Processing math: 100%

Difference between revisions of "Aufgaben:Exercise 4.9: Costas Rule Loop"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Lineare digitale Modulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Linear_Digital_Modulation
 
}}
 
}}
  
[[File:Mod_A_4_8_vers2.png|right|frame|Costas Regelschleife]]
+
[[File:EN_Mod_A_4_8.png|right|frame|Costas rule loop]]
Eine wichtige Voraussetzung für kohärente Demodulation ist die phasenrichtige Trägerrückgewinnung. Eine Möglichkeit hierfür bietet die sog. ''Costas–Regelschleife'', die vereinfacht durch das nebenstehende Blockschaltbild dargestellt ist.
+
An important prerequisite for coherent demodulation is  "in-phase carrier recovery".  One possibility for this is the so-called  "Costas rule loop",  which is shown in simplified form by the adjacent block diagram.
  
Das Empfangssignal kann bei der binären Phasenmodulation (BPSK) als
+
In binary phase modulation  $\rm (BPSK)$,  the received signal can be expressed as
 
:r(t)=±s0cos(2πfTt+ϕ)
 
:r(t)=±s0cos(2πfTt+ϕ)
geschrieben werden. Die Phasendrehung ϕ auf dem Übertragungskanal muss dabei stets als unbekannt angenommen werden. „±” beschreibt die Phasensprünge des BPSK–Signals.
+
The phase rotation  $ϕ$  on the transmission channel is always assumed to be unknown.  The factor  "±"  describes the phase jumps of the BPSK signal.
  
Aufgabe der durch die Grafik angegebenen Schaltung ist es, ein Trägersignal
+
The task of the circuit indicated by the diagram is to generate a carrier signal
 
:z(t)=cos(2πfTt+θ)
 
:z(t)=cos(2πfTt+θ)
zu generieren, wobei der Phasenfehler ϕθ zwischen dem BPSK–Empfangssignal r(t) und der am Empfänger generierten Schwingung z(t) ausgeregelt werden muss. Hierzu wird mit einem regelbaren Oszillator (VCO, ''Voltage Controlled Oscillator'') eine Schwingung der Frequenz fT erzeugt, zunächst mit beliebiger Phase θ. Durch die Costas–Regelschleife wird jedoch iterativ das Wunschergebnis θ=ϕ erreicht.
+
where the phase error   ϕθ   between the BPSK received signal  r(t)  and the oscillation  z(t)  generated at the receiver must be compensated.
 +
*For this purpose, a  "Voltage Controlled Oscillator"  ('''VCO'''$)$  is used to generate an oscillation of frequency  fT,  initially with arbitrary phase  θ.  
 +
*However,  the Costas rule loop iteratively achieves the desired result  θ=ϕ. 
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Lineare_digitale_Modulation|Lineare digitale Modulation]].
+
 
+
Notes:  
*In der Grafik  bezeichnet „TP” Tiefpässe, die als ideal angenommen werden.  
+
*The exercise belongs to the chapter  [[Modulation_Methods/Linear_Digital_Modulation|"Linear Digital Modulation"]].  
*Das mit π/2 beschriftete Quadrat kennzeichnet eine Phasendrehung um π/2 (90), so dass beispielsweise aus einem Cosinus–Signal ein Minus–Sinus–Signal wird:
+
*In the diagram,  "TP"  denotes low-passes  (German:  "Tiefpass"   ⇒   subscript:  "TP"),  which are assumed to be ideal.
 +
*The square labeled  π/2  denotes a phase rotation by  π/2 (90),  so that,  for example,  a cosine signal becomes a  "minus-sine" signal:
 
:cos(ω0t)cos(ω0t+90)=sin(ω0t).
 
:cos(ω0t)cos(ω0t+90)=sin(ω0t).
*Weiter gelten folgende trigonometrischen Beziehungen:
+
*Further,  the following trigonometric relations hold:
:$$\cos (\alpha) \cdot \cos (\beta)  =  {1} /{2} \cdot \left [ \cos (\alpha - \beta) + \cos (\alpha + \beta)\right]\hspace{0.05cm},$$  
+
:$$\cos (\alpha) \cdot \cos (\beta)  =  {1} /{2} \cdot \big [ \cos (\alpha - \beta) + \cos (\alpha + \beta)\big]\hspace{0.05cm},$$  
:$$\sin (\alpha) \cdot \cos (\beta)  =  {1} /{2} \cdot \left [ \sin (\alpha - \beta) + \sin (\alpha + \beta)\right]\hspace{0.05cm}.$$
+
:$$\sin (\alpha) \cdot \cos (\beta)  =  {1} /{2} \cdot \big [ \sin (\alpha - \beta) + \sin (\alpha + \beta)\big]\hspace{0.05cm}.$$
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Signal y1(t) nach dem Tiefpass im oberen Zweig. Welche der folgenden Aussagen sind richtig?
+
{Calculate the signal &nbsp;y1(t)&nbsp; after the low-pass in the upper branch.&nbsp; Which of the following statements is correct?
|type="[]"}
+
|type="()"}
- y1(t)=±s0/2·[cos(ϕθ)+cos(4π·fT·t+ϕ+θ)],
+
- $y_1(t) = ± s_0/2 · \big[\cos (\phi - θ) + \cos (4 π · f_{\rm T} · t +\phi + θ)\big],$
 
+ y1(t)=±s0/2·cos(ϕθ),
 
+ y1(t)=±s0/2·cos(ϕθ),
 
- y1(t)=±s0/2·sin(ϕθ).
 
- y1(t)=±s0/2·sin(ϕθ).
  
{Berechnen Sie das Signal y2(t) nach dem Tiefpass im unteren Zweig. Welche der folgenden Aussagen sind richtig?
+
{Calculate the signal &nbsp;y2(t)&nbsp; after the low-pass in the lower branch.&nbsp; Which of the following statements is correct?
|type="[]"}
+
|type="()"}
- y2(t)=±s0/2·[cos(ϕθ)+cos(4π·fT·t+ϕ+θ)],
+
- $y_2(t) = ± s_0/2 ·  \big[\cos (\phi - θ) + \cos (4 π · f_{\rm T} · t +\phi + θ)\big],$
 
- y2(t)=±s0/2·cos(ϕθ),
 
- y2(t)=±s0/2·cos(ϕθ),
 
+ y2(t)=±s0/2·sin(ϕθ).
 
+ y2(t)=±s0/2·sin(ϕθ).
  
{Berechnen Sie das Regelsignal x(t) und geben Sie eine Näherung für kleine Phasenabweichung ϕθ an. Welche Gleichungen sind richtig?
+
{Calculate the rule signal &nbsp;x(t)&nbsp; and give an approximation for small phase deviation &nbsp;ϕθ.&nbsp; Which equations are correct?
 
|type="[]"}
 
|type="[]"}
 
- x(t)=s20/8·cos(ϕ+θ),
 
- x(t)=s20/8·cos(ϕ+θ),
Line 52: Line 55:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>zweite Lösungsvorschlag</u>:
+
'''(1)'''&nbsp; The&nbsp; <u>second solution</u>&nbsp; is correct:
*Mit dem Additionstheorem der Trigonometrie erhält man:
+
*Using the addition theorem of trigonometry,&nbsp; we obtain:
 
:m1(t)=±s0cos(2πfTt+ϕ)cos(2πfTt+θ)=±s02[cos(ϕθ)+cos(4πfTt+ϕ+θ)].
 
:m1(t)=±s0cos(2πfTt+ϕ)cos(2πfTt+θ)=±s02[cos(ϕθ)+cos(4πfTt+ϕ+θ)].
*Nach dem Tiefpass verbleibt nur der Gleichanteil $y_1(t) = ± s_0/2 · \cos (\phi - θ).$
+
*After the low-pass,&nbsp; only the DC component&nbsp; $y_1(t) = ± s_0/2 · \cos (\phi - θ)$&nbsp; remains.  
  
  
'''(2)'''&nbsp; Richtig ist demnach hier der <u>letzte Lösungsvorschlag</u>:
+
 
*Analog zu Teilaufgabe (1) ergibt sich für das Eingangssignal des unteren Tiefpasses:
+
'''(2)'''&nbsp; Here the&nbsp; <u>last solution</u>&nbsp; is correct:
 +
*Analogous to question&nbsp; '''(1)''',&nbsp; the result for the input signal of the lower low-pass filter is:
 
:m2(t)=±s0cos(2πfTt+ϕ)[sin(2πfTt+θ)]=±s02[sin(ϕθ)+sin(4πfTt+ϕ+θ)].
 
:m2(t)=±s0cos(2πfTt+ϕ)[sin(2πfTt+θ)]=±s02[sin(ϕθ)+sin(4πfTt+ϕ+θ)].
Dies führt zu folgendem  Ausgangssignal:  
+
*This leads to the following output signal:
 
:y2(t)=±s0/2sin(ϕθ).
 
:y2(t)=±s0/2sin(ϕθ).
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
 
*Durch Multiplikation von y1(t) und y2(t) erhält man:
+
'''(3)'''&nbsp; <u>Solutions 2 and 3</u>&nbsp; are correct:
$$x(t)  =  y_1(t) \cdot y_2(t)= \frac{s_0^2}{4} \cdot \cos ( \phi - \theta) \cdot \sin ( \phi - \theta)  
+
*By multiplying&nbsp; y1(t)&nbsp; and&nbsp; y2(t)&nbsp; we obtain:
 +
:$$x(t)  =  y_1(t) \cdot y_2(t)= \frac{s_0^2}{4} \cdot \cos ( \phi - \theta) \cdot \sin ( \phi - \theta)  
 
  =  \frac{s_0^2}{8} \cdot \sin ( 2\cdot\phi - 2\cdot\theta) \hspace{0.05cm}.$$
 
  =  \frac{s_0^2}{8} \cdot \sin ( 2\cdot\phi - 2\cdot\theta) \hspace{0.05cm}.$$
*Mit der Kleinwinkelnäherung sin(α)α folgt daraus:
+
*Using the small angle approximation&nbsp; sin(α)α&nbsp; it follows:
 
:x(t)s204(ϕθ).
 
:x(t)s204(ϕθ).
*Das Regelsignal x(t) ist also proportional zum Phasenfehler ϕθ, der mit der Costas–Regelschleife zu Null geregelt wird. Im eingeschwungenen Zustand folgt somit das Oszillatorsignal z(t) unmittelbar dem Empfangssignal r(t).
+
*The rule signal&nbsp; x(t)&nbsp; is thus proportional to the phase error&nbsp; ϕθ,&nbsp; which is controlled to zero by the Costas rule loop.&nbsp;
*Um die erforderliche Startbedingung θϕ zu erreichen, wird meist zunächst eine Trainigssequenz übertragen und die Phase entsprechend initialisiert. Dies auch, weil die Phase nur modulo π ausgeregelt wird, so dass beispielsweise ϕθ=π fälschlicherweise zum Regelsignal x(t)=0 führt.
+
*Thus,&nbsp; in the steady state,&nbsp; the oscillator signal&nbsp; z(t)&nbsp; immediately follows the received signal&nbsp; r(t).
 +
*To achieve the required initial condition&nbsp; θϕ,&nbsp; a training sequence is usually transmitted first and the phase is initialized accordingly.
 +
*This is also because the phase is only controlled modulo&nbsp; π,&nbsp; so that,&nbsp; for example,&nbsp; ϕθ=π&nbsp; would incorrectly lead to the rule signal&nbsp; x(t)=0.&nbsp;
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 80: Line 87:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.2 Lineare digitale Modulation^]]
+
[[Category:Modulation Methods: Exercises|^4.2 Linear Digital Modulation^]]

Latest revision as of 18:51, 15 April 2022

Costas rule loop

An important prerequisite for coherent demodulation is  "in-phase carrier recovery".  One possibility for this is the so-called  "Costas rule loop",  which is shown in simplified form by the adjacent block diagram.

In binary phase modulation  (BPSK),  the received signal can be expressed as

r(t)=±s0cos(2πfTt+ϕ)

The phase rotation  ϕ  on the transmission channel is always assumed to be unknown.  The factor  "±"  describes the phase jumps of the BPSK signal.

The task of the circuit indicated by the diagram is to generate a carrier signal

z(t)=cos(2πfTt+θ)

where the phase error   ϕθ   between the BPSK received signal  r(t)  and the oscillation  z(t)  generated at the receiver must be compensated.

  • For this purpose, a  "Voltage Controlled Oscillator"  (VCO)  is used to generate an oscillation of frequency  fT,  initially with arbitrary phase  θ.
  • However,  the Costas rule loop iteratively achieves the desired result  θ=ϕ



Notes:

  • The exercise belongs to the chapter  "Linear Digital Modulation".
  • In the diagram,  "TP"  denotes low-passes  (German:  "Tiefpass"   ⇒   subscript:  "TP"),  which are assumed to be ideal.
  • The square labeled  π/2  denotes a phase rotation by  π/2 (90),  so that,  for example,  a cosine signal becomes a  "minus-sine" signal:
cos(ω0t)cos(ω0t+90)=sin(ω0t).
  • Further,  the following trigonometric relations hold:
cos(α)cos(β)=1/2[cos(αβ)+cos(α+β)],
sin(α)cos(β)=1/2[sin(αβ)+sin(α+β)].


Questions

1

Calculate the signal  y1(t)  after the low-pass in the upper branch.  Which of the following statements is correct?

y1(t)=±s0/2·[cos(ϕθ)+cos(4π·fT·t+ϕ+θ)],
y1(t)=±s0/2·cos(ϕθ),
y1(t)=±s0/2·sin(ϕθ).

2

Calculate the signal  y2(t)  after the low-pass in the lower branch.  Which of the following statements is correct?

y2(t)=±s0/2·[cos(ϕθ)+cos(4π·fT·t+ϕ+θ)],
y2(t)=±s0/2·cos(ϕθ),
y2(t)=±s0/2·sin(ϕθ).

3

Calculate the rule signal  x(t)  and give an approximation for small phase deviation  ϕθ.  Which equations are correct?

x(t)=s20/8·cos(ϕ+θ),
x(t)=s20/8·sin(2ϕ2θ),
x(t)s20/4·(ϕθ),
x(t)s20/4·(ϕθ)2.


Solution

(1)  The  second solution  is correct:

  • Using the addition theorem of trigonometry,  we obtain:
m1(t)=±s0cos(2πfTt+ϕ)cos(2πfTt+θ)=±s02[cos(ϕθ)+cos(4πfTt+ϕ+θ)].
  • After the low-pass,  only the DC component  y1(t)=±s0/2·cos(ϕθ)  remains.


(2)  Here the  last solution  is correct:

  • Analogous to question  (1),  the result for the input signal of the lower low-pass filter is:
m2(t)=±s0cos(2πfTt+ϕ)[sin(2πfTt+θ)]=±s02[sin(ϕθ)+sin(4πfTt+ϕ+θ)].
  • This leads to the following output signal:
y2(t)=±s0/2sin(ϕθ).


(3)  Solutions 2 and 3  are correct:

  • By multiplying  y1(t)  and  y2(t)  we obtain:
x(t)=y1(t)y2(t)=s204cos(ϕθ)sin(ϕθ)=s208sin(2ϕ2θ).
  • Using the small angle approximation  sin(α)α  it follows:
x(t)s204(ϕθ).
  • The rule signal  x(t)  is thus proportional to the phase error  ϕθ,  which is controlled to zero by the Costas rule loop. 
  • Thus,  in the steady state,  the oscillator signal  z(t)  immediately follows the received signal  r(t).
  • To achieve the required initial condition  θϕ,  a training sequence is usually transmitted first and the phase is initialized accordingly.
  • This is also because the phase is only controlled modulo  π,  so that,  for example,  ϕθ=π  would incorrectly lead to the rule signal  x(t)=0