Difference between revisions of "Aufgaben:Exercise 4.2: Mismatched Line"

From LNTwww
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige Ergebnisse der Leitungstheorie
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory
 
}}
 
}}
  
[[File:P_ID1799__LZI_A_4_2.png|right|Nachrichtenleitung mit Beschaltung]]
+
[[File:P_ID1799__LZI_A_4_2.png|right|frame|Transmission line with wiring]]
Ein Übertragungssystem belege den Frequenzbereich von $f_{\rm U} = 10 \ \rm MHz$ bis $f_{\rm O} = 400 \ \rm MHz$. Die verwendete Übertragungsleitung besitze zudem einen konstanten Wellenwiderstand $Z_{\rm W} = 100 \ \rm \Omega$ (reell), was nicht ganz der Realität entspricht, da der Wellenwiderstand meist mit der Frequenz leicht abnimmt und oft auch noch ein (meist kleinerer) Imaginärteil zu berücksichtigen ist.
+
A transmission system occupies the range from  $f_{\rm U} = 10 \ \rm MHz$  to  $f_{\rm O} = 40 \ \rm MHz$.  
  
Die Leitung wird mit einer Spannungsquelle mit dem Innenwiderstand $R_{\rm 1} = 100 \ \rm \Omega$ gespeist und ist mit dem Widerstand $R_{\rm 2}$ abgeschlossen. Der Eingangswiderstand der Leitung ergibt sich zu
+
The transmission line used has a constant wave impedance   $Z_{\rm W} = 100 \ \rm \Omega$  (real),  which does not quite correspond to reality,  since the wave impedance usually decreases slightly with frequency and often an imaginary part  (usually smaller)  must also be taken into account.
$$Z_{\rm E}(f)  =  Z_{\rm W}\cdot \frac {R_2 + Z_{\rm W} \cdot {\rm tanh}(\gamma(f) \cdot l)}
+
 
 +
The line is supplied by a voltage source with internal resistance  $R_{\rm 1} = 100 \ \rm \Omega$  and is terminated by resistor  $R_{\rm 2}$.  The input impedance  (German:  "Eingangswiderstand"   ⇒   subscript  "E")  of the line is given by
 +
:$$Z_{\rm E}(f)  =  Z_{\rm W}\cdot \frac {R_2 + Z_{\rm W} \cdot {\rm tanh}(\gamma(f) \cdot l)}
 
  {Z_{\rm W}+ R_2 \cdot {\rm tanh}(\gamma(f) \cdot l)}
 
  {Z_{\rm W}+ R_2 \cdot {\rm tanh}(\gamma(f) \cdot l)}
  \hspace{0.05cm},\hspace{0.3cm}{\rm mit}\hspace{0.3cm}{\rm tanh}(x)
+
  \hspace{0.05cm},\hspace{0.3cm}{\rm tanh}(x)
 
  = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm
 
  = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm
 
  e}^{-x}}\hspace{0.05cm}, \hspace{0.3cm}x \in {\cal C}
 
  e}^{-x}}\hspace{0.05cm}, \hspace{0.3cm}x \in {\cal C}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Das Übertragungsmaß soll – wieder sehr vereinfacht – durch eine reelle Funktion angenähert werden:
 
$$\frac {\gamma(f)}{1\,{\rm Np/km}}  =  \frac {\alpha(f)}{1\,{\rm Np/km}}  = \sqrt{f/f_{\rm O}} \hspace{0.05cm}, \hspace{0.3cm}f_{\rm O} =  40\,{\rm MHz}\hspace{0.05cm}.$$
 
  
''Hinweise:''
+
The complex propagation function should – again very simplified – approximated by a real function:
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Einige_Ergebnisse_der_Leitungstheorie|Einige Ergebnisse der Leitungstheorie]].
+
:$$\frac {\gamma(f)}{1\,{\rm Np/km}}  =  \frac {\alpha(f)}{1\,{\rm Np/km}}  = \sqrt{f/f_{\rm O}} \hspace{0.05cm}, \hspace{0.3cm}f_{\rm O} =  40\,{\rm MHz}\hspace{0.05cm}.$$
*Insbesondere soll untersucht werden, ob es zu Reflexionen kommt.
+
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
 
 +
 
  
  
===Fragebogen===
+
 
 +
''Notes:''
 +
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory|Some Results from Line Transmission Theory]].
 +
* In particular,  it should be examined whether there are reflections.
 +
* To avoid confusion: 
 +
#$f_{\rm U}$  stands for  "lowest frequency"   ⇒   German:   "unterste Frequenz"   ⇒   subscript "U",
 +
#$f_{\rm O}$  stands for  "highest frequency"  ⇒   German:   "oberste Frequenz"   ⇒   subscript "O".
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für den Wellenwiderstand $Z_{\rm W}$ einer Leitung allgemein?
+
{Which statements are valid for the wave impedance &nbsp;$Z_{\rm W}$&nbsp; of a line in general?
 
|type="[]"}
 
|type="[]"}
- $Z_{\rm W}$  ist abhängig von der Leitungslänge.
+
- $Z_{\rm W}$&nbsp; depends on the line length.
+ $Z_{\rm W}$  kann frequenzabhängig sein.
+
+ $Z_{\rm W}$&nbsp; can be frequency dependent.
+ $Z_{\rm W}$  kann bei bestimmten Frequenzen komplexe Werte annehmen.
+
+ $Z_{\rm W}$&nbsp; can take on complex values at certain frequencies.
  
  
{Welche Aussagen gelten für die Beschaltung mit  $R_1 = R_2 = Z_{\rm W}$?
+
{Which statements are valid for the wiring with &nbsp;$R_1 = R_2 = Z_{\rm W}$?
 
|type="[]"}
 
|type="[]"}
+ Der Eingangswiderstand $Z_{\rm E}(f)$ ist gleich dem Wellenwiderstand.
+
+ The input impedance &nbsp;$Z_{\rm E}(f)$&nbsp; is equal to the wave impedance.
+ Der Eingangswiderstand $Z_{\rm E}(f)$ ist frequenzunabhängig.
+
+ The input impedance &nbsp;$Z_{\rm E}(f)$&nbsp; is frequency independent.
- Der Eingangswiderstand $Z_{\rm E}(f)$ hängt von der Leitungslänge ab.
+
- The input impedance &nbsp;$Z_{\rm E}(f)$&nbsp; depends on the line length.
+ $R_1 = R_2 =Z_{\rm W}$ kennzeichnet die bestmögliche Beschaltung.
+
+ $R_1 = R_2 =Z_{\rm W}$ indicates the best possible wiring.
  
  
{Bei welcher Leitungslänge $l$ unterscheiden sich $Z_{\rm E}$ und $Z_{\rm W}$ im '''Kurzschlussfall''' ($R_{\rm 2} = 0$) um weniger als $1\%$?
+
{At which line length &nbsp;$l = l_\text{min}$&nbsp; do &nbsp;$Z_{\rm E}$&nbsp; and &nbsp;$Z_{\rm W}$&nbsp; differ by less than&nbsp; $1\%$ in the&nbsp; '''short-circuit case''' &nbsp; $(R_{\rm 2} = 0)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$f_{\rm U} = 10\ {\rm MHz}\hspace{-0.1cm}:\ l_\text{min}\ =$  { 5.3 3% } $\ \rm km$
+
$f_{\rm U} = 10\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $  { 5.3 3% } $\ \rm km$
$f_{\rm O} = 40\ {\rm MHz}\hspace{-0.1cm}:\ l_\text{min}\ =$ { 2.65 3% } $\ \rm km$
+
$f_{\rm O} = 40\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $ { 2.65 3% } $\ \rm km$
  
  
{Bei welcher Leitungslänge $l$ unterscheiden sich $Z_{\rm E}$ von $Z_{\rm W}$ im '''Leerlauf''' ($R_2 &#8594; &#8734;$) um weniger als $1\%$?
+
{At what line length &nbsp;$l = l_\text{min}$&nbsp; do &nbsp;$Z_{\rm E}$&nbsp; differ from &nbsp;$Z_{\rm W}$&nbsp; in&nbsp; '''idle''' &nbsp; $(R_2 &#8594; &#8734;)$ by less than &nbsp;$1\%$?
 
|type="{}"}
 
|type="{}"}
$f_{\rm U} = 10\ {\rm MHz}\hspace{-0.1cm}:\ l_\text{min}\ =$ { 5.3 3% } $\ \rm km$
+
$f_{\rm U} = 10\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $ { 5.3 3% } $\ \rm km$
$f_{\rm O} = 40\ {\rm MHz}\hspace{-0.1cm}:\ l_\text{min}\ =$ { 2.65 3% } $\ \rm km$
+
$f_{\rm O} = 40\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $ { 2.65 3% } $\ \rm km$
  
  
Line 55: Line 66:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Wellenwiderstand  $Z_{\rm W}$ ist definiert als der Quotient von Spannung und Strom der sich entlang der Leitung ausbreitenden Welle und ist unabhängig vom Ort. Deshalb ist $Z_{\rm W}$ auch unabhängig von der Leitungslänge $l$ und wird allein durch die Leitungsbeläge $R'$, $L'$, $G'$ und $C'$ bestimmt.
+
'''(1)'''&nbsp; <u>Solutions 2 and 3</u> are correct:
 +
*The wave impedance&nbsp; $Z_{\rm W}$&nbsp; is defined as the quotient of voltage and current of the wave propagating along the line.
 +
*The wave impedance &nbsp; $Z_{\rm W}$&nbsp; is independent of the location.  
 +
*Therefore,&nbsp; $Z_{\rm W}$&nbsp; is also independent of the line length&nbsp; $l$&nbsp; and is determined solely by the primary line parameters $R\hspace{0.05cm}'$, $L\hspace{0.05cm}'$, $G\hspace{0.08cm}'$ and $C\hspace{0.08cm}'$.
 +
*The following equation given in the theory section
 +
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}'}{G\hspace{0.08cm}' + {\rm j}  \cdot \omega  C\hspace{0.08cm}'}}
 +
\hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}$$
 +
makes it clear that the wave impedance does depend on the frequency and is generally also complex-valued.
 +
 +
It should be noted that wave impedance is not a resistor in the sense of a user:
 +
*The wave impedance does not characterize the line as a lossy element.
 +
*Even a lossless line has a wave impedance.
 +
*Similarly, a wave impedance is always defined in the propagation of an electromagnetic wave.
  
Die im Theorieteil angegebene Gleichung
 
$$Z_{\rm W}(f)  =  \sqrt{\frac {R' + {\rm j}  \cdot \omega  L'}{G' + {\rm j}  \cdot \omega  C'}}
 
\hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}$$
 
macht deutlich, dass der Wellenwiderstand durchaus von der Frequenz abhängt und im allgemeinen auch komplexwertig ist. Richtig sind also  die <u>Lösungsvorschläge 2 und 3</u>.
 
  
Besonders anzumerken ist, dass der Wellenwiderstand keinen Widerstand im Sinne eines Verbrauchers darstellt:
 
*Der Wellenwiderstand charakterisiert die Leitung nicht als verlustbehaftetes Element.
 
*Auch eine verlustlose Leitung besitzt einen Wellenwiderstand und ebenso ist bei der Ausbreitung einer elektromagnetischen Welle stets ein Wellenwiderstand definiert.
 
  
  
'''(2)'''&nbsp; Mit dem Abschlusswiderstand $Z_{\rm 2}(f) = Z_{\rm W}(f)$ ist auch der an den Leitungsanfang transformierte Widerstandswert gleich dem Wellenwiderstand, und zwar unabhängig von der Leitungslänge:
+
'''(2)'''&nbsp; With the terminating resistor&nbsp; $Z_{\rm 2}(f) = Z_{\rm W}(f)$&nbsp; the resistance value transformed to the beginning of the line is also equal to the characteristic impedance, independent of the line length:
$$Z_{\rm E}(f)  =  Z_{\rm W}(f)\cdot \frac {Z_{\rm 2}(f) + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}
+
:$$Z_{\rm E}(f)  =  Z_{\rm W}(f)\cdot \frac {Z_{\rm 2}(f) + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}
 
  {Z_{\rm W}(f)+ Z_{\rm 2}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}=
 
  {Z_{\rm W}(f)+ Z_{\rm 2}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}=
 
   Z_{\rm W}(f)\cdot \frac {Z_{\rm W}(f) + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}
 
   Z_{\rm W}(f)\cdot \frac {Z_{\rm W}(f) + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}
 
  {Z_{\rm W}(f)+ Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}=
 
  {Z_{\rm W}(f)+ Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}=
 
  Z_{\rm W}(f) \hspace{0.05cm}.$$
 
  Z_{\rm W}(f) \hspace{0.05cm}.$$
Richtig sind die <u>Lösungsvorschläge 1, 2 und 4</u>:
+
<u>Solutions 1, 2 and 4</u> are correct:
*Da in der Aufgabenstellung $Z_{\rm W}(f) = Z_{\rm W}$ als frequenzunabhängig vorausgesetzt wurde, ist hier auch der Eingangswiderstand g $Z_{\rm E}(f) = Z_{\rm E}$frequenzunabhängig.  
+
*Since&nbsp; $Z_{\rm W}(f) = Z_{\rm W}$&nbsp; was assumed to be frequency-independent in the exercise, the input impedance&nbsp;  $Z_{\rm E}(f) = Z_{\rm E}$&nbsp; is also frequency-independent.  
*Dagegen können bei frequenzabhängigem Wellenwiderstand mit einem reellen Abschluss Reflexionen nicht für alle Frequenzen vermieden werden.  
+
*In contrast, with frequency-dependent wave impedance with real termination, reflections cannot be avoided for all frequencies.
*Die Beschaltung $R_1 = R_2 =Z_{\rm W}$  &nbsp; &#8658; &nbsp; $R_1  =Z_{\rm E}$ ist natürlich stets anzustreben, da dann von der Quelle die maximale Leistung abgegeben wird.  
+
*The wiring&nbsp; $R_1 = R_2 =Z_{\rm W}$  &nbsp; &#8658; &nbsp; $R_1  =Z_{\rm E}$&nbsp; is to be aimed at, since then the maximum power is delivered by the source.
  
  
'''(3)'''&nbsp; Mit dem Abschlusswiderstand $R_{\rm 2} = 0$ &nbsp; &#8658; &nbsp; Kurzschluss folgt aus der angegebenen Gleichung mit reellem $x = \gamma (f) \cdot l$:
+
 
$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = {\rm tanh}(x)
+
 
 +
'''(3)'''&nbsp; With the terminating resistor&nbsp; $R_{\rm 2} = 0$ &nbsp; &#8658; &nbsp; short circuit follows from the given equation with real&nbsp; $x = \gamma (f) \cdot l$:
 +
:$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = {\rm tanh}(x)
 
  = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm
 
  = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm
 
  e}^{-x}}= \frac {{\rm e}^{2x}-1}{{\rm e}^{2x}+1}.$$
 
  e}^{-x}}= \frac {{\rm e}^{2x}-1}{{\rm e}^{2x}+1}.$$
Insbesondere gilt:
+
In particular:
$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = 0.99 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
:$${Z_{\rm E}(f)}/{Z_{\rm W}} = 0.99 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  {\rm e}^{2x} = 199\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  {\rm e}^{2x} = 199\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  x ={1}/{2}\cdot {\rm ln}\hspace{0.1cm}(199) \approx 2.65\,{\rm Np}\hspace{0.05cm}.$$
 
  x ={1}/{2}\cdot {\rm ln}\hspace{0.1cm}(199) \approx 2.65\,{\rm Np}\hspace{0.05cm}.$$
$$f_{\rm U}  =  10\,{\rm MHz:}\hspace{0.2cm}\alpha(f_{\rm U})= 0.5\,{\rm Np/km}\hspace{0.3cm}
+
:$$f_{\rm U}  =  10\,\text {MHz:}\hspace{0.2cm}\alpha(f_{\rm U})= 0.5\,{\rm Np/km}\hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm}l_{\rm min}= \frac{2.65\,{\rm Np}}{0.5\,{\rm
 
  \Rightarrow \hspace{0.3cm}l_{\rm min}= \frac{2.65\,{\rm Np}}{0.5\,{\rm
 
  Np/km}}\hspace{0.15cm}\underline{= 5.3\,{\rm km}} \hspace{0.05cm},$$
 
  Np/km}}\hspace{0.15cm}\underline{= 5.3\,{\rm km}} \hspace{0.05cm},$$
$$ f_{\rm O}  =  40\,{\rm MHz:}\hspace{0.2cm}\alpha(f_{\rm U})= 1.0\,{\rm Np/km}\hspace{0.3cm}
+
:$$ f_{\rm O}  =  40\,\text {MHz:}\hspace{0.2cm}\alpha(f_{\rm U})= 1.0\,{\rm Np/km}\hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm}l_{\rm min}= \frac{2.65\,{\rm Np}}{1.0\,{\rm
 
  \Rightarrow \hspace{0.3cm}l_{\rm min}= \frac{2.65\,{\rm Np}}{1.0\,{\rm
 
  Np/km}}\hspace{0.15cm}\underline{= 2.65\,{\rm km}} \hspace{0.05cm}.$$
 
  Np/km}}\hspace{0.15cm}\underline{= 2.65\,{\rm km}} \hspace{0.05cm}.$$
Das heißt:  
+
That means:
*Bei der Frequenz $f_{\rm O} = 40\ {\rm MHz}$ genügt bereits die Leitungslänge $l= 2.65 \ \rm km$, um Reflexionen weitgehend zu unterdrücken.
+
*At the frequency&nbsp; $f_{\rm O} = 40\ {\rm MHz}$&nbsp;, the line length&nbsp; $l= 2.65 \ \rm km$ is already sufficient to largely suppress reflections.
*Bei der niedrigeren Frequenz $f_{\rm U} = 10\ {\rm MHz}$ ist wegen des geringeren Dämpfungsmaßes dafür eine größere Kabellänge erforderlich.
+
*At a lower frequency&nbsp; $f_{\rm U} = 10\ {\rm MHz}$&nbsp;, a longer cable length is required due to the lower attenuation function.
*Diese Aussagen beziehen sich natürlich nur auf das Vermeiden von Reflexionen. Insgesamt ist natürlich die niedrigere Signalfrequenz günstiger als die höhere.
+
*Of course, these statements only refer to the avoidance of reflections.  
 +
*Overall, of course, the lower signal frequency is more favorable than the higher one.
 +
 
 +
 
  
'''(4)'''&nbsp; In gleicher Weise erhält man für $R_2 &#8594; &#8734;$ &nbsp; &#8658; &nbsp; Leerlauf die Gleichung
+
'''(4)'''&nbsp; Similarly, one obtains for&nbsp; $R_2 &#8594; &#8734;$ &nbsp; &#8658; &nbsp; idle:
$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = \frac{1}{{\rm tanh}(x)}
+
:$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = \frac{1}{{\rm tanh}(x)}
 
  =  \frac {{\rm e}^{2x}+1}{{\rm e}^{2x}-1}\hspace{0.05cm}.$$
 
  =  \frac {{\rm e}^{2x}+1}{{\rm e}^{2x}-1}\hspace{0.05cm}.$$
Im Gegensatz zum Kurzschluss&ndash;Fall ergibt sich für den Quotienten $Z_{\rm E}/Z_{\rm W}$ nun stets ein Wert größer 1:
+
In contrast to the short-circuit case, this now results in the quotient&nbsp; $Z_{\rm E}/Z_{\rm W} > 1$:
$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = 1.01 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
:$${Z_{\rm E}(f)}/{Z_{\rm W}} = 1.01 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  {\rm e}^{2x} = 201\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  {\rm e}^{2x} = 201\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
  x =\frac{1}{2}\cdot{\rm ln}\hspace{0.1cm}(201) \approx 2.65\,{\rm Np}\hspace{0.05cm}.$$
+
  x ={1}/{2}\cdot{\rm ln}\hspace{0.1cm}(201) \approx 2.65\,{\rm Np}\hspace{0.05cm}.$$
Näherungsweise erhält man hier das gleiche Ergebnis wie bei Teilaufgabe (3):  
+
Approximately, the same result is obtained here as in subtask&nbsp; '''(3)''':  
*Bei der Frequenz $f_{\rm O} = 40\ {\rm MHz}$ genügt bereits die Leitungslänge $l= 2.65 \ \rm km$, um Reflexionen weitgehend zu unterdrücken.
+
*At the frequency&nbsp; $f_{\rm O} = 40\ {\rm MHz}$&nbsp;, the line length&nbsp; $l= 2.65 \ \rm km$ is already sufficient to largely suppress reflections.
*Bei der niedrigeren Frequenz $f_{\rm U} = 10\ {\rm MHz}$ ist wegen des geringeren Dämpfungsmaßes dafür eine größere Kabellänge erforderlich.
+
*At a lower frequency&nbsp; $f_{\rm U} = 10\ {\rm MHz}$&nbsp;, a longer cable length is required due to the lower attenuation function.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 115: Line 136:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.1 Einige Ergebnisse der Leitungstheorie^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.1 Results of Line Transmission Theory^]]

Latest revision as of 17:24, 11 November 2021

Transmission line with wiring

A transmission system occupies the range from  $f_{\rm U} = 10 \ \rm MHz$  to  $f_{\rm O} = 40 \ \rm MHz$.

The transmission line used has a constant wave impedance   $Z_{\rm W} = 100 \ \rm \Omega$  (real),  which does not quite correspond to reality,  since the wave impedance usually decreases slightly with frequency and often an imaginary part  (usually smaller)  must also be taken into account.

The line is supplied by a voltage source with internal resistance  $R_{\rm 1} = 100 \ \rm \Omega$  and is terminated by resistor  $R_{\rm 2}$.  The input impedance  (German:  "Eingangswiderstand"   ⇒   subscript  "E")  of the line is given by

$$Z_{\rm E}(f) = Z_{\rm W}\cdot \frac {R_2 + Z_{\rm W} \cdot {\rm tanh}(\gamma(f) \cdot l)} {Z_{\rm W}+ R_2 \cdot {\rm tanh}(\gamma(f) \cdot l)} \hspace{0.05cm},\hspace{0.3cm}{\rm tanh}(x) = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}\hspace{0.05cm}, \hspace{0.3cm}x \in {\cal C} \hspace{0.05cm}.$$

The complex propagation function should – again very simplified – approximated by a real function:

$$\frac {\gamma(f)}{1\,{\rm Np/km}} = \frac {\alpha(f)}{1\,{\rm Np/km}} = \sqrt{f/f_{\rm O}} \hspace{0.05cm}, \hspace{0.3cm}f_{\rm O} = 40\,{\rm MHz}\hspace{0.05cm}.$$




Notes:

  1. $f_{\rm U}$  stands for  "lowest frequency"   ⇒   German:   "unterste Frequenz"   ⇒   subscript "U",
  2. $f_{\rm O}$  stands for  "highest frequency"  ⇒   German:   "oberste Frequenz"   ⇒   subscript "O".


Questions

1

Which statements are valid for the wave impedance  $Z_{\rm W}$  of a line in general?

$Z_{\rm W}$  depends on the line length.
$Z_{\rm W}$  can be frequency dependent.
$Z_{\rm W}$  can take on complex values at certain frequencies.

2

Which statements are valid for the wiring with  $R_1 = R_2 = Z_{\rm W}$?

The input impedance  $Z_{\rm E}(f)$  is equal to the wave impedance.
The input impedance  $Z_{\rm E}(f)$  is frequency independent.
The input impedance  $Z_{\rm E}(f)$  depends on the line length.
$R_1 = R_2 =Z_{\rm W}$ indicates the best possible wiring.

3

At which line length  $l = l_\text{min}$  do  $Z_{\rm E}$  and  $Z_{\rm W}$  differ by less than  $1\%$ in the  short-circuit case   $(R_{\rm 2} = 0)$ ?

$f_{\rm U} = 10\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $

$\ \rm km$
$f_{\rm O} = 40\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $

$\ \rm km$

4

At what line length  $l = l_\text{min}$  do  $Z_{\rm E}$  differ from  $Z_{\rm W}$  in  idle   $(R_2 → ∞)$ by less than  $1\%$?

$f_{\rm U} = 10\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $

$\ \rm km$
$f_{\rm O} = 40\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $

$\ \rm km$


Solution

(1)  Solutions 2 and 3 are correct:

  • The wave impedance  $Z_{\rm W}$  is defined as the quotient of voltage and current of the wave propagating along the line.
  • The wave impedance   $Z_{\rm W}$  is independent of the location.
  • Therefore,  $Z_{\rm W}$  is also independent of the line length  $l$  and is determined solely by the primary line parameters $R\hspace{0.05cm}'$, $L\hspace{0.05cm}'$, $G\hspace{0.08cm}'$ and $C\hspace{0.08cm}'$.
  • The following equation given in the theory section
$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}'}{G\hspace{0.08cm}' + {\rm j} \cdot \omega C\hspace{0.08cm}'}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}$$

makes it clear that the wave impedance does depend on the frequency and is generally also complex-valued.

It should be noted that wave impedance is not a resistor in the sense of a user:

  • The wave impedance does not characterize the line as a lossy element.
  • Even a lossless line has a wave impedance.
  • Similarly, a wave impedance is always defined in the propagation of an electromagnetic wave.



(2)  With the terminating resistor  $Z_{\rm 2}(f) = Z_{\rm W}(f)$  the resistance value transformed to the beginning of the line is also equal to the characteristic impedance, independent of the line length:

$$Z_{\rm E}(f) = Z_{\rm W}(f)\cdot \frac {Z_{\rm 2}(f) + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)} {Z_{\rm W}(f)+ Z_{\rm 2}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}= Z_{\rm W}(f)\cdot \frac {Z_{\rm W}(f) + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)} {Z_{\rm W}(f)+ Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}= Z_{\rm W}(f) \hspace{0.05cm}.$$

Solutions 1, 2 and 4 are correct:

  • Since  $Z_{\rm W}(f) = Z_{\rm W}$  was assumed to be frequency-independent in the exercise, the input impedance  $Z_{\rm E}(f) = Z_{\rm E}$  is also frequency-independent.
  • In contrast, with frequency-dependent wave impedance with real termination, reflections cannot be avoided for all frequencies.
  • The wiring  $R_1 = R_2 =Z_{\rm W}$   ⇒   $R_1 =Z_{\rm E}$  is to be aimed at, since then the maximum power is delivered by the source.



(3)  With the terminating resistor  $R_{\rm 2} = 0$   ⇒   short circuit follows from the given equation with real  $x = \gamma (f) \cdot l$:

$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = {\rm tanh}(x) = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}= \frac {{\rm e}^{2x}-1}{{\rm e}^{2x}+1}.$$

In particular:

$${Z_{\rm E}(f)}/{Z_{\rm W}} = 0.99 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm e}^{2x} = 199\hspace{0.3cm}\Rightarrow \hspace{0.3cm} x ={1}/{2}\cdot {\rm ln}\hspace{0.1cm}(199) \approx 2.65\,{\rm Np}\hspace{0.05cm}.$$
$$f_{\rm U} = 10\,\text {MHz:}\hspace{0.2cm}\alpha(f_{\rm U})= 0.5\,{\rm Np/km}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}l_{\rm min}= \frac{2.65\,{\rm Np}}{0.5\,{\rm Np/km}}\hspace{0.15cm}\underline{= 5.3\,{\rm km}} \hspace{0.05cm},$$
$$ f_{\rm O} = 40\,\text {MHz:}\hspace{0.2cm}\alpha(f_{\rm U})= 1.0\,{\rm Np/km}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}l_{\rm min}= \frac{2.65\,{\rm Np}}{1.0\,{\rm Np/km}}\hspace{0.15cm}\underline{= 2.65\,{\rm km}} \hspace{0.05cm}.$$

That means:

  • At the frequency  $f_{\rm O} = 40\ {\rm MHz}$ , the line length  $l= 2.65 \ \rm km$ is already sufficient to largely suppress reflections.
  • At a lower frequency  $f_{\rm U} = 10\ {\rm MHz}$ , a longer cable length is required due to the lower attenuation function.
  • Of course, these statements only refer to the avoidance of reflections.
  • Overall, of course, the lower signal frequency is more favorable than the higher one.


(4)  Similarly, one obtains for  $R_2 → ∞$   ⇒   idle:

$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = \frac{1}{{\rm tanh}(x)} = \frac {{\rm e}^{2x}+1}{{\rm e}^{2x}-1}\hspace{0.05cm}.$$

In contrast to the short-circuit case, this now results in the quotient  $Z_{\rm E}/Z_{\rm W} > 1$:

$${Z_{\rm E}(f)}/{Z_{\rm W}} = 1.01 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm e}^{2x} = 201\hspace{0.3cm}\Rightarrow \hspace{0.3cm} x ={1}/{2}\cdot{\rm ln}\hspace{0.1cm}(201) \approx 2.65\,{\rm Np}\hspace{0.05cm}.$$

Approximately, the same result is obtained here as in subtask  (3):

  • At the frequency  $f_{\rm O} = 40\ {\rm MHz}$ , the line length  $l= 2.65 \ \rm km$ is already sufficient to largely suppress reflections.
  • At a lower frequency  $f_{\rm U} = 10\ {\rm MHz}$ , a longer cable length is required due to the lower attenuation function.