSM &nbsp; $($with data rate&nbsp; $9.6 \ \rm kbit/s)$ &nbsp; four possible&nbsp; "coding schemes"&nbsp; are defined for GPRS,&nbsp; which can be used depending on the reception quality:
 +
*Coding scheme 1&nbsp; $\text{(CS &ndash; 1})$&nbsp; with&nbsp; $9.05\ \rm kbit/s$&nbsp; $($181 bits per 20 ms$)$,
 +
 
 +
*Coding scheme 2&nbsp; $\text{(CS &ndash; 2})$&nbsp; with&nbsp; $13.4\ \rm kbit/s$&nbsp; $($268 bits per 20 ms$)$,
 +
 
 +
*Coding scheme 3&nbsp; $\text{(CS &ndash; 3})$&nbsp; with&nbsp; $15.6\ \rm kbit/s$&nbsp; $($312 bits per 20 ms$)$,
  
Im Gegensatz zum herkömmlichen GSM (mit der Datenrate $9.6 \ \rm kbit/s$) sind bei GPRS vier mögliche ''Codierschemata'' definiert, die je nach Empfangsqualität genutzt werden können:
+
*Coding scheme 4&nbsp; $\text{(CS &ndash; 4})$&nbsp; with&nbsp; $21.4\ \rm kbit/s$&nbsp; $($428 bits per 20 ms$)$.
*Codierschema 1 $(\rm CS–1)$ mit $9.05 \ \rm kbit/s$ (181 Bit pro 20 ms),
 
*Codierschema 2 $(\rm CS–2)$ mit $13.4 \ \rm kbit/s$ (268 Bit pro 20 ms),
 
*Codierschema 3 $(\rm CS–3)$ mit $15.6 \ \rm kbit/s$ (312 Bit pro 20 ms),
 
*Codierschema 4 $(\rm CS–4)$ mit $21.4 \ \rm kbit/s$ (428 Bit pro 20 ms).
 
  
  
Die kleinstmögliche Datenrate ist somit $9.05 \ \rm kbit/s$ ($\rm CS–1$, ein Zeitschlitz), die maximale beträgt derzeit (2007) $171.2 \ \rm kbit/s$ ($\rm CS–4$, acht Zeitschlitze). Diese theoretische Geschwindigkeit wird in der Praxis jedoch nicht erreicht, da die meisten aktuellen GPRS–Handys nur maximal eine Netto–Datenrate von $13.4 \ \rm kbit/s$ ($\rm CS–2$) unterstützen. Die Grafik und die nachfolgenden Erklärungen beziehen sich auf diese Kombination.
+
The smallest possible data rate is thus &nbsp; $9.05\ \rm kbit/s$&nbsp; $($only one time slot$)$,&nbsp; the maximum&nbsp; $171.2\ \rm kbit/s$&nbsp; $($eight time slots$)$.&nbsp; However,&nbsp; this theoretical speed was not achieved in practice,&nbsp; since most GPRS phones only support in 2007 a maximum net data rate of&nbsp; $13.4\ \rm kbit/s$&nbsp; $\text{(CS &ndash; 2})$. The graphic refer to this combination:
  
[[File:P_ID1237__Bei_T_3_5_S5_v1a.png|center|frame|Zur Kanalcodierung bei GPRS]]
+
[[File:EN_Bei_T_3_5_S5a_neu.png|right|frame|Channel encoding in GPRS]]
  
*Die $268$ Informationsbits werden zunächst durch sechs vorcodierte Bits des ''Uplink State Flags'' (USF), $16$ Paritätsbits der so genannten ''Block Check Sequence'' (BCS) und vier Tailbits $(0000)$ ergänzt. Letztere sind für die Terminierung der Faltungscodes notwendig.
+
#&nbsp; The&nbsp; $268$&nbsp; information bits are first supplemented by six precoded bits of the&nbsp; "Uplink State Flag"&nbsp; $\rm (USF)$, &nbsp;$16$&nbsp; parity bits of the&nbsp; "Block Check Sequence"&nbsp; $\rm (BCS)$&nbsp; and four tail bits&nbsp; $(0000)$.&nbsp; The latter are necessary for the termination of the convolutional codes.<br><br>
*Zur Kanalcodierung wird der von GSM bekannte Faltungscode der Coderate $R_{\rm C} = 1/2$ benutzt. Durch diesen werden die insgesamt $294$ Bits auf $588$ Bits verdoppelt und somit ausreichend gegen Übertragungsfehler geschützt.
+
#&nbsp; For channel coding,&nbsp; the rate&nbsp; $1/2$&nbsp; convolutional code known from GSM is used.&nbsp; By this the&nbsp; $294$&nbsp; bits&nbsp; are doubled to&nbsp; $588$&nbsp; bits and thus sufficiently protected against transmission errors.<br><br>
*Anschließend werden $132$ Bits dieser $588$ Bit punktiert, so dass daraus schließlich ein Codewort der Länge $456$ Bit (Bitrate $22.8 \ \rm kbit/s$) resultiert. Damit ergibt sich eine resultierende Coderate (von Faltungscoder inklusive Punktierung) von $294/456 ≈ 65\%$.
+
#&nbsp; $132$&nbsp; of these&nbsp; $588$&nbsp; bits were punctured,&nbsp; so that finally a code word of length&nbsp; $456$&nbsp; bits results &nbsp; $($bit rate&nbsp; $22.8 \ \rm kbit/s)$.&nbsp;  This gives a resulting code rate&nbsp; $($from convolutional encoders including puncturing$)$&nbsp; of&nbsp; $294/456 ≈ 65\%$.<br><br>
*Nach der Kanalcodierung werden die Codewörter einem Blockinterleaver der Tiefe $4$ zugeführt. Das Interleavingschema ist für alle vier Codierschemata identisch.
+
#&nbsp; After channel coding,&nbsp; the code words are fed to a block interleaver of depth&nbsp; $4$.&nbsp; The interleaving scheme is identical for all four coding schemes.
 
   
 
   
 
 
 
 
Line 111: Line 141:
 
== Enhanced Data Rates for GSM Evolution ==
 
== Enhanced Data Rates for GSM Evolution ==
 
<br>
 
<br>
Die letzte GSM–Erweiterung $\rm Enhanced \ Data \ Rates \ for \ GSM–Evolution$ (EDGE) mit dem Ziel, die Datenübertragungsrate in GSM–Netzen zu erhöhen, benutzt neben ''Gaussian Minimum Shift Keying'' (GMSK) als zusätzliches Modulationsverfahren ''8–Phase Shift Keying'' (8–PSK):  
+
The last GSM extension&nbsp; &raquo;'''Enhanced data rates for GSM evolution'''&laquo;&nbsp; $\rm (EDGE)$&nbsp; with the aim to increase the data transmission rate in GSM networks uses beside&nbsp; "Gaussian Minimum Shift Keying"&nbsp; $\rm (GMSK)$&nbsp; as additional modulation method&nbsp; "eight-level phase shift keying"&nbsp; $\text{(8-PSK)}$:  
*Bei diesem gibt es acht verschiedene Symbole (bei GMSK nur zwei), die sich durch unterschiedliche Phasenlagen bei Vielfachen von $45^\circ$ unterscheiden.  
+
*Then,&nbsp; there are eight different symbols&nbsp; $($with GMSK only two$)$,&nbsp; distinguished by different phase positions at multiples of&nbsp; $45^\circ$.&nbsp;
*Das bedeutet, dass mit jedem Symbol drei Datenbits übertragen werden können, wodurch die Datenrate im Vergleich zu GPRS um den Faktor $3$ gesteigert wird.
+
 +
*This means:&nbsp; Three data bits can be transmitted with each symbol,&nbsp; increasing the data rate by a factor of&nbsp; $3$&nbsp; compared to GPRS.
 +
 
 +
 
 +
With this definition:
 +
 
 +
* [[Examples_of_Communication_Systems/Further_Developments_of_the_GSM#High_Speed_Circuit.E2.80.93Switched_Data_.28HSCSD.29|$\text{HSCSD}$]]&nbsp; becomes&nbsp; "Enhanced Circuit Switched Data"&nbsp; $\text{(E-CSD)}$&nbsp; and
 +
 
 +
*[[Examples_of_Communication_Systems/Further_Developments_of_the_GSM#General_Packet_Radio_Service_.28GPRS.29|$\text{GPRS}$]]&nbsp; becomes&nbsp; "enhanced GPRS"&nbsp; $\text{(E-GPRS)}$.  
  
  
Mit der Definition von EDGE wird HSCSD zu ''Enhanced Circuit Switched Data'' (E–CSD) und GPRS zu ''Enhanced–GPRS'' (E–GPRS). T–mobile ist allerdings der einzige deutsche Netzbetreiber, der derzeit (2007) EDGE in seinem Netz anbietet.
+
The graph shows the&nbsp; "normal burst"&nbsp; of&nbsp; "EDGE"&nbsp; resp.&nbsp; "E-GPRS".&nbsp; One can see the following differences to the&nbsp; "GSM Normal Burst":
 +
[[File:EN_Bei_T_3_5_S6a_v3.png|right|frame|Normal Burst of&nbsp; "EDGE"&nbsp; and&nbsp; "E-GPRS" ]]
 +
#&nbsp; The&nbsp; EDGE normal burst&nbsp; consists of&nbsp; $468.75$&nbsp; bits instead of&nbsp; $156.25$&nbsp; bits in GSM,&nbsp;  from which the&nbsp; tripling of the data rate can be seen.<br><br>
 +
#&nbsp; As with GSM,&nbsp; there are two&nbsp; "stealing flags".&nbsp; Tailbits,&nbsp; training sequence and&nbsp; guard period are each tripled.&nbsp; This leaves&nbsp; $57 \cdot 3 + 2 = 173$&nbsp; bits for the data field.<br><br>
 +
#&nbsp; Thus,&nbsp; $346$&nbsp; bits of the rate&nbsp; $1/2$&nbsp; channel encoded data are transmitted in E-GPRS in one&nbsp; "Normal Burst"&nbsp; per&nbsp; $576.9\ \rm &micro; s$,&nbsp;  which corresponds to a net data rate of&nbsp; $\approx 60 \ \rm kbit/s$&nbsp;.
  
[[File:P_ID1238__Bei_T_3_5_S6a_v1.png|center|right|''Normal Burst'' von EDGE bzw. E–GPRS]]
 
Die Grafik zeigt den ''Normal Burst'' von EDGE bzw. E–GPRS. Man erkennt folgende Unterschiede zum ''Normal Burst'' bei GSM:
 
*Der ''Normal Burst'' besteht bei EDGE aus $468.75$ Bit anstelle der $156.25$ Bit bei GSM, woraus die Verdreifachung der Datenrate ersichtlich ist.
 
*Wie bei GSM gibt es zwei ''Stealing Flags''. Tailbits, Trainingssequenz und ''Guard Period'' werden jeweils verdreifacht. Damit verbleiben für das Datenfeld $57 · 3 + 2 = 173$ Bit.
 
*Somit werden bei E–GPRS im ''Normal Burst'' $346$ Bit kanalcodierte Daten (Coderate $R_{\rm C} =1/2$) pro $576.9\  \rm &micro; s$ übertragen, was einer Netto–Datenrate von ca. $60 \  \rm kbit/s$ entspricht.
 
  
 +
==Modulation and Coding Schemes for E–GPRS==
  
'''Modulation and Coding Schemes bei E–GPRS'''
+
In E-GPRS, there are used nine operator-selectable&nbsp; "Modulation and Coding Schemes"&nbsp; $\rm (MCS)$&nbsp; depending on the current modulation and channel coding.&nbsp; The table shows the possible schemes in E-GPRS.&nbsp; From this it can be seen:
  
Bei E–GPRS gibt es neun vom Betreiber auswählbare ''Modulation and Coding Schemes'' (MCS), die von den verwendeten Kanalcodier– und Modulationsverfahren abhängen.
+
[[File:EN_Bei_T_3_5_S6b_v3.png|right|frame|Table of&nbsp; "Modulation and Coding Schemes"&nbsp; in E-GPRS]]
  
[[File:P_ID1239__Bei_T_3_5_S6c.png|center|frame|Tabelle der ''Modulation and Coding Schemes'' bei E–GPRS]]
+
#&nbsp; Like GSM/GPRS,&nbsp; the first four schemes use the GMSK modulation with one bit of information per channel use,&nbsp; while&nbsp; "8-PSK"&nbsp; is used in&nbsp; MCS-5, ... ,&nbsp; MCS-9,&nbsp; and thus three bits per symbol are transmitted.
 +
#&nbsp; The smaller the code rate,&nbsp; the greater the added redundancy and thus the data security.&nbsp; In particular,&nbsp; between&nbsp; MCS-4&nbsp; $(R_{\rm C} = 1)$&nbsp; and&nbsp; MCS-5&nbsp; $(R_{\rm C} = 0.37)$&nbsp; the code rate decreases significantly due to the more favorable modulation mode despite the higher net data rate.
 +
#&nbsp; The most elaborate mode&nbsp; $($MCS-9$)$&nbsp; offers a data rate of&nbsp; $59.2\ \rm kbit/s$&nbsp; and allows the simultaneous occupation of eight time slots,&nbsp; which would mean a maximum net data rate of&nbsp; $473.6\ \rm kbit/s$.&nbsp; However,&nbsp; this mode&nbsp; $($with $R_{\rm C} = 1)$&nbsp; is only applicable under extremely good conditions.
 +
#&nbsp; With&nbsp; MCS-8&nbsp; and seven time slots you can already reach&nbsp; $380.8 \ \rm kbit/s$&nbsp; and you are thus in the range of the 3G mobile radio standard&nbsp; $\rm UMTS$,&nbsp; which currently offers&nbsp; $384 \ \rm kbit/s$.
 +
#&nbsp; EDGE uses the same frequencies as GSM,&nbsp; which is why this technology was particularly interesting for operators with existing GSM infrastructure who did not acquire any of the more expensive UMTS licenses and still wanted to offer a sufficiently high data rate.
  
Die Tabelle zeigt die möglichen Schemata von E–GPRS. Daraus ist zu erkennen:
 
*Die ersten vier Schemata verwenden wie GSM/GPRS das Modulationsverfahren GMSK mit einem bit Information pro Kanalzugriff, während bei $\rm MCS–5$, ... , $\rm MCS–9$ eine achtstufige Phasenmodulation (8–PSK) benutzt wird und damit drei  bit pro Symbol übertragen werden.
 
*Je kleiner die Coderate, desto größer ist die zugesetzte Redundanz und damit die Datensicherheit. Insbesondere zwischen $\rm MCS–4$ $(R_{\rm C} = 1)$ und $\rm MCS–5$ $(R_{\rm C} = 0.37)$ nimmt die Coderate wegen der günstigeren Modulationsart trotz höherer Netto–Datenrate signifikant ab (letzte Spalte).
 
*Der aufwändigste Modus $\rm MCS–9$ bietet gemäß der Tabelle eine Datenrate von $59.2 \  \rm kbit/s$ und erlaubt theoretisch die gleichzeitige Belegung von acht Zeitschlitzen, was eine maximale Netto–Datenrate von  $473.6 \  \rm kbit/s$ bedeuten würde. Allerdings ist dieser Modus (mit $R_{\rm C} = 1$) nur bei extrem guten Bedingungen anwendbar und acht Zeitschlitze stehen auch nur selten zur Verfügung.
 
*Mit $\rm MCS–8$ und sieben Zeitschlitzen kann man immerhin schon  $380.8 \  \rm kbit/s$ erreichen und ist damit in der Größenordnung von '''Universal Mobile Telecommunications System''' (UMTS), dem bekanntesten Standard der dritten Mobilfunkgeneration, der derzeit  $384 \  \rm kbit/s$ anbietet.
 
*EDGE verwendet die gleichen Frequenzen wie GSM, weshalb diese Technik besonders für Betreiber mit bestehender GSM–Infrastruktur interessant ist, die im Jahr 2000 keine der teueren UMTS–Lizenzen erworben haben und trotzdem eine ausreichend hohe Datenrate anbieten wollen.
 
  
 +
The UMTS system is described in detail in the following fourth main chapter.
  
Das System UMTS wird im nachfolgenden vierten Hauptkapitel eingehend beschrieben.
 
  
 
   
 
   
==Aufgabe zum Kapitel==  
+
==Exercise for the chapter==  
 
<br>  
 
<br>  
[[Aufgaben:Aufgabe_3.8:_General_Packet_Radio_Service|Aufgabe 3.8: General Packet Radio Service]]
+
[[Aufgaben:Exercise_3.8:_General_Packet_Radio_Service|Exercise 3.8: General Packet Radio Service]]
==Quellenverzeichnis==
+
==References==
 
<references />
 
<references />
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:14, 20 February 2023


The different phases of the GSM standardization


GSM was originally designed and developed as a pan-European mobile communications network,  primarily for telephone calls and fax.  Data transmission at a constant low data rate was secondary.  The GSM standard was further developed in  »various phases«  after its presentation.  The  $\rm GSM$  system described so far in the third main chapter is limited to the first two phases.

⇒   The  »phase 1«  included only basic teleservices and a few additional services that could be offered on a mandatory basis by all network operators at that time when GSM was launched in 1991.

⇒   The standardization of the  »phase 2«  in the years from 1995 to 1997 already included the first further developments of the GSM standard.  As a result,  the additional services known from  $\text{ISDN}$  were also gradually made available for GSM and supplemented by some new features,  such as  "call waiting"  or  "hold".

⇒   In the years 1997-2000,  new data services with higher data rates were developed,  which are allocated to the  »phase 2+«.  These new data services include:

  1.   $\text{High Speed Circuit-Switched Data}$  $\rm (HSCSD)$,
  2.   $\text{General Packet Radio Service}$  $\rm (GPRS)$,
  3.   $\text{Enhanced Data Rates for GSM Evolution}$  $\rm (EDGE)$.


Note:   Please do not confuse the terms  "phase"  and  "generation":

  • GSM is a second generation  $\rm (2G)$  mobile communications system,  independent of the standardization phase.
  • The third generation  $\rm (3G)$  includes  $\text{UMTS}$.  This standard enabled significantly higher data transmission rates than were possible with GSM.
  • "Phase 2+"  systems are in terms of performance between  $\rm 2G$  and  $\rm 2G$.  That is why we speak of  $\rm 2.5G$.  The innovations of the  "phase 2+"  affect almost all aspects of GSM,  from  "radio transmission"  to  "call control".



High Speed Circuit–Switched Data (HSCSD)


The GSM data transmission standard  »high speed circuit-switched data«  $\rm (HSCSD)$,  introduced in 1999,  allowed the user data rate per connection to be increased from  $9.6 \ \rm kbit/s$  to  $14.4 \ \rm kbit/s$  when transmission conditions permitted.

  • By bundling several adjacent time slots,  the data rate could be increased even further.
  • The data rate depends on how many channels the network operator provides for bundling or how many channels the HSCSD cell phone can process.


The graphic explains the principle of bundling multiple timeslots:

Bundling of multiple time slots in HSCSD
  1. Each of the eight physical channels  $($time slots$)$  in a frame provides  $14.4 \ \rm kbit/s$  for data communication.  HSCSD enables channel bundling by combining multiple time slots,  as is also used in ISDN.  This is referred to as  "multi-slot capability".
  2. Connecting all eight channels together would thus result in  $\rm 115.2 \ kbit/s$.  But since the connection between the base station controller  $\rm (BSC)$  and the mobile switching center  $\rm (MSC)$  is limited to  $64 \ \rm kbit/s$,  one is limited to bundling four time slots,  resulting in a maximum transmission rate of  $57.6 \ \rm kbit/s$ .
  3. An advantage of HSCSD technology over packet-switched GPRS  $($next section$)$  is the circuit–switched data transmission. This is particularly advantageous for applications with uniform bandwidth,  since here the channel does not have to be shared with anyone. Examples include video and image transmission.
  4. However,  the higher transmission costs due to the occupancy of multiple channels are disadvantageous.  These channels are therefore no longer available to other users.  So in a radio cell with high channel utilization,  it can happen that the bundling of multiple channels is prevented by the network operator.


General Packet Radio Service (GPRS)


With the GSM extension  »general packet radio service«  $\rm (GPRS)$,  packet-switched data transmission was made possible for the first time in 2000.

  • GPRS supports a large number of protocols  $($Internet Protocol,  X.25,  Datex-P, etc.$)$  and allows mobile subscribers to communicate with external data networks  $($the internet or internal company intranets$)$.
  • GPRS was an important intermediate step in the evolution of cellular mobile networks towards third generation and towards the mobile internet.


A GPRS user benefits from shorter access times and the higher data rate  $($to  $21.4 \ \rm kbit/s)$  compared

GPRS system architecture
  • to conventional GSM  $(9.6 \ \rm kbit/s)$ 
  • and HSCSD  $(14.4 \ \rm kbit/s)$.


⇒   With GPRS,  the charges are not based on the connection duration,  but on the actual amount of data transferred.  Therefore,  a radio channel does not have to be permanently reserved for a user  $($as is the case with HSCSD$)$.

To introduce GPRS,  some modifications and additions to the GSM network were necessary,  as shown in the graph  "GPRS System Architecture"  from  [BVE99][1]:

  • Blue lines describe payload and signaling data.
  • The orange dotted connections denote signaling data.
  • $\rm Gb$,  $\rm Gc$,  $\rm Gd$,  ... indicate interfaces of GPRS.


⇒   To integrate GPRS into the existing GSM system architecture,  a new class of network nodes has to be added.


The additional GPRS components  $($highlighted by red circles in the diagram$)$  are explained here only in bullet points:

  1. The  »GPRS Support Nodes«  $\rm (GSN)$  are responsible for the transmission and traffic routing of data packets between the mobile stations and the external packet-switched data networks.  Here,  a distinction is made between SGSN and GGSN,  which communicate with each other via an IP-based GPRS backbone network.

  2. The  »Serving GPRS Support Node«  $\rm (SGSN)$  is responsible for mobility management and performs a similar function for packet data services as the  »Mobile Switching Center«  $\rm (MSC)$  does for connection-oriented speech signals.

  3. The  »Gateway GPRS Support Node«  $\rm (GGSN)$  is the interface to foreign packet-oriented data networks.  It converts the GPRS packets coming from the SGSN into the appropriate protocol  $($IP,  X.25,  ...$)$  and sends them out to the  »Packet Data Network«  $\rm (PDN)$.


GPRS air interface


When a GPRS cell phone is switched on,  it first performs the  "cell selection"  procedure by searching for a frequency channel with GPRS data. 

If such a channel has been found,  then depending on the cell phone class,  the cell phone must be manually set to GPRS services or it can automatically and dynamically switch between GPRS and GSM.  A distinction is made between:

  • Class  $\rm A$  devices can handle GPRS data services and GSM transmission services simultaneously;  channel resources are monitored in parallel in a packet-switched and circuit-switched manner.
  • In class  $\rm B$  the signaling channels of GSM and GPRS are monitored simultaneously as long as no service is switched through.  However,  parallel GSM/GPRS operation is not possible.
  • In class  $\rm C$  the subscriber must decide beforehand whether to use the mobile for GSM or GPRS,  since signaling channels can no longer be monitored simultaneously.


⇒   To be able to switch the GSM radio interface to packet-oriented GPRS operation,  the logical channels had to be extended.  Logical GPRS channels can be recognized by a preceding  "$\rm P$",  which indicates the packet-oriented operating mode.  Almost for all logical GSM channels there is the corresponding GPRS equivalent:

  • The  "Packet Data Traffic Channel"  $\rm (PDTCH)$  is used in GPRS as  »traffic channel«  for user data transfer.  The corresponding GSM channel is called  $\rm TCH$.
  • The  »signaling channels«  are divided as in GSM into
  1.   the  "Packet Broadcast Control Channel"  $\rm (PBCCH)$, 
  2.   the  "'Packet Common Control Channel"  $\rm (PCCCH)$, 
  3.   the  "Packet Dedicated Control Channel"  $\rm (PDCCH)$.


⇒   GPRS allows subscribers to exchange data with public data networks and uses  $($like GSM$)$  GMSK modulation and the FDMA/TDMA combination with eight time slots per TDMA frame.  The differences are as follows:

  • In the GSM standard,  each active mobile station is assigned exactly one time slot of a TDMA frame.  This physical channel is reserved for the mobile station for the entire duration of a call,  both in uplink and downlink.
  • In GPRS,  up to eight time slots can be combined for rate enhancement.  In addition,  uplink and downlink are allocated separately.  The physical channels are reserved only for the duration of the transmission of data packets and then released again.


GPRS channel coding

In contrast to conventional GSM   $($with data rate  $9.6 \ \rm kbit/s)$   four possible  "coding schemes"  are defined for GPRS,  which can be used depending on the reception quality:

  • Coding scheme 1  $\text{(CS – 1})$  with  $9.05\ \rm kbit/s$  $($181 bits per 20 ms$)$,
  • Coding scheme 2  $\text{(CS – 2})$  with  $13.4\ \rm kbit/s$  $($268 bits per 20 ms$)$,
  • Coding scheme 3  $\text{(CS – 3})$  with  $15.6\ \rm kbit/s$  $($312 bits per 20 ms$)$,
  • Coding scheme 4  $\text{(CS – 4})$  with  $21.4\ \rm kbit/s$  $($428 bits per 20 ms$)$.


The smallest possible data rate is thus   $9.05\ \rm kbit/s$  $($only one time slot$)$,  the maximum  $171.2\ \rm kbit/s$  $($eight time slots$)$.  However,  this theoretical speed was not achieved in practice,  since most GPRS phones only support in 2007 a maximum net data rate of  $13.4\ \rm kbit/s$  $\text{(CS – 2})$. The graphic refer to this combination:

Channel encoding in GPRS
  1.   The  $268$  information bits are first supplemented by six precoded bits of the  "Uplink State Flag"  $\rm (USF)$,  $16$  parity bits of the  "Block Check Sequence"  $\rm (BCS)$  and four tail bits  $(0000)$.  The latter are necessary for the termination of the convolutional codes.

  2.   For channel coding,  the rate  $1/2$  convolutional code known from GSM is used.  By this the  $294$  bits  are doubled to  $588$  bits and thus sufficiently protected against transmission errors.

  3.   $132$  of these  $588$  bits were punctured,  so that finally a code word of length  $456$  bits results   $($bit rate  $22.8 \ \rm kbit/s)$.  This gives a resulting code rate  $($from convolutional encoders including puncturing$)$  of  $294/456 ≈ 65\%$.

  4.   After channel coding,  the code words are fed to a block interleaver of depth  $4$.  The interleaving scheme is identical for all four coding schemes.


Enhanced Data Rates for GSM Evolution


The last GSM extension  »Enhanced data rates for GSM evolution«  $\rm (EDGE)$  with the aim to increase the data transmission rate in GSM networks uses beside  "Gaussian Minimum Shift Keying"  $\rm (GMSK)$  as additional modulation method  "eight-level phase shift keying"  $\text{(8-PSK)}$:

  • Then,  there are eight different symbols  $($with GMSK only two$)$,  distinguished by different phase positions at multiples of  $45^\circ$. 
  • This means:  Three data bits can be transmitted with each symbol,  increasing the data rate by a factor of  $3$  compared to GPRS.


With this definition:

  • $\text{HSCSD}$  becomes  "Enhanced Circuit Switched Data"  $\text{(E-CSD)}$  and


The graph shows the  "normal burst"  of  "EDGE"  resp.  "E-GPRS".  One can see the following differences to the  "GSM Normal Burst":

Normal Burst of  "EDGE"  and  "E-GPRS"
  1.   The  EDGE normal burst  consists of  $468.75$  bits instead of  $156.25$  bits in GSM,  from which the  tripling of the data rate can be seen.

  2.   As with GSM,  there are two  "stealing flags".  Tailbits,  training sequence and  guard period are each tripled.  This leaves  $57 \cdot 3 + 2 = 173$  bits for the data field.

  3.   Thus,  $346$  bits of the rate  $1/2$  channel encoded data are transmitted in E-GPRS in one  "Normal Burst"  per  $576.9\ \rm µ s$,  which corresponds to a net data rate of  $\approx 60 \ \rm kbit/s$ .


Modulation and Coding Schemes for E–GPRS

In E-GPRS, there are used nine operator-selectable  "Modulation and Coding Schemes"  $\rm (MCS)$  depending on the current modulation and channel coding.  The table shows the possible schemes in E-GPRS.  From this it can be seen:

Table of  "Modulation and Coding Schemes"  in E-GPRS
  1.   Like GSM/GPRS,  the first four schemes use the GMSK modulation with one bit of information per channel use,  while  "8-PSK"  is used in  MCS-5, ... ,  MCS-9,  and thus three bits per symbol are transmitted.
  2.   The smaller the code rate,  the greater the added redundancy and thus the data security.  In particular,  between  MCS-4  $(R_{\rm C} = 1)$  and  MCS-5  $(R_{\rm C} = 0.37)$  the code rate decreases significantly due to the more favorable modulation mode despite the higher net data rate.
  3.   The most elaborate mode  $($MCS-9$)$  offers a data rate of  $59.2\ \rm kbit/s$  and allows the simultaneous occupation of eight time slots,  which would mean a maximum net data rate of  $473.6\ \rm kbit/s$.  However,  this mode  $($with $R_{\rm C} = 1)$  is only applicable under extremely good conditions.
  4.   With  MCS-8  and seven time slots you can already reach  $380.8 \ \rm kbit/s$  and you are thus in the range of the 3G mobile radio standard  $\rm UMTS$,  which currently offers  $384 \ \rm kbit/s$.
  5.   EDGE uses the same frequencies as GSM,  which is why this technology was particularly interesting for operators with existing GSM infrastructure who did not acquire any of the more expensive UMTS licenses and still wanted to offer a sufficiently high data rate.


The UMTS system is described in detail in the following fourth main chapter.


Exercise for the chapter


Exercise 3.8: General Packet Radio Service

References

  1. Bettstetter, C.; Vögel, H.J.; Eberspächer, J.:  GSM Phase 2+ General Packet Radio Service GPRS:  Architecture, Protocols,  and Air Interface.  In: IEEE Communications Surveys & Tutorials, Vol. 2 (1999) No. 3, pp. 2-14.