Difference between revisions of "Signal Representation/Calculating with Complex Numbers"

From LNTwww
 
(29 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Grundbegriffe der Nachrichtenübertragung
+
|Untermenü=Basic Terms of Communications Engineering
|Vorherige Seite=Klassifizierung von Signalen
+
|Vorherige Seite=Signal Classification
|Nächste Seite=Allgemeine Beschreibung
+
|Nächste Seite=General Description
 
}}
 
}}
  
  
==Reelle Zahlenmengen==
+
==The set of real numbers==
 
<br>  
 
<br>  
In den folgenden Kapiteln dieses Buches spielen komplexe Größen stets eine wichtige Rolle. Obwohl das Rechnen mit komplexen Zahlen bereits in der Schulmathematik behandelt und geübt wird, haben unsere Erfahrungen gezeigt, dass auch Studierende von naturwissenschaftlichen und technischen Fachgebieten damit durchaus Probleme haben. Vielleicht hängen diese Schwierigkeiten auch damit zusammen, dass „komplex” im Alltag oft als Synonym für „kompliziert” verwendet wird, während „reell” laut Duden für „zuverlässig, ehrlich und redlich” steht.
+
In the following chapters of this book,&nbsp; complex quantities always play an important role.&nbsp; Although calculating with complex numbers is already treated and practiced in school mathematics,&nbsp; our experience has shown that even students of natural sciences and technical subjects have problems with it.&nbsp; Perhaps these difficulties are also related to the fact that&nbsp; "complex"&nbsp; is often used as a synonym for&nbsp; "complicated"&nbsp; in everyday life,&nbsp; while&nbsp; "real"&nbsp; stands for&nbsp; "reliable, honest and truthful".
  
Deshalb werden hier am Ende dieses ersten Grundlagenkapitels die Rechenregeln für komplexe Zahlen kurz zusammengefasst.
+
Therefore,&nbsp; the calculation rules for complex numbers are briefly summarized here at the end of this first basic chapter.
  
Zunächst folgen einige Anmerkungen über die reellen Zahlenmengen, für die im strengen mathematischen Sinne die Bezeichnung „Zahlenkörper” richtiger wäre. Hierzu gehören:
+
First there are some remarks about real quantities of numbers,&nbsp; for which in the strict mathematical sense the term&nbsp; &raquo;number fields&laquo; would be more correct.&nbsp; These include:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definitionen:}$&nbsp;
+
$\text{Definitions:}$&nbsp;
*'''Natürliche Zahlen''' $\mathbb{N} = \{1, 2, 3, \text{...}\hspace{0.05cm} \}$. Mit diesen Zahlen sind für $n, \ k \in \mathbb{N}$ die Rechenoperationen Addition $(m = n +k)$, Multiplikation $(m = n \cdot k)$ und $m = n^k$ möglich. Das jeweilige Ergebnis einer Rechenoperation ist wieder eine natürliche Zahl: &nbsp; $m \in \mathbb{N}$.
+
*&raquo;'''Natural Numbers'''&laquo;&nbsp; $\mathbb{N} = \{1, 2, 3, \text{...}\hspace{0.05cm} \}$. &nbsp; Using these numbers, for&nbsp; $n, \ k \in \mathbb{N}$&nbsp; the arithmetic operations&nbsp; &raquo;addition&laquo;&nbsp; $(m = n +k)$,&nbsp; &raquo;multiplication&laquo;&nbsp; $(m = n \cdot k)$&nbsp; and&nbsp; &raquo;potency formation&laquo;&nbsp; $(m = n^k)$&nbsp; are possible.&nbsp; The respective result of a calculation is again a natural number: &nbsp; $m \in \mathbb{N}$.
  
  
*'''Ganze Zahlen''' $\mathbb{Z} = \{\text{...}\hspace{0.05cm} , -3, -2, -1, 0, +1, +2, +3, \text{...}\hspace{0.05cm}\}$. Diese Zahlenmenge ist eine Erweiterung der natürlichen Zahlen $\mathbb{N}$. Die Einführung der Menge $\mathbb{Z}$ war notwendig, um die Ergebnismenge einer Substraktion $(m = n -k)$ zu erfassen, zum Beispiel $5 - 7 = - 2$.
+
*&raquo;'''Integer Numbers'''&laquo;&nbsp; $\mathbb{Z} = \{\text{...}\hspace{0.05cm} , -3, -2, -1, \ 0, +1, +2, +3, \text{...}\hspace{0.05cm}\}$. &nbsp; This set of numbers is an extension of the natural numbers&nbsp; $\mathbb{N}$.&nbsp; The introduction of the set&nbsp; $\mathbb{Z}$&nbsp; was necessary to capture the result set of a subtraction&nbsp; $(m = n -k$,&nbsp; for example&nbsp; $5 - 7 = - 2)$.
  
  
*'''Rationale Zahlen''' $\mathbb{Q} = \{z/n\}$ mit $z \in \mathbb{Z}$, $n \in \mathbb{N}$. Mit dieser auch als Bruchzahlen bekannten Zahlenmenge liegt auch für jede Division ein definiertes Ergebnis vor. Schreibt man eine rationale Zahl in Dezimalschreibweise, so treten ab einer gewissen Dezimalstelle nur Nullen auf (zum Beispiel: $-2/5 = -0.400\text{...}\hspace{0.05cm}$) oder es sind Periodizitäten zu erkennen (zum Beispiel: $2/7 = 0.285714285\text{...}\hspace{0.05cm}$). Da $n = 1$ erlaubt ist, sind die ganzen Zahlen eine Teilmenge der rationalen Zahlen: &nbsp; $\mathbb{Z} \subset \mathbb{Q}$.
+
*&raquo;'''Rational Numbers'''&laquo;&nbsp; $\mathbb{Q} = \{z/n\}$&nbsp; with&nbsp; $z \in \mathbb{Z}$&nbsp; and&nbsp; $n \in \mathbb{N}$. &nbsp; With this set of numbers, also known as fractions, there is a defined result for each division.&nbsp; If you write a rational number in decimal notation, only zeros appear after a certain decimal place&nbsp; $($Example:&nbsp; $-2/5 = -0.400\text{...}\hspace{0.05cm})$&nbsp; or periodicities&nbsp; $($Example:&nbsp; $2/7 = 0.285714285\text{...}\hspace{0.05cm})$.&nbsp; Since&nbsp; $n = 1$&nbsp; is allowed,&nbsp; the integers are a subset of the rational numbers: &nbsp; $\mathbb{Z} \subset \mathbb{Q}$.
  
  
*'''Irrationale Zahlen''' $\mathbb{I} \neq {z/n}$ mit $z \in \mathbb{Z}$, $n \in \mathbb{N}$. Obwohl es unendlich viele rationale Zahlen gibt, verbleiben ebenfalls unendlich viele Zahlen, die nicht als Bruch dargestellt werden können. Beispiele hierfür sind die Zahl $\pi = 3.141592654\text{...}\hspace{0.05cm}$ (wobei es auch bei mehr Dezimalstellen keine Perioden gibt) oder das Ergebnis der Gleichung &nbsp; $a^{2}=2 \,\,\Rightarrow \;\;a=\pm \sqrt{2}=\pm1.414213562\text{...}\hspace{0.05cm}$. Auch dieses Ergebnis ist irrational, was bereits [https://de.wikipedia.org/wiki/Euklid Euklid] in der Antike bewiesen hat.
+
*&raquo;'''Irrational Numbers'''&laquo;&nbsp; $\mathbb{I} \neq {z/n}$&nbsp; mit&nbsp; $z \in \mathbb{Z}$, $n \in \mathbb{N}$. &nbsp; Although there are infinite rational numbers, there are still infinite numbers which cannot be represented as a fraction.&nbsp; Examples are the number&nbsp;  $\pi = 3.141592654\text{...}\hspace{0.05cm}$&nbsp;  $($where there are no periods even with more decimal places$)$&nbsp; or the result of the equation &nbsp; $a^{2}=2 \,\,\Rightarrow \;\;a=\pm \sqrt{2}=\pm1.414213562\text{...}\hspace{0.05cm}$.&nbsp; This result is also irrational, which has already been proved by&nbsp; [https://en.wikipedia.org/wiki/Euclid $\text{Euclid}$]&nbsp; in antiquity.
 +
[[File:EN_Sig_T_1_3_S1.png |right|frame|Real numbers on the number line]]
  
  
[[File:P_ID821_Sig_T_1_3_S1_rah.png |right|frame|Reelle Zahlen auf dem Zahlenstrahl]]
+
*&raquo;'''Real Numbers'''&laquo;&nbsp; $\mathbb{R} = \mathbb{Q}  \cup  \mathbb{I}$ as the sum of all rational and irrational numbers.
*'''Reelle Zahlen''' $\mathbb{R} = \mathbb{Q}  \cup  \mathbb{I}$ als die Gesamtheit aller rationalen und irrationalen Zahlen.  
+
:These can be ordered according to their numerical values and can be drawn on the so-called&nbsp; "number line"&nbsp; as shown in the adjacent graph.}}
  
  
:Diese können entsprechend ihren Zahlenwerten geordnet und auf dem so genannten ''Zahlenstrahl'' eingezeichnet werden, wie die nebenstehende Grafik verdeutlicht.}}
 
  
  
 
+
==Imaginary and complex numbers==
 
 
==Imaginäre und komplexe Zahlen==
 
 
<br>
 
<br>
Mit der Einführung der irrationalen Zahlen war zwar die Lösung der Gleichung $a^2-2=0$ möglich, nicht jedoch die Lösung der Gleichung  $a^2+1=0$. Der Mathematiker [https://de.wikipedia.org/wiki/Leonhard_Euler Leonhard Euler] löste dieses Problem, indem er den Körper der reellen Zahlen um die ''imaginären Zahlen'' erweiterte. Er definierte dazu die '''imaginäre Einheit''' wie folgt:
+
With the introduction of the irrational numbers the solution of the equation&nbsp; $a^2-2=0$&nbsp; was possible,&nbsp; but not the solution of the equation&nbsp; $a^2+1=0$.&nbsp; The mathematician&nbsp; [https://en.wikipedia.org/wiki/Leonhard_Euler $\text{Leonhard Euler}$]&nbsp; solved this problem by extending the set of real numbers by the&nbsp; &raquo;imaginary numbers&laquo;&nbsp;. He defined the&nbsp; &raquo;'''imaginary unit'''&laquo;&nbsp; as follows:
  
 
:$${\rm j}=\sqrt{-1} \ \Rightarrow \ {\rm j}^{2}=-1.$$
 
:$${\rm j}=\sqrt{-1} \ \Rightarrow \ {\rm j}^{2}=-1.$$
 
   
 
   
Anzumerken ist, dass Euler diese Größe mit „i” bezeichnet hat und dies auch heute noch in der Mathematik so üblich ist. In der Elektrotechnik hat sich dagegen die Bezeichnung „j” durchgesetzt, da „i” bereits mit dem zeitabhängigen Strom belegt ist.
+
It should be noted that Euler called this quantity&nbsp; "$\rm i$"&nbsp; and this is still common in mathematics today.&nbsp; In Electrical Engineering,&nbsp; on the other hand,&nbsp; the designation&nbsp; "$\rm j$"&nbsp; has become generally accepted since&nbsp; "$\rm i$"&nbsp; is already occupied by the time-dependent current.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Die '''komplexe Zahl''' $z$ ist im allgemeinen die Summe einer reellen Zahl $x$ und einer imaginären Zahl ${\rm j} \cdot y$:
+
The&nbsp; &raquo;'''complex number'''&laquo;&nbsp; $z$&nbsp; is generally the sum of a real number&nbsp; $x$&nbsp; and an imaginary number&nbsp; ${\rm j} \cdot y$:
  
 
:$$z=x+{\rm j}\cdot y.$$
 
:$$z=x+{\rm j}\cdot y.$$
  
$x$ und $y$ entstammen hierbei der Menge $\mathbb{R}$ der reellen Zahlen. Die Menge aller möglichen komplexen Zahlen bezeichnet man als den Körper $\mathbb{C}$ der komplexen Zahlen.}}
+
*$x$&nbsp; and&nbsp; $y$&nbsp; are derived from the quantity&nbsp; $\mathbb{R}$&nbsp; from the real numbers.  
 +
 
 +
*The set of all possible complex numbers is called the body&nbsp; $\mathbb{C}$&nbsp; of the complex numbers.}}
  
  
Aus dem Zahlenstrahl der reellen Zahlen wird nun die komplexe Ebene, die durch zwei um $90^\circ$ verdrehte Zahlenstränge für Real&ndash; und Imaginärteil aufgespannt wird.
+
The number line of real numbers now becomes the complex plane,&nbsp; which is spanned by two number lines twisted by &nbsp; $90^\circ$&nbsp; for real part and imaginary part.
  
[[File:P_ID823_Sig_T_1_3_S2_neu.png|right|frame|Zahlen in der komplexen Ebene]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
Die komplexe Zahl $z_1 = 2{\rm j}$ ist eine der zwei möglichen Lösungen der Gleichung $z^2+4=0$. Die andere Lösung ist  $z_2 = -2{\rm j}$.
+
[[File:P_ID823_Sig_T_1_3_S2_neu.png|right|frame|Numbers in the complex plane]]
 +
 
 +
*The complex number&nbsp; $z_1 = 2 \cdot {\rm j}$&nbsp; is one of two possible solutions of the equation&nbsp; $z^2+4=0$. The other solution is&nbsp;
 +
:$$z_2 = -2 \cdot {\rm j}.$$
  
Dagegen geben $z_3 = 2 + {\rm j}$ und  $z_4 = 2 -{\rm j}$ die beiden Lösungen zu folgender Gleichung an:&nbsp;
+
*In contrast&nbsp; $z_3 = 2 + {\rm j}$&nbsp; and&nbsp; $z_4 = 2 -{\rm j}$&nbsp; give the two solutions to the following equation:&nbsp;
  
:$$(z-2- {\rm j})(z-2+ {\rm j}) = 0 \;\Rightarrow \;z^{2}-4 \cdot z+5=0.$$
+
:$$(z-2- {\rm j})(z-2+ {\rm j}) = 0 \; \ \Rightarrow \;\ z^{2}-4 \cdot z+5=0.$$
  
Man bezeichnet $z_4 = z_3^\ast$ auch als die '''Konjugiert-Komplexe''' von $z_3$.  
+
: $z_4 = z_3^\ast$&nbsp; is also called the&nbsp; &raquo;complex conjugate&laquo;&nbsp; of&nbsp; $z_3$.  
*Die Summe $z_3 + z_4$ ist rein reell:&nbsp;
+
*The sum&nbsp; $z_3 + z_4$&nbsp; is real:&nbsp;
  
:$$z_3 + z_4 = 2 \cdot {\rm Re}[z_3]=2 \cdot {\rm Re}[z_4]$$.
+
:$$z_3 + z_4 = 2 \cdot {\rm Re}[z_3]=2 \cdot {\rm Re}[z_4].$$
  
*Die Differenz $z_3 - z_4$ ist rein imaginär:&nbsp;
+
*The difference&nbsp; $z_3 - z_4$&nbsp; is purely imaginary:&nbsp;
  
 
:$$z_3 - z_4 = {\rm j} \cdot \big [2 \cdot {\rm Im}[z_3] \big ] ={\rm j} \cdot \big [-2 \cdot {\rm Im}[z_4] \big ].$$}}
 
:$$z_3 - z_4 = {\rm j} \cdot \big [2 \cdot {\rm Im}[z_3] \big ] ={\rm j} \cdot \big [-2 \cdot {\rm Im}[z_4] \big ].$$}}
  
  
''Anmerkung'': In der Literatur werden komplexe Größen oft durch Unterstreichung gekennzeichnet. Hierauf wird in den $\rm LNTwww$&ndash;Büchern  verzichtet.
+
<u>Note</u>: &nbsp; In the literature,&nbsp; complex quantities are often marked by underlining.&nbsp; This is not used in the&nbsp; $\rm LNTwww$&nbsp; books.
  
 
   
 
   
==Darstellung nach Betrag und Phase==  
+
== Representation by magnitude and phase==  
 
<br>
 
<br>
Eine komplexe Zahl $z$ kann außer durch den Realteil $x$ und den Imaginärteil $y$ auch durch ihren Betrag $|z|$ und die Phase $\phi$ beschrieben werden. Es gelten folgende Umrechnungen:
+
A complex number&nbsp; $z$&nbsp; can be described not only by the real part&nbsp; $x$&nbsp; and the imaginary part&nbsp; $y$&nbsp; but also by its magnitude&nbsp; $|z|$&nbsp; and the phase&nbsp; $\phi$&nbsp;.  
[[File:P_ID1246__Sig_T_1_3_S3_neu.png|right|frame|Konjugiert-Komplexe einer Zahl]]
 
:$$\left | z \right | = \sqrt{x^{2}+y^{2}},  \;\phi = \arctan ({y}/{x}),$$
 
  
:$$x = |z| \cdot \cos(\phi), \; y = |z| \cdot \sin(\phi ).$$
+
[[File:P_ID1246__Sig_T_1_3_S3_neu.png|right|frame|Complex conjugate <br>of a number]]
 +
*The following conversions apply:
 +
 
 +
:$$\left | z \right | = \sqrt{x^{2}+y^{2}},  \hspace{0.6cm}\phi = \arctan ({y}/{x}),$$
 +
 
 +
:$$x = |z| \cdot \cos(\phi), \hspace{0.6cm} y = |z| \cdot \sin(\phi ).$$
 
   
 
   
Somit kann die komplexe Größe $z$ auch in folgender Form dargestellt werden:
+
*Thus the complex quantity&nbsp; $z$&nbsp; can also be displayed in the following form:
 
   
 
   
 
:$$z = |z| \cdot \cos (\phi) + {\rm j} \cdot |z| \cdot \sin (\phi) = |z| \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}.$$
 
:$$z = |z| \cdot \cos (\phi) + {\rm j} \cdot |z| \cdot \sin (\phi) = |z| \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}.$$
  
Hierbei  ist der '''Satz von Euler''' verwendet, der unten bewiesen wird. Dieser besagt, dass die komplexe Größe $ {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}$ den Realteil $\cos(\phi)$ und den Imaginärteil $\sin(\phi)$ aufweist.
+
*Here,&nbsp; the&nbsp; $\text{Euler's theorem}$&nbsp; was used,&nbsp; which is proved below. &nbsp;<br>This states that the complex quantity&nbsp; $ {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}$&nbsp;exhibits the real part&nbsp; $\cos(\phi)$&nbsp; and the imaginary part&nbsp; $\sin(\phi)$&nbsp;.
  
Weiter erkennt man aus der  Grafik, dass für die '''Konjugiert-Komplexe''' von $z = x + {\rm j}\cdot y$ gilt:&nbsp;
+
*Further one recognizes from the diagram that for the&nbsp; &raquo;complex conjugates&laquo;&nbsp; of&nbsp; $z = x + {\rm j}\cdot y$&nbsp; applies:
  
:$$z^{\star} = x - {\rm j} \cdot y = |z| \cdot {\rm e}^{-{\rm j}\hspace{0.02cm} \cdot \hspace{0.02cm}\phi}.$$
+
:$$z^{\star} = x - {\rm j} \cdot y = |z| \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi}.$$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Beweis des Eulerschen Satzes:}$&nbsp; Dieser basiert auf dem Vergleich von Potenzreihenentwicklungen.  
+
$\text{Proof of the Euler theorem:}$&nbsp; This is based on the comparison of power series developments.  
*Die Reihenentwicklung der Exponentialfunktion lautet:&nbsp;
+
*The series development of the exponential function is:&nbsp;
 
   
 
   
 
:$${\rm e}^{x} = 1 +  \frac{x}{1!}+  \frac{x^2}{2!}+  \frac{x^3}{3!}
 
:$${\rm e}^{x} = 1 +  \frac{x}{1!}+  \frac{x^2}{2!}+  \frac{x^3}{3!}
 
+  \frac{x^4}{4!} +\text{ ...} \hspace{0.15cm}.$$
 
+  \frac{x^4}{4!} +\text{ ...} \hspace{0.15cm}.$$
  
*Mit imaginärem Argument kann hierfür auch geschrieben werden:&nbsp;
+
*With an imaginary argument you can also write:&nbsp;
 
   
 
   
:$${\rm e}^{ {\rm j}x} = 1 +  {\rm j} \cdot \frac{x}{1!}+ {\rm j}^2 \cdot \frac{x^2}{2!}+ {\rm j}^3 \cdot \frac{x^3}{3!}
+
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = 1 +  {\rm j} \cdot \frac{x}{1!}+ {\rm j}^2 \cdot \frac{x^2}{2!}+ {\rm j}^3 \cdot \frac{x^3}{3!}
 
+ {\rm j}^4 \cdot \frac{x^4}{4!} + \text{ ...}  \hspace{0.15cm}.$$
 
+ {\rm j}^4 \cdot \frac{x^4}{4!} + \text{ ...}  \hspace{0.15cm}.$$
  
*Berücksichtigt man <math>{\rm j}^{2}=-1, \ {\rm j}^{3} = -{\rm j},\ {\rm j}^{4} = 1, \ {\rm j}^{5} = {\rm j},  \text{ ...} \hspace{0.15cm}</math> und fasst die reellen und die imaginären Terme zusammen, so erhält man
+
*Considering&nbsp; <math>{\rm j}^{2}=-1, \ \ {\rm j}^{3} = -{\rm j},\ \ {\rm j}^{4} = 1, \ \ {\rm j}^{5} = {\rm j},  \text{ ...} \hspace{0.15cm}</math>&nbsp; and combining the real and the imaginary terms,&nbsp; one obtains
  
:$${\rm e}^{ {\rm j}x} = A(x) +  {\rm j}\cdot B(x).$$
+
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = A(x) +  {\rm j}\cdot B(x).$$
  
* Für die beiden Reihen gilt dabei:
+
* The following applies to both series:
 
:$$A(x) = 1 - \frac{x^2}{2!}
 
:$$A(x) = 1 - \frac{x^2}{2!}
 
+  \frac{x^4}{4!} -  \frac{x^6}{6!}+
 
+  \frac{x^4}{4!} -  \frac{x^6}{6!}+
Line 122: Line 127:
 
\sin(x).$$
 
\sin(x).$$
 
   
 
   
*Daraus folgt direkt der '''Satz von Euler''':&nbsp;
+
*From this the&nbsp; $\text{Euler Theorem}$&nbsp; follows directly:
 
   
 
   
:$${\rm e}^{ {\rm j}x} = \cos (x) +  {\rm j} \cdot \sin (x) \hspace{2cm}                                             
+
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = \cos (x) +  {\rm j} \cdot \sin (x) \hspace{2cm}                                             
 
\rm q.e.d.$$}}
 
\rm q.e.d.$$}}
  
  
==Rechenregeln für komplexe Zahlen==
+
==Calculation laws for complex numbers==
 
<br>
 
<br>
Die Rechengesetze für zwei komplexe Zahlen
+
The arithmetic laws for two complex numbers
 
   
 
   
 
:$$z_1 = x_1 + {\rm j} \cdot y_1 = |z_1| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot
 
:$$z_1 = x_1 + {\rm j} \cdot y_1 = |z_1| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot
\hspace {0.05cm} \phi_1}, \hspace{0.5cm}
+
\hspace {0.05cm} \phi_1},$$
z_2 = x_2 + {\rm j} \cdot y_2 = |z_2| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
+
:$$z_2 = x_2 + {\rm j} \cdot y_2 = |z_2| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
 
\hspace {0.05cm} \phi_2}$$
 
\hspace {0.05cm} \phi_2}$$
  
sind derart definiert, dass sich für den Sonderfall eines verschwindenden Imaginärteils die Rechenregeln der reellen Zahlen ergeben. Man spricht vom so genannten ''Permanenzprinzip''.
+
are defined in such a way,&nbsp; that for the special case of a vanishing imaginary part,&nbsp; the calculation rules for real numbers are given.&nbsp; This is called&nbsp; "principle of permanence".&nbsp; The following rules apply to the basic arithmetic operations:&nbsp;
 
+
*The sum of two complex numbers&nbsp; $($resp. their difference$)$&nbsp; is made by adding&nbsp; $($resp. subtracting$)$&nbsp; their real and imaginary parts :
Für die Grundrechenarten gelten folgende Regeln:&nbsp;
 
*Die Summe zweier komplexer Zahlen (bzw. deren Differenz) wird gebildet, indem man ihre Real- und Imaginärteile addiert (bzw. subtrahiert):&nbsp;
 
  
 
::<math>z_3 = z_1 + z_2 = (x_1+x_2) + {\rm j}\cdot (y_1 + y_2),</math>  
 
::<math>z_3 = z_1 + z_2 = (x_1+x_2) + {\rm j}\cdot (y_1 + y_2),</math>  
Line 146: Line 149:
 
::<math>z_4 = z_1 - z_2 = (x_1-x_2) + {\rm j}\cdot (y_1 - y_2).</math>  
 
::<math>z_4 = z_1 - z_2 = (x_1-x_2) + {\rm j}\cdot (y_1 - y_2).</math>  
  
*Das Produkt zweier komplexer Zahlen kann in der Realteil- und Imaginärteildarstellung durch Ausmultiplizieren unter Berücksichtigung von <math>{\rm j}^{2}=-1</math> gebildet werden. Einfacher gestaltet sich die Multiplikation allerdings, wenn <math>z_1</math> und <math>z_2</math> mit Betrag und Phase geschrieben werden:&nbsp;
+
*The product of two complex numbers can be formed in the real part and imaginary part description by multiplication considering&nbsp; <math>{\rm j}^{2}=-1</math>.&nbsp; <br>However,&nbsp; multiplication is simpler if&nbsp; <math>z_1</math>&nbsp; and&nbsp; <math>z_2</math>&nbsp; are written with magnitude and phase:&nbsp;
 
   
 
   
 
::<math>z_5 = z_1 \cdot z_2 = (x_1\cdot x_2 - y_1\cdot y_2) + {\rm j}\cdot (x_1\cdot y_2 + x_2\cdot y_1),</math>
 
::<math>z_5 = z_1 \cdot z_2 = (x_1\cdot x_2 - y_1\cdot y_2) + {\rm j}\cdot (x_1\cdot y_2 + x_2\cdot y_1),</math>
Line 158: Line 161:
 
  \Rightarrow \hspace{0.3cm} |z_5|  = |z_1|  \cdot |z_2| , \hspace{0.3cm}\phi_5 = \phi_1 + \phi_2 .</math>
 
  \Rightarrow \hspace{0.3cm} |z_5|  = |z_1|  \cdot |z_2| , \hspace{0.3cm}\phi_5 = \phi_1 + \phi_2 .</math>
 
   
 
   
*Die Division ist in der Exponentialschreibweise ebenfalls überschaubarer. Die beiden Beträge werden dividiert und die Phasen im Exponenten subtrahiert:&nbsp;
+
*The division is also more manageable in the exponential notation.&nbsp; The two magnitudes are divided and the phases are subtracted in the exponent:&nbsp;
  
 
::<math>z_6 =  \frac{z_1}{z_2} = |z_6| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
 
::<math>z_6 =  \frac{z_1}{z_2} = |z_6| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
Line 165: Line 168:
 
  \Rightarrow \hspace{0.3cm} |z_6| =  \frac{|z_1|}{|z_2|}, \hspace{0.3cm}\phi_6 = \phi_1 - \phi_2 .</math>
 
  \Rightarrow \hspace{0.3cm} |z_6| =  \frac{|z_1|}{|z_2|}, \hspace{0.3cm}\phi_6 = \phi_1 - \phi_2 .</math>
  
 
[[File:P_ID825_Sig_T_1_3_S4_neu.png|right|frame|Summe, Differenz, Produkt & Quotient komplexer Zahlen]]
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp;
+
[[File:P_ID825_Sig_T_1_3_S4_neu.png|right|frame|Some operations with complex numbers]]
In der Grafik sind als Punkte innerhalb der komplexen Ebene dargestellt:
 
*die komplexe Zahl <math>z=0.75 + {\rm j} = 1.25 \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}53.1^{\circ} }</math>,
 
  
 +
$\text{Example 2:}$&nbsp;
 +
In the graphic are shown as points within the complex plane:
  
*deren Konjugiert-Komplexe <math>z^{\ast} = 0.75 - {\rm j} = 1.25 \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}53.1^{\circ} }</math>,
+
*The complex number&nbsp; <math>z=0.75 + {\rm j} = 1.25 \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm} \cdot \hspace{0.05cm}53.1^{\circ} }</math>,
 
 
 
 
*die Summe <math>s=z+z^{\ast}=1.5</math> (rein reell),  
 
  
 +
*its complex conjugate&nbsp; <math>z^{\ast} = 0.75 - {\rm j} = 1.25 \cdot {\rm e}^{ - {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}53.1^{\circ} }</math>,
 
   
 
   
*die Differenz <math>d=z-z^{\ast}=2{\rm j}</math> (rein imaginär).
+
*the sum&nbsp; <math>s=z+z^{\ast}=1.5</math>&nbsp; $($purely real$)$,
 
 
  
*das Produkt <math>p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625</math> (ebenfalls rein reell)
+
*the difference&nbsp; <math>d=z-z^{\ast}=2 \cdot {\rm j}</math>&nbsp; $($purely imaginary$)$,
  
 +
*the product&nbsp; <math>p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625</math>&nbsp; $($purely real$)$,
  
*der Quotient <math>q= {z}/{z^{\ast} }={\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}106.2^{\circ} }</math> mit Betrag $1$ und dem doppelten Phasenwinkel von $z$.}}
+
*the division&nbsp; <math>q= {z}/{z^{\ast} }={\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}106.2^{\circ} }</math>&nbsp;with magnitude &nbsp; $1$&nbsp; and the double phase angle of&nbsp; $z$.}}
  
  
Die Thematik dieses Kapitels wird auch im Lernvideo [[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|Rechnen mit komplexen Zahlen]] behandelt.
+
The following&nbsp;  $($German language$)$&nbsp; learning video summarizes the topic of this chapter in a compact way:<br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|&raquo;Rechnen mit komplexen Zahlen&laquo;]] &nbsp; &rArr; &nbsp; "Arithmetic operations involving complex numbers".
  
  
 
   
 
   
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.3 Rechnen mit komplexen Zahlen|Aufgabe 1.3: Rechnen mit komplexen Zahlen]]
+
[[Aufgaben:Exercise_1.3:_Calculating_With_Complex_Numbers|Exercise 1.3: Calculating with Complex Numbers]]
  
[[Aufgaben:1.3Z_Nochmals komplexe Zahlen|Aufgabe 1.3Z: Nochmals komplexe Zahlen]]
+
[[Aufgaben:Exercise_1.3Z:_Calculating_with_Complex_Numbers_II|Exercise 1.3Z: Calculating with Complex Numbers II]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:45, 7 June 2023


The set of real numbers


In the following chapters of this book,  complex quantities always play an important role.  Although calculating with complex numbers is already treated and practiced in school mathematics,  our experience has shown that even students of natural sciences and technical subjects have problems with it.  Perhaps these difficulties are also related to the fact that  "complex"  is often used as a synonym for  "complicated"  in everyday life,  while  "real"  stands for  "reliable, honest and truthful".

Therefore,  the calculation rules for complex numbers are briefly summarized here at the end of this first basic chapter.

First there are some remarks about real quantities of numbers,  for which in the strict mathematical sense the term  »number fields« would be more correct.  These include:

$\text{Definitions:}$ 

  • »Natural Numbers«  $\mathbb{N} = \{1, 2, 3, \text{...}\hspace{0.05cm} \}$.   Using these numbers, for  $n, \ k \in \mathbb{N}$  the arithmetic operations  »addition«  $(m = n +k)$,  »multiplication«  $(m = n \cdot k)$  and  »potency formation«  $(m = n^k)$  are possible.  The respective result of a calculation is again a natural number:   $m \in \mathbb{N}$.


  • »Integer Numbers«  $\mathbb{Z} = \{\text{...}\hspace{0.05cm} , -3, -2, -1, \ 0, +1, +2, +3, \text{...}\hspace{0.05cm}\}$.   This set of numbers is an extension of the natural numbers  $\mathbb{N}$.  The introduction of the set  $\mathbb{Z}$  was necessary to capture the result set of a subtraction  $(m = n -k$,  for example  $5 - 7 = - 2)$.


  • »Rational Numbers«  $\mathbb{Q} = \{z/n\}$  with  $z \in \mathbb{Z}$  and  $n \in \mathbb{N}$.   With this set of numbers, also known as fractions, there is a defined result for each division.  If you write a rational number in decimal notation, only zeros appear after a certain decimal place  $($Example:  $-2/5 = -0.400\text{...}\hspace{0.05cm})$  or periodicities  $($Example:  $2/7 = 0.285714285\text{...}\hspace{0.05cm})$.  Since  $n = 1$  is allowed,  the integers are a subset of the rational numbers:   $\mathbb{Z} \subset \mathbb{Q}$.


  • »Irrational Numbers«  $\mathbb{I} \neq {z/n}$  mit  $z \in \mathbb{Z}$, $n \in \mathbb{N}$.   Although there are infinite rational numbers, there are still infinite numbers which cannot be represented as a fraction.  Examples are the number  $\pi = 3.141592654\text{...}\hspace{0.05cm}$  $($where there are no periods even with more decimal places$)$  or the result of the equation   $a^{2}=2 \,\,\Rightarrow \;\;a=\pm \sqrt{2}=\pm1.414213562\text{...}\hspace{0.05cm}$.  This result is also irrational, which has already been proved by  $\text{Euclid}$  in antiquity.
Real numbers on the number line


  • »Real Numbers«  $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$ as the sum of all rational and irrational numbers.
These can be ordered according to their numerical values and can be drawn on the so-called  "number line"  as shown in the adjacent graph.



Imaginary and complex numbers


With the introduction of the irrational numbers the solution of the equation  $a^2-2=0$  was possible,  but not the solution of the equation  $a^2+1=0$.  The mathematician  $\text{Leonhard Euler}$  solved this problem by extending the set of real numbers by the  »imaginary numbers« . He defined the  »imaginary unit«  as follows:

$${\rm j}=\sqrt{-1} \ \Rightarrow \ {\rm j}^{2}=-1.$$

It should be noted that Euler called this quantity  "$\rm i$"  and this is still common in mathematics today.  In Electrical Engineering,  on the other hand,  the designation  "$\rm j$"  has become generally accepted since  "$\rm i$"  is already occupied by the time-dependent current.

$\text{Definition:}$  The  »complex number«  $z$  is generally the sum of a real number  $x$  and an imaginary number  ${\rm j} \cdot y$:

$$z=x+{\rm j}\cdot y.$$
  • $x$  and  $y$  are derived from the quantity  $\mathbb{R}$  from the real numbers.
  • The set of all possible complex numbers is called the body  $\mathbb{C}$  of the complex numbers.


The number line of real numbers now becomes the complex plane,  which is spanned by two number lines twisted by   $90^\circ$  for real part and imaginary part.

$\text{Example 1:}$ 

Numbers in the complex plane
  • The complex number  $z_1 = 2 \cdot {\rm j}$  is one of two possible solutions of the equation  $z^2+4=0$. The other solution is 
$$z_2 = -2 \cdot {\rm j}.$$
  • In contrast  $z_3 = 2 + {\rm j}$  and  $z_4 = 2 -{\rm j}$  give the two solutions to the following equation: 
$$(z-2- {\rm j})(z-2+ {\rm j}) = 0 \; \ \Rightarrow \;\ z^{2}-4 \cdot z+5=0.$$
$z_4 = z_3^\ast$  is also called the  »complex conjugate«  of  $z_3$.
  • The sum  $z_3 + z_4$  is real: 
$$z_3 + z_4 = 2 \cdot {\rm Re}[z_3]=2 \cdot {\rm Re}[z_4].$$
  • The difference  $z_3 - z_4$  is purely imaginary: 
$$z_3 - z_4 = {\rm j} \cdot \big [2 \cdot {\rm Im}[z_3] \big ] ={\rm j} \cdot \big [-2 \cdot {\rm Im}[z_4] \big ].$$


Note:   In the literature,  complex quantities are often marked by underlining.  This is not used in the  $\rm LNTwww$  books.


Representation by magnitude and phase


A complex number  $z$  can be described not only by the real part  $x$  and the imaginary part  $y$  but also by its magnitude  $|z|$  and the phase  $\phi$ .

Complex conjugate
of a number
  • The following conversions apply:
$$\left | z \right | = \sqrt{x^{2}+y^{2}}, \hspace{0.6cm}\phi = \arctan ({y}/{x}),$$
$$x = |z| \cdot \cos(\phi), \hspace{0.6cm} y = |z| \cdot \sin(\phi ).$$
  • Thus the complex quantity  $z$  can also be displayed in the following form:
$$z = |z| \cdot \cos (\phi) + {\rm j} \cdot |z| \cdot \sin (\phi) = |z| \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}.$$
  • Here,  the  $\text{Euler's theorem}$  was used,  which is proved below.  
    This states that the complex quantity  $ {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}$ exhibits the real part  $\cos(\phi)$  and the imaginary part  $\sin(\phi)$ .
  • Further one recognizes from the diagram that for the  »complex conjugates«  of  $z = x + {\rm j}\cdot y$  applies:
$$z^{\star} = x - {\rm j} \cdot y = |z| \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi}.$$

$\text{Proof of the Euler theorem:}$  This is based on the comparison of power series developments.

  • The series development of the exponential function is: 
$${\rm e}^{x} = 1 + \frac{x}{1!}+ \frac{x^2}{2!}+ \frac{x^3}{3!} + \frac{x^4}{4!} +\text{ ...} \hspace{0.15cm}.$$
  • With an imaginary argument you can also write: 
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = 1 + {\rm j} \cdot \frac{x}{1!}+ {\rm j}^2 \cdot \frac{x^2}{2!}+ {\rm j}^3 \cdot \frac{x^3}{3!} + {\rm j}^4 \cdot \frac{x^4}{4!} + \text{ ...} \hspace{0.15cm}.$$
  • Considering  \({\rm j}^{2}=-1, \ \ {\rm j}^{3} = -{\rm j},\ \ {\rm j}^{4} = 1, \ \ {\rm j}^{5} = {\rm j}, \text{ ...} \hspace{0.15cm}\)  and combining the real and the imaginary terms,  one obtains
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = A(x) + {\rm j}\cdot B(x).$$
  • The following applies to both series:
$$A(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}+ \text{ ...} \hspace{0.1cm}= \cos(x),\hspace{0.5cm} B(x) = \frac{x}{1!}- \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}+ \text{ ...}= \sin(x).$$
  • From this the  $\text{Euler Theorem}$  follows directly:
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = \cos (x) + {\rm j} \cdot \sin (x) \hspace{2cm} \rm q.e.d.$$


Calculation laws for complex numbers


The arithmetic laws for two complex numbers

$$z_1 = x_1 + {\rm j} \cdot y_1 = |z_1| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot \hspace {0.05cm} \phi_1},$$
$$z_2 = x_2 + {\rm j} \cdot y_2 = |z_2| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_2}$$

are defined in such a way,  that for the special case of a vanishing imaginary part,  the calculation rules for real numbers are given.  This is called  "principle of permanence".  The following rules apply to the basic arithmetic operations: 

  • The sum of two complex numbers  $($resp. their difference$)$  is made by adding  $($resp. subtracting$)$  their real and imaginary parts :
\[z_3 = z_1 + z_2 = (x_1+x_2) + {\rm j}\cdot (y_1 + y_2),\]
\[z_4 = z_1 - z_2 = (x_1-x_2) + {\rm j}\cdot (y_1 - y_2).\]
  • The product of two complex numbers can be formed in the real part and imaginary part description by multiplication considering  \({\rm j}^{2}=-1\). 
    However,  multiplication is simpler if  \(z_1\)  and  \(z_2\)  are written with magnitude and phase: 
\[z_5 = z_1 \cdot z_2 = (x_1\cdot x_2 - y_1\cdot y_2) + {\rm j}\cdot (x_1\cdot y_2 + x_2\cdot y_1),\]
\[z_5 = |z_1| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_1} \cdot |z_2| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot \hspace {0.05cm} \phi_2}= |z_5| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_5} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} |z_5| = |z_1| \cdot |z_2| , \hspace{0.3cm}\phi_5 = \phi_1 + \phi_2 .\]
  • The division is also more manageable in the exponential notation.  The two magnitudes are divided and the phases are subtracted in the exponent: 
\[z_6 = \frac{z_1}{z_2} = |z_6| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_6} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} |z_6| = \frac{|z_1|}{|z_2|}, \hspace{0.3cm}\phi_6 = \phi_1 - \phi_2 .\]
Some operations with complex numbers

$\text{Example 2:}$  In the graphic are shown as points within the complex plane:

  • The complex number  \(z=0.75 + {\rm j} = 1.25 \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm} \cdot \hspace{0.05cm}53.1^{\circ} }\),
  • its complex conjugate  \(z^{\ast} = 0.75 - {\rm j} = 1.25 \cdot {\rm e}^{ - {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}53.1^{\circ} }\),
  • the sum  \(s=z+z^{\ast}=1.5\)  $($purely real$)$,
  • the difference  \(d=z-z^{\ast}=2 \cdot {\rm j}\)  $($purely imaginary$)$,
  • the product  \(p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625\)  $($purely real$)$,
  • the division  \(q= {z}/{z^{\ast} }={\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}106.2^{\circ} }\) with magnitude   $1$  and the double phase angle of  $z$.


The following  $($German language$)$  learning video summarizes the topic of this chapter in a compact way:
         »Rechnen mit komplexen Zahlen«   ⇒   "Arithmetic operations involving complex numbers".


Exercises for the chapter


Exercise 1.3: Calculating with Complex Numbers

Exercise 1.3Z: Calculating with Complex Numbers II