Difference between revisions of "Aufgaben:Exercise 2.2Z: Distortion Power again"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(21 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Klassifizierung der Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions
 
}}
 
}}
  
[[File:LZI_Z_2_2_vers3.png|270px|right|frame|Zur Berechnung der Verzerrungsleistung ]]
+
[[File:LZI_Z_2_2_vers3.png|270px|right|frame|Concerning the computation of the distortion power]]
Am Eingang der betrachteten Funktionseinheit, die nicht näher spezifiziert wird, liegt das in der Grafik blau dargestellte periodische Signal $x(t)$ an. Dieses ist durch das Spektrum des dazugehörigen analytischen Signals gegeben:
+
At the input of the considered functional unit, which is not specified in more detail, there is the periodic signal $x(t)$  shown in blue in the graph. This is given by the spectrum of the corresponding analytical signal:
:$$X_+(f) = {1 \,\rm V}  \cdot {\rm \delta}(f- {2 \,\rm kHz})  + {0.2 \,\rm V} \cdot {\rm e}^{\rm j \cdot 90^{\circ} } \cdot \delta(f- {3 \,\rm kHz}).$$
+
:$$X_+(f) = {1 \,\rm V}  \cdot {\rm \delta}(f- {2 \,\rm kHz})  + {0.2 \,\rm V} \cdot {\rm e}^{\rm j \hspace{0.05cm}\cdot \hspace{0.05cm}90^{\circ} } \cdot \delta(f- {3 \,\rm kHz}).$$
  
Diese Spektralfunktion ergibt sich aus dem üblichen Spektrum $X(f)$, indem
+
This spectral function is obtained from the usual spectrum $X(f)$,  by
*alle Anteile bei negativen Frequenzen abgeschnitten, und
+
*truncating all components at negative frequencies,  and
*die Anteile bei den positiven Frequenzen verdoppelt werden.  
+
*doubling the components at positive frequencies.  
  
  
Weitere Angaben zum analytischen Signal und dessen Spektrum finden Sie im Kapitel [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion|Analytisches Signal und zugehörige Spektralfunktion]] des Buches „Signaldarstellung”.
+
For more details on the analytical signal and its spectrum, see the chapter  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]]  of the book "Signal Representation".
 
<br clear=all>
 
<br clear=all>
Das Spektrum des analytischen Signals am Ausgang der Funktionseinheit lautet:
+
The spectrum of the analytical signal at the output of the functional unit is:
:$$Y_+(f) = {1.1 \,\rm V}  \cdot {\rm \delta}(f- {2 \,\rm kHz})  + {0.25 \,\rm V} \cdot {\rm e}^{\rm j \cdot 60^{\circ} }
+
:$$Y_+(f) = {1.1 \,\rm V}  \cdot {\rm \delta}(f- {2 \,\rm kHz})  + {0.25 \,\rm V} \cdot {\rm e}^{\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 60^{\circ} }
  \cdot \delta(f- {3 \,\rm kHz})+ {0.05 \,\rm V} \cdot {\rm e}^{-\rm j \cdot 90^{\circ} } \cdot \delta(f- {5 \,\rm kHz}).$$
+
  \cdot \delta(f- {3 \,\rm kHz})+ {0.05 \,\rm V} \cdot {\rm e}^{-\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 90^{\circ} } \cdot \delta(f- {5 \,\rm kHz}).$$
  
Die untere Skizze zeigt das Differenzsignal $\varepsilon(t) = y(t) - x(t)$. Ein Maß für die im System entstandenen Verzerrungen ist die auf den Widerstand $R = 1 \ \rm \Omega$ bezogene &bdquo;Verzerrungsleistung&rdquo;.
+
The bottom sketch shows the difference signal&nbsp;$\varepsilon(t) = y(t) - x(t)$.&nbsp; A measure of the distortion created in the system is the "distortion power" referenced to the resistance&nbsp;$R = 1 \ \rm \Omega$&nbsp;.
 
:$$P_{\rm V}  = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{  T_{\rm 0}}
 
:$$P_{\rm V}  = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{  T_{\rm 0}}
 
  {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t.$$
 
  {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t.$$
  
Anzumerken ist, dass die Verzerrungsleistung auch im Spektralbereich  berechnet werden kann &ndash; und hier zudem einfacher.
+
It should be noted that the distortion power can also be calculated in the spectral domain &ndash; in fact, in a simpler way here.
  
In analoger Weise ist die Leistung $P_x$ des Eingangssignals $x(t)$ definiert. Als quantitatives Maß für die Stärke der Verzerrungen wird das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis angegeben, das meistens logarithmisch in dB dargestellt wird:
+
The power&nbsp;$P_x$&nbsp; of the input signal&nbsp;$x(t)$&nbsp; is defined in an analogous way.&nbsp; As a quantitative measure of the strength of the distortions the signal&ndash;to&ndash;distortion&ndash;power ratio is specified, which is usually expressed logarithmically (in dB):
 
:$$10 \cdot {\rm lg} \hspace{0.1cm}\rho_{\rm V} = 10 \cdot {\rm lg} \hspace{0.1cm}{ P_{x}}/{P_{\rm V}} \hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm}\rho_{\rm V} = 10 \cdot {\rm lg} \hspace{0.1cm}{ P_{x}}/{P_{\rm V}} \hspace{0.05cm}.$$
  
Line 31: Line 31:
  
  
''Hinweise:''  
+
 
*Die Aufgabe bezieht sich auf das Kapitel [[Lineare_zeitinvariante_Systeme/Klassifizierung_der_Verzerrungen|Klassifizierung der Verzerrungen]].
+
 
 +
 
 +
''Please note:''  
 +
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions|Classification of the Distortions]].
 
   
 
   
*Alle hier abgefragten Leistungen beziehen sich auf den Widerstand $R = 1 \ \rm \Omega$ und haben somit die Einheit ${\rm V}^2$
+
*All powers queried here refer to the resistance&nbsp;$R = 1 \ \rm \Omega$&nbsp; and thus have the unit&nbsp;${\rm V}^2$.
*Die Leistung eines (reellen) Signals $x(t)$ kann auch aus der Spektralfunktion $X(f)$ berechnet werden:
+
*The power of a (real) signal&nbsp;$x(t)$&nbsp; can also be computed using the spectral function&nbsp;$X(f)$&nbsp;:
 
:$$P_{x}  =\frac{1}{T_{\rm 0}} \cdot\int_{-\infty}^{  \infty}
 
:$$P_{x}  =\frac{1}{T_{\rm 0}} \cdot\int_{-\infty}^{  \infty}
 
  x^2(t)\hspace{0.1cm}{\rm d}t
 
  x^2(t)\hspace{0.1cm}{\rm d}t
Line 42: Line 45:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind bezüglich des Signals $x(t)$ zutreffend?
+
{Which statements are true regarding the signal&nbsp;$x(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Es ist $x(t) = 1 \ { \rm V} \cdot {\rm cos}(2\pi  \cdot  2 \ {\rm kHz}  \cdot  t )  + 0.2 \ { \rm V} \cdot {\rm cos}(2\pi  \cdot  3 \ {\rm kHz}  \cdot  t )$.
+
- It is &nbsp;$x(t) = 1 \ { \rm V} \cdot {\rm cos}(2\pi  \cdot  2 \ {\rm kHz}  \cdot  t )  + 0.2 \ { \rm V} \cdot {\rm cos}(2\pi  \cdot  3 \ {\rm kHz}  \cdot  t )$.
+ Die Periodendauer ist $T_0 = 1 \ \rm  ms$.
+
+ The period is &nbsp;$T_0 = 1 \ \rm  ms$.
- Die Periodendauer ist $T_0 = 2 \ \rm  ms$.
+
- The period is &nbsp;$T_0 = 2 \ \rm  ms$.
  
  
{Berechnen Sie die Leistung $P_x$ des Eingangssignals $x(t)$.
+
{Compute the power&nbsp;$P_x$&nbsp; of the input signal&nbsp;$x(t)$.
 
|type="{}"}
 
|type="{}"}
 
$P_x \ = \ $ { 0.52 3% } $\ \rm V^2$
 
$P_x \ = \ $ { 0.52 3% } $\ \rm V^2$
  
  
{Berechnen Sie die Verzerrungsleistung $P_{\rm V}$.
+
{Compute the distortion power&nbsp;$P_{\rm V}$.
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm V} \ = \ $  { 0.0142 3% } $\ \rm V^2$
 
$P_{\rm V} \ = \ $  { 0.0142 3% } $\ \rm V^2$
  
  
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis $\rho_{\rm V}$ und geben Sie dieses als dB&ndash;Wert ein.
+
{Compute the signal&ndash;to&ndash;distortion&ndash;power ratio &nbsp;$\rho_{\rm V}$&nbsp; and specify it as a dB&ndash;value.
 
|type="{}"}
 
|type="{}"}
 
$10 \cdot {\rm lg} \ \rho_{\rm V} \ = \ $  { 15.64 3% } $\ \rm dB$
 
$10 \cdot {\rm lg} \ \rho_{\rm V} \ = \ $  { 15.64 3% } $\ \rm dB$
Line 70: Line 73:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist die <u>Antwort 2</u>:  
+
'''(1)'''&nbsp; <u>Answer 2</u> is correct:  
*Der größte gemeinsame Teiler von $f_1 = 2 \ \rm kHz$ und $f_2 = 3 \ \rm kHz$ ist $f_0 = 1 \ \rm kHz$.  
+
*The greatest common divisor of&nbsp;$f_1 = 2 \ \rm kHz$&nbsp; and &nbsp;$f_2 = 3 \ \rm kHz$&nbsp; is &nbsp;$f_0 = 1 \ \rm kHz$.  
*Damit beträgt die Periodendauer $T_0 = 1/f_0 = 1 \ \rm ms$.  
+
*Hence, the period is&nbsp;$T_0 = 1/f_0 = 1 \ \rm ms$.  
*Das Signal lautet aufgrund des Phasenterms ${\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}90^\circ}$:
+
*Due to the phase term&nbsp;${\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}90^\circ}$ the signal is:
 
:$$x(t) = {1 \, \rm V} \cdot {\rm cos}(2\pi  f_1  t ) - {0.2 \, \rm
 
:$$x(t) = {1 \, \rm V} \cdot {\rm cos}(2\pi  f_1  t ) - {0.2 \, \rm
 
V} \cdot {\rm sin}(2\pi  f_2  t ).$$
 
V} \cdot {\rm sin}(2\pi  f_2  t ).$$
  
  
'''(2)'''&nbsp; Um die Leistung im Zeitbereich zu berechnen, muss das Signal $x(t) = x_1(t) + x_2(t)$ quadriert und über ein geeignetes Zeitintervall gemittelt werden. Für ein periodisches Signal genügt die Mittelung über $T_0$:
+
 
 +
'''(2)'''&nbsp; To compute the power in the time domain the signal&nbsp;$x(t) = x_1(t) + x_2(t)$&nbsp; must be squared and averaged over a suitable time interval.&nbsp;
 +
*Averaging over&nbsp;$T_0$ is sufficient for a periodic signal:
 
:$$P_{\rm V}  = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{  T_{\rm 0}}
 
:$$P_{\rm V}  = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{  T_{\rm 0}}
 
  {\left[x_1(t)+ x_2(t) \right]^2 }\hspace{0.1cm}{\rm d}t
 
  {\left[x_1(t)+ x_2(t) \right]^2 }\hspace{0.1cm}{\rm d}t
Line 90: Line 95:
 
  { x_1(t) \cdot x_2(t) }\hspace{0.1cm}{\rm d}t.$$
 
  { x_1(t) \cdot x_2(t) }\hspace{0.1cm}{\rm d}t.$$
  
Das erste Integral liefert:
+
*The first integral yields:
 
:$$P_{\rm 1} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{  T_{\rm 0}}
 
:$$P_{\rm 1} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{  T_{\rm 0}}
 
  { ({1 \, \rm V})^2 \cdot {\rm cos}^2(2\pi  f_1  t )}\hspace{0.1cm}{\rm
 
  { ({1 \, \rm V})^2 \cdot {\rm cos}^2(2\pi  f_1  t )}\hspace{0.1cm}{\rm
Line 98: Line 103:
 
  d}t = {0.5 \, \rm V^2}.$$
 
  d}t = {0.5 \, \rm V^2}.$$
  
In gleicher Weise erhält man für die Leistung des zweiten Terms: &nbsp; $P_2 = (0.2 \ {\rm  V}^2/2 = 0.02 \ {\rm  V}^2.$ Dagegen liefert das letzte Integral keinen Beitrag, da $x_1(t)$ und $x_2(t)$ zueinander orthogonal sind. Somit erhält man für die gesamte Signalleistung:
+
*In the same way, the following is obtained for the power of the second term: &nbsp; $P_2 = (0.2 \ {\rm  V})^2/2 = 0.02 \ {\rm  V}^2.$&nbsp;
 +
*The last integral vanishes since &nbsp;$x_1(t)$&nbsp; and &nbsp;$x_2(t)$&nbsp; are orthogonal to each other.&nbsp; Consequently, the following is obtained for the total signal power:
 
:$$P_{x}  =P_{\rm 1} + P_{\rm 2} = {0.5 \, \rm V^2} + {0.02 \, \rm V^2}\hspace{0.15cm}\underline{ = {0.52 \, \rm V^2}}.$$
 
:$$P_{x}  =P_{\rm 1} + P_{\rm 2} = {0.5 \, \rm V^2} + {0.02 \, \rm V^2}\hspace{0.15cm}\underline{ = {0.52 \, \rm V^2}}.$$
  
Dieses Ergebnis kann man auch aus der Spektralfunktion herleiten, wenn man die Amplituden aller diskreten Spektralanteile quadriert, halbiert und aufsummiert. Die Phasenlagen der einzelnen Spektrallinien müssen dabei nicht berücksichtigt werden.
+
This result can also be derived from the spectral function by squaring, halving, and summarising the amplitudes of all discrete spectral components. The phase positions of the individual spectral lines do not need to be considered.
  
  
'''(3)'''&nbsp; Unabhängig davon, ob ein lineares oder ein nichtlineares System vorliegt, kann für das analytische Spektrum des Differenzsignals $\varepsilon(t) = y(t) - x(t)$ mit $f_2 = 2 \ \rm kHz$,  $f_3 = 3 \ \rm kHz$ und $f_5 = 5 \ \rm kHz$ geschrieben werden:
+
 
 +
'''(3)'''&nbsp; Regardless of whether a linear or a non-linear system is at hand the following can be formulated for the analytical spectrum of the difference signal $\varepsilon(t) = y(t) - x(t)$&nbsp; with &nbsp;$f_2 = 2 \ \rm kHz$,  &nbsp;$f_3 = 3 \ \rm kHz$&nbsp; and &nbsp;$f_5 = 5 \ \rm kHz$&nbsp;:
 
:$$E_+(f) = Y_+(f) - X_+(f) = {0.1 \,\rm V}  \cdot {\rm \delta}(f- f_2) +
 
:$$E_+(f) = Y_+(f) - X_+(f) = {0.1 \,\rm V}  \cdot {\rm \delta}(f- f_2) +
 
  \left[{0.25 \,\rm V} \cdot {\rm e}^{\rm j \cdot 60^{\circ} } - {0.2 \,\rm V} \cdot {\rm e}^{\rm j \cdot 90^{\circ} }
 
  \left[{0.25 \,\rm V} \cdot {\rm e}^{\rm j \cdot 60^{\circ} } - {0.2 \,\rm V} \cdot {\rm e}^{\rm j \cdot 90^{\circ} }
 
  \right] \cdot \delta(f- f_3) + {0.05 \,\rm V} \cdot {\rm e}^{-\rm j \cdot 90^{\circ} } \cdot \delta(f- f_5).$$
 
  \right] \cdot \delta(f- f_3) + {0.05 \,\rm V} \cdot {\rm e}^{-\rm j \cdot 90^{\circ} } \cdot \delta(f- f_5).$$
  
Die komplexe Amplitude des zweiten Terms ist:
+
*The complex amplitude of the second term is:
 
:$$C_2 = {0.25 \,\rm V}  \cdot \cos( 60^{\circ}) + {\rm j}
 
:$$C_2 = {0.25 \,\rm V}  \cdot \cos( 60^{\circ}) + {\rm j}
 
  \cdot{0.25 \,\rm V}  \cdot \sin( 60^{\circ}) - {\rm j}
 
  \cdot{0.25 \,\rm V}  \cdot \sin( 60^{\circ}) - {\rm j}
  \cdot{0.05 \,\rm V} = {0.25 \,\rm V}  \cdot 0.5 + {\rm j}
+
  \cdot{0.05 \,\rm V} $$
 +
:$$\Rightarrow \hspace{0.3cm} C_2 = {0.25 \,\rm V}  \cdot 0.5 + {\rm j}
 
  \cdot{0.25 \,\rm V}  \cdot 0.866 - {\rm j}
 
  \cdot{0.25 \,\rm V}  \cdot 0.866 - {\rm j}
 
  \cdot{0.2 \,\rm V} = {0.125 \,\rm V}  + {\rm j}
 
  \cdot{0.2 \,\rm V} = {0.125 \,\rm V}  + {\rm j}
 
  \cdot{0.016 \,\rm V}.$$
 
  \cdot{0.016 \,\rm V}.$$
  
Damit ergibt sich für den Betrag:
+
*This results in the following for the magnitude:
 
:$$|C_2| = \sqrt{({0.125 \,\rm V})^2+({0.016 \,\rm V})^2 }=
 
:$$|C_2| = \sqrt{({0.125 \,\rm V})^2+({0.016 \,\rm V})^2 }=
 
  {0.126 \,\rm V}.$$
 
  {0.126 \,\rm V}.$$
  
Die Phasenlagen müssen bei der Leistungsberechnung nicht berücksichtigt werden. Somit gilt:
+
*The phase positions do not need to be considered in the computation of the power. Thus:
 
:$$P_{\rm V} = \frac{1}{2} \cdot \left[ ({0.1 \,\rm V})^2 + ({0.126 \,\rm V})^2 + ({0.05 \,\rm V})^2\right] \hspace{0.15cm}\underline{= {0.0142 \, \rm V^2}}.$$
 
:$$P_{\rm V} = \frac{1}{2} \cdot \left[ ({0.1 \,\rm V})^2 + ({0.126 \,\rm V})^2 + ({0.05 \,\rm V})^2\right] \hspace{0.15cm}\underline{= {0.0142 \, \rm V^2}}.$$
  
'''(4)'''&nbsp; Entsprechend der Definition auf der Angabenseite gilt:
+
 
 +
'''(4)'''&nbsp; According to the definition on the information page the following holds:
 
:$$\rho_{\rm V} = \frac{  P_{x}}{P_{\rm V}}= \frac{  {0.52 \, \rm
 
:$$\rho_{\rm V} = \frac{  P_{x}}{P_{\rm V}}= \frac{  {0.52 \, \rm
 
   V^2}}{0.0142 \,  \rm V^2}\hspace{0.05cm}\rm = 36.65\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   V^2}}{0.0142 \,  \rm V^2}\hspace{0.05cm}\rm = 36.65\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
Line 132: Line 141:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^2.1 Klassifizierung der Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.1 Classification of the Distortions^]]

Latest revision as of 22:54, 12 September 2021

Concerning the computation of the distortion power

At the input of the considered functional unit, which is not specified in more detail, there is the periodic signal $x(t)$  shown in blue in the graph. This is given by the spectrum of the corresponding analytical signal:

$$X_+(f) = {1 \,\rm V} \cdot {\rm \delta}(f- {2 \,\rm kHz}) + {0.2 \,\rm V} \cdot {\rm e}^{\rm j \hspace{0.05cm}\cdot \hspace{0.05cm}90^{\circ} } \cdot \delta(f- {3 \,\rm kHz}).$$

This spectral function is obtained from the usual spectrum $X(f)$,  by

  • truncating all components at negative frequencies,  and
  • doubling the components at positive frequencies.


For more details on the analytical signal and its spectrum, see the chapter  Analytical Signal and its Spectral Function  of the book "Signal Representation".
The spectrum of the analytical signal at the output of the functional unit is:

$$Y_+(f) = {1.1 \,\rm V} \cdot {\rm \delta}(f- {2 \,\rm kHz}) + {0.25 \,\rm V} \cdot {\rm e}^{\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 60^{\circ} } \cdot \delta(f- {3 \,\rm kHz})+ {0.05 \,\rm V} \cdot {\rm e}^{-\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 90^{\circ} } \cdot \delta(f- {5 \,\rm kHz}).$$

The bottom sketch shows the difference signal $\varepsilon(t) = y(t) - x(t)$.  A measure of the distortion created in the system is the "distortion power" referenced to the resistance $R = 1 \ \rm \Omega$ .

$$P_{\rm V} = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t.$$

It should be noted that the distortion power can also be calculated in the spectral domain – in fact, in a simpler way here.

The power $P_x$  of the input signal $x(t)$  is defined in an analogous way.  As a quantitative measure of the strength of the distortions the signal–to–distortion–power ratio is specified, which is usually expressed logarithmically (in dB):

$$10 \cdot {\rm lg} \hspace{0.1cm}\rho_{\rm V} = 10 \cdot {\rm lg} \hspace{0.1cm}{ P_{x}}/{P_{\rm V}} \hspace{0.05cm}.$$





Please note:

  • All powers queried here refer to the resistance $R = 1 \ \rm \Omega$  and thus have the unit ${\rm V}^2$.
  • The power of a (real) signal $x(t)$  can also be computed using the spectral function $X(f)$ :
$$P_{x} =\frac{1}{T_{\rm 0}} \cdot\int_{-\infty}^{ \infty} x^2(t)\hspace{0.1cm}{\rm d}t = \frac{1}{T_{\rm 0}} \cdot \int_{-\infty}^{ \infty} |X(f)|^2\hspace{0.1cm}{\rm d}f.$$


Questions

1

Which statements are true regarding the signal $x(t)$ ?

It is  $x(t) = 1 \ { \rm V} \cdot {\rm cos}(2\pi \cdot 2 \ {\rm kHz} \cdot t ) + 0.2 \ { \rm V} \cdot {\rm cos}(2\pi \cdot 3 \ {\rm kHz} \cdot t )$.
The period is  $T_0 = 1 \ \rm ms$.
The period is  $T_0 = 2 \ \rm ms$.

2

Compute the power $P_x$  of the input signal $x(t)$.

$P_x \ = \ $

$\ \rm V^2$

3

Compute the distortion power $P_{\rm V}$.

$P_{\rm V} \ = \ $

$\ \rm V^2$

4

Compute the signal–to–distortion–power ratio  $\rho_{\rm V}$  and specify it as a dB–value.

$10 \cdot {\rm lg} \ \rho_{\rm V} \ = \ $

$\ \rm dB$


Solution

(1)  Answer 2 is correct:

  • The greatest common divisor of $f_1 = 2 \ \rm kHz$  and  $f_2 = 3 \ \rm kHz$  is  $f_0 = 1 \ \rm kHz$.
  • Hence, the period is $T_0 = 1/f_0 = 1 \ \rm ms$.
  • Due to the phase term ${\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}90^\circ}$ the signal is:
$$x(t) = {1 \, \rm V} \cdot {\rm cos}(2\pi f_1 t ) - {0.2 \, \rm V} \cdot {\rm sin}(2\pi f_2 t ).$$


(2)  To compute the power in the time domain the signal $x(t) = x_1(t) + x_2(t)$  must be squared and averaged over a suitable time interval. 

  • Averaging over $T_0$ is sufficient for a periodic signal:
$$P_{\rm V} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} {\left[x_1(t)+ x_2(t) \right]^2 }\hspace{0.1cm}{\rm d}t = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} {x_1^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.1cm}+\hspace{0.1cm} \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} {x_2^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.1cm}+\hspace{0.1cm} \frac{2}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} { x_1(t) \cdot x_2(t) }\hspace{0.1cm}{\rm d}t.$$
  • The first integral yields:
$$P_{\rm 1} = \frac{1}{T_{\rm 0}} \cdot \int_{0}^{ T_{\rm 0}} { ({1 \, \rm V})^2 \cdot {\rm cos}^2(2\pi f_1 t )}\hspace{0.1cm}{\rm d}t = \frac{1 \, \rm V^2}{2 T_{\rm 0}}\hspace{0.05cm} \cdot \int\limits_{0}^{ T_{\rm 0}} { \left[ 1+ {\rm cos}(4\pi f_1 t )\right]}\hspace{0.1cm}{\rm d}t = {0.5 \, \rm V^2}.$$
  • In the same way, the following is obtained for the power of the second term:   $P_2 = (0.2 \ {\rm V})^2/2 = 0.02 \ {\rm V}^2.$ 
  • The last integral vanishes since  $x_1(t)$  and  $x_2(t)$  are orthogonal to each other.  Consequently, the following is obtained for the total signal power:
$$P_{x} =P_{\rm 1} + P_{\rm 2} = {0.5 \, \rm V^2} + {0.02 \, \rm V^2}\hspace{0.15cm}\underline{ = {0.52 \, \rm V^2}}.$$

This result can also be derived from the spectral function by squaring, halving, and summarising the amplitudes of all discrete spectral components. The phase positions of the individual spectral lines do not need to be considered.


(3)  Regardless of whether a linear or a non-linear system is at hand the following can be formulated for the analytical spectrum of the difference signal $\varepsilon(t) = y(t) - x(t)$  with  $f_2 = 2 \ \rm kHz$,  $f_3 = 3 \ \rm kHz$  and  $f_5 = 5 \ \rm kHz$ :

$$E_+(f) = Y_+(f) - X_+(f) = {0.1 \,\rm V} \cdot {\rm \delta}(f- f_2) + \left[{0.25 \,\rm V} \cdot {\rm e}^{\rm j \cdot 60^{\circ} } - {0.2 \,\rm V} \cdot {\rm e}^{\rm j \cdot 90^{\circ} } \right] \cdot \delta(f- f_3) + {0.05 \,\rm V} \cdot {\rm e}^{-\rm j \cdot 90^{\circ} } \cdot \delta(f- f_5).$$
  • The complex amplitude of the second term is:
$$C_2 = {0.25 \,\rm V} \cdot \cos( 60^{\circ}) + {\rm j} \cdot{0.25 \,\rm V} \cdot \sin( 60^{\circ}) - {\rm j} \cdot{0.05 \,\rm V} $$
$$\Rightarrow \hspace{0.3cm} C_2 = {0.25 \,\rm V} \cdot 0.5 + {\rm j} \cdot{0.25 \,\rm V} \cdot 0.866 - {\rm j} \cdot{0.2 \,\rm V} = {0.125 \,\rm V} + {\rm j} \cdot{0.016 \,\rm V}.$$
  • This results in the following for the magnitude:
$$|C_2| = \sqrt{({0.125 \,\rm V})^2+({0.016 \,\rm V})^2 }= {0.126 \,\rm V}.$$
  • The phase positions do not need to be considered in the computation of the power. Thus:
$$P_{\rm V} = \frac{1}{2} \cdot \left[ ({0.1 \,\rm V})^2 + ({0.126 \,\rm V})^2 + ({0.05 \,\rm V})^2\right] \hspace{0.15cm}\underline{= {0.0142 \, \rm V^2}}.$$


(4)  According to the definition on the information page the following holds:

$$\rho_{\rm V} = \frac{ P_{x}}{P_{\rm V}}= \frac{ {0.52 \, \rm V^2}}{0.0142 \, \rm V^2}\hspace{0.05cm}\rm = 36.65\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V} \hspace{0.15cm}\underline{= {15.64 \, \rm dB}}.$$