Difference between revisions of "Aufgaben:Exercise 4.6: k-parameters and alpha-parameters"
(14 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs |
}} | }} | ||
− | [[File: | + | [[File:EN_LZI_A_4_6.png|right|frame|Attenuation function per unit length, <br>valid for "copper twin wire" (0.5 mm)]] |
− | + | For symmetrical copper twisted pairs, the following empirical formula can be found in [PW95], which is valid for the frequency range 0 \le f \le 30 \ \rm MHz: | |
:$$\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3} , \hspace{0.15cm} | :$$\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3} , \hspace{0.15cm} | ||
f_0 = 1\,{\rm MHz} .$$ | f_0 = 1\,{\rm MHz} .$$ | ||
− | + | In contrast, the attenuation function per unit length of a coaxial cable is usually given in the following form: | |
:\alpha_{\rm II}(f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}\hspace{0.05cm}. | :\alpha_{\rm II}(f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}\hspace{0.05cm}. | ||
− | + | Especially for the calculation of impulse response and rectangular response it is advantageous also for the copper twisted pairs to choose the second representation form with the cable parameters \alpha_0, \alpha_1 and \alpha_2 instead of the representation with k_1, k_2 and k_3. | |
− | + | For the conversion, one proceeds as follows: | |
− | * | + | * From above equations, it is obvious that the coefficient characterizing the DC signal attenuation is \alpha_0 = k_1. |
− | * | + | * To determine \alpha_1 and \alpha_2, it is assumed that the mean square error should be minimum in the range of a given bandwidth B: |
:$${\rm E}\big[\varepsilon^2(f)\big] = \int_{0}^{ | :$${\rm E}\big[\varepsilon^2(f)\big] = \int_{0}^{ | ||
B} \left [ \alpha_{\rm II} (f) - \alpha_{\rm I} (f)\right ]^2 | B} \left [ \alpha_{\rm II} (f) - \alpha_{\rm I} (f)\right ]^2 | ||
Line 19: | Line 19: | ||
\hspace{0.3cm}{\rm Minimum} | \hspace{0.3cm}{\rm Minimum} | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | * | + | * The difference \varepsilon^2(f) and the mean square error {\rm E}\big[\varepsilon^2(f)\big] are obtained as follows: |
:$$\varepsilon^2(f) = \big [ \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} - k_2 \cdot (f/f_0)^{k_3}\big ]^2 | :$$\varepsilon^2(f) = \big [ \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} - k_2 \cdot (f/f_0)^{k_3}\big ]^2 | ||
=\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} f^2 + 2 \alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm} f^{1.5} + | =\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} f^2 + 2 \alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm} f^{1.5} + | ||
Line 32: | Line 32: | ||
\hspace{0.05cm}\cdot\hspace{0.05cm} | \hspace{0.05cm}\cdot\hspace{0.05cm} | ||
$$ | $$ | ||
− | : | + | :This equation contains the cable parameters \alpha_1, \alpha_2, k_2 and k_3 to be calculated as well as the bandwidth B, within which the approximation should be valid. |
− | * | + | * By setting the derivatives of {\rm E}\big[\varepsilon^2(f)\big] to \alpha_1 and \alpha_2 to zero, two equations are obtained for the best possible coefficients \alpha_1 and \alpha_2 that minimize the mean square error. These can be represented in the following form: |
:$$\frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_1}} = 0 \hspace{0.2cm} | :$$\frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_1}} = 0 \hspace{0.2cm} | ||
\Rightarrow | \Rightarrow | ||
Line 43: | Line 43: | ||
\hspace{0.2cm} \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 \hspace{0.05cm} | \hspace{0.2cm} \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 \hspace{0.05cm} | ||
. $$ | . $$ | ||
− | * | + | * From the equation C_1 \cdot \alpha_2 + C_2 = D_1 \cdot \alpha_2 + D_2, the coefficient \alpha_2 can be calculated and then the coefficient \alpha_1 can be calculated from each of the two equations above. |
− | + | The graph shows the attenuation function per unit length for a copper twin wire with \text{0.5 mm} diameter, whose k–parameters are: | |
:$$k_1 = 4.4\, {\rm dB}/{\rm km} \hspace{0.05cm}, \hspace{0.2cm} | :$$k_1 = 4.4\, {\rm dB}/{\rm km} \hspace{0.05cm}, \hspace{0.2cm} | ||
k_2 = 10.8\, {\rm dB}/{\rm km}\hspace{0.05cm}, \hspace{0.2cm}k_3 = 0.60\hspace{0.05cm} | k_2 = 10.8\, {\rm dB}/{\rm km}\hspace{0.05cm}, \hspace{0.2cm}k_3 = 0.60\hspace{0.05cm} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The red curve shows the function \alpha(f) calculated with this parameters. For f = 30 \ \rm MHz the attenuation function per unit length is \alpha(f)= 87.5 \ \rm dB/km. |
− | * | + | *The blue curve gives the approximation with the \alpha–coefficients. This is almost indistinguishable from the red curve within the drawing accuracy. |
Line 58: | Line 58: | ||
− | + | Notes: | |
− | + | *The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Properties of Balanced Copper Pairs]]. | |
− | |||
− | |||
− | * | ||
− | * | + | *You can use the (German language) interactive SWF applet [[Applets:Dämpfung_von_Kupferkabeln|"Dämpfung von Kupferkabeln"]] ⇒ "Attenuation of copper cables" . |
− | *[PW95] | + | *[PW95] denotes the following literature reference: Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the parameters C_1 and C_2 of the equation \alpha_1 + C_1 \cdot \alpha_2 + C_2 = 0 resulting from the derivative {\rm dE\big[\text{...}\big]/d}\alpha_1. <br>Which results are correct? |
|type="[]"} | |type="[]"} | ||
+ C_1 = 6/5 \cdot B^{-0.5}, | + C_1 = 6/5 \cdot B^{-0.5}, | ||
Line 81: | Line 78: | ||
− | { | + | {Calculate the parameters D_1 and D_2 of the equation \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 resulting from the derivative {\rm dE\big[\text{...}\big]/d}\alpha_2. <br> Which results are correct? |
|type="[]"} | |type="[]"} | ||
- D_1 = 6/5 \cdot B^{-0.5}, | - D_1 = 6/5 \cdot B^{-0.5}, | ||
Line 91: | Line 88: | ||
− | { | + | {Calculate the coefficients \alpha_1 and \alpha_2 for the given k_2 and k_3. <br>Which of the following statements are true? |
|type="[]"} | |type="[]"} | ||
− | + | + | + For k_3=1.0, \alpha_1 = k_2/f_0 and \alpha_2 = 0. |
− | + | + | + For k_3=0.5, \alpha_1 = 0 and \alpha_2 = k_2/f_0^{0.5}. |
− | { | + | {Determine the coefficients \alpha_1 and \alpha_2 numerically for the approximation bandwidth B = 30 \ \rm MHz. |
|type="{}"} | |type="{}"} | ||
\alpha_1 \ = \ { 0.761 3% } \ \rm dB/(km\ \cdot \ MHz) | \alpha_1 \ = \ { 0.761 3% } \ \rm dB/(km\ \cdot \ MHz) | ||
Line 103: | Line 100: | ||
− | { | + | {Using the \alpha–parameters, calculate the attenuation function per unit length for the frequency f = 30\ \rm MHz. |
|type="{}"} | |type="{}"} | ||
\alpha_{\rm II}(f = 30\ \rm MHz) \ = \ { 88.1 3% } \ \rm dB/km | \alpha_{\rm II}(f = 30\ \rm MHz) \ = \ { 88.1 3% } \ \rm dB/km | ||
Line 111: | Line 108: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Solutions 1 and 6</u> are correct: |
− | * | + | *The derivative of the given expected value with respect to \alpha_1 gives: |
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}} = | :$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}} = | ||
\frac{2}{3}\cdot B^3 \cdot \alpha_1 + \frac{4}{5}\cdot B^{2.5} \cdot \alpha_2 | \frac{2}{3}\cdot B^3 \cdot \alpha_1 + \frac{4}{5}\cdot B^{2.5} \cdot \alpha_2 | ||
Line 120: | Line 117: | ||
+ 2} \cdot \frac{B^{k_3+2}}{f_0^{k_3}}= 0 | + 2} \cdot \frac{B^{k_3+2}}{f_0^{k_3}}= 0 | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | * | + | *By setting it to zero and dividing by 2B^2/3, we obtain: |
:$$\alpha_1 + \frac{6}{5}\cdot B^{-0.5} \cdot \alpha_2 | :$$\alpha_1 + \frac{6}{5}\cdot B^{-0.5} \cdot \alpha_2 | ||
- \frac{3 k_2 }{k_3 | - \frac{3 k_2 }{k_3 | ||
Line 133: | Line 130: | ||
− | '''(2)''' | + | '''(2)''' <u>Solutions 2 and 5</u> are correct: |
− | * | + | *Using the same procedure as in subtask '''(1)''', we obtain: |
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}} = | :$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}} = | ||
\frac{4}{5}\cdot B^{2.5} \cdot \alpha_1 + B^{2} \cdot \alpha_2 | \frac{4}{5}\cdot B^{2.5} \cdot \alpha_1 + B^{2} \cdot \alpha_2 | ||
Line 150: | Line 147: | ||
− | '''(3)''' | + | |
+ | '''(3)''' <u>Both solutions</u> are correct: | ||
+ | |||
+ | *From C_1 \cdot \alpha_2 + C_2 = D_1 \cdot \alpha_2 + D_2 we obtain a linear equation for \alpha_2. With the result from '''(2)''' we can write: | ||
:$$\alpha_2 = \frac{D_2 - C_2}{C_1 - D_1} = \frac{- \frac{2.5 \cdot k_2 }{k_3 | :$$\alpha_2 = \frac{D_2 - C_2}{C_1 - D_1} = \frac{- \frac{2.5 \cdot k_2 }{k_3 | ||
+1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} + \frac{3 k_2 }{k_3 +2} | +1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} + \frac{3 k_2 }{k_3 +2} | ||
Line 162: | Line 162: | ||
2)}\cdot \frac {k_2}{\sqrt{f_0}} | 2)}\cdot \frac {k_2}{\sqrt{f_0}} | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | + | *For the parameter \alpha_1 then holds: | |
:$$\alpha_1 = - C_1 \cdot \alpha_2 - C_2 = | :$$\alpha_1 = - C_1 \cdot \alpha_2 - C_2 = | ||
-\frac{6}{5}\cdot B^{-0.5} \cdot 10 \cdot (B/f_0)^{k_3 | -\frac{6}{5}\cdot B^{-0.5} \cdot 10 \cdot (B/f_0)^{k_3 | ||
Line 173: | Line 173: | ||
-1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + | -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + | ||
2)}\cdot \frac {k_2}{f_0}\hspace{0.05cm} .$$ | 2)}\cdot \frac {k_2}{f_0}\hspace{0.05cm} .$$ | ||
− | + | ||
+ | *Regardless of the bandwidth, we obtain for k_3 = 1: | ||
:$$\alpha_1 = (B/f_0)^{k_3 | :$$\alpha_1 = (B/f_0)^{k_3 | ||
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + | -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + | ||
Line 183: | Line 184: | ||
2)}\cdot \frac {k_2}{\sqrt{f_0}}\hspace{0.15cm}\underline{= 0} \hspace{0.05cm} | 2)}\cdot \frac {k_2}{\sqrt{f_0}}\hspace{0.15cm}\underline{= 0} \hspace{0.05cm} | ||
.$$ | .$$ | ||
− | + | *In contrast, for k_3 = 0.5: | |
:$$\alpha_1 = (B/f_0)^{k_3 | :$$\alpha_1 = (B/f_0)^{k_3 | ||
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + | -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + | ||
Line 194: | Line 195: | ||
− | '''(4)''' | + | |
+ | '''(4)''' For the two coefficients, with k_2 = 10.8 \ \rm dB/km, k_3 = 0.6 \ \rm dB/km and B/f_0 = 30: | ||
:$$\alpha_1 = (B/f_0)^{k_3 | :$$\alpha_1 = (B/f_0)^{k_3 | ||
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + | -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + | ||
Line 213: | Line 215: | ||
− | '''(5)''' | + | |
+ | '''(5)''' According to the given equation $\alpha_{\rm II}(f)$ thus also holds: | ||
:$$\alpha_{\rm II}(f = 30 \, {\rm MHz}) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} | :$$\alpha_{\rm II}(f = 30 \, {\rm MHz}) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} | ||
= \big [ \hspace{0.05cm} 4.4 + 0.761 \cdot 30 + 11.1 \cdot \sqrt {30}\hspace{0.05cm} | = \big [ \hspace{0.05cm} 4.4 + 0.761 \cdot 30 + 11.1 \cdot \sqrt {30}\hspace{0.05cm} | ||
Line 224: | Line 227: | ||
− | [[Category: | + | [[Category:Linear and Time-Invariant Systems: Exercises|^4.3 Balanced Copper Twisted Pair^]] |
Latest revision as of 18:11, 23 November 2021
For symmetrical copper twisted pairs, the following empirical formula can be found in [PW95], which is valid for the frequency range 0 \le f \le 30 \ \rm MHz:
- \alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3} , \hspace{0.15cm} f_0 = 1\,{\rm MHz} .
In contrast, the attenuation function per unit length of a coaxial cable is usually given in the following form:
- \alpha_{\rm II}(f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}\hspace{0.05cm}.
Especially for the calculation of impulse response and rectangular response it is advantageous also for the copper twisted pairs to choose the second representation form with the cable parameters \alpha_0, \alpha_1 and \alpha_2 instead of the representation with k_1, k_2 and k_3.
For the conversion, one proceeds as follows:
- From above equations, it is obvious that the coefficient characterizing the DC signal attenuation is \alpha_0 = k_1.
- To determine \alpha_1 and \alpha_2, it is assumed that the mean square error should be minimum in the range of a given bandwidth B:
- {\rm E}\big[\varepsilon^2(f)\big] = \int_{0}^{ B} \left [ \alpha_{\rm II} (f) - \alpha_{\rm I} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .
- The difference \varepsilon^2(f) and the mean square error {\rm E}\big[\varepsilon^2(f)\big] are obtained as follows:
- \varepsilon^2(f) = \big [ \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} - k_2 \cdot (f/f_0)^{k_3}\big ]^2 =\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} f^2 + 2 \alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm} f^{1.5} + \alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} f + k_2^2\hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{2k_3}}{f_0^{2k_3}} - 2 k_2 \alpha_1 \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{k_3+1}} {f_0^{k_3}}-{2 k_2 \alpha_2} \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{k_3+0.5}}{f_0^{k_3}}
- \Rightarrow \hspace{0.3cm}{\rm E}\big[\varepsilon^2(f)\big] = \alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}\frac{B^3}{3} + \frac{4}{5} \hspace{0.05cm}\cdot\hspace{0.05cm}\alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm}B^{2.5} + \alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{B^2}{2} + \frac{k_2^2}{2k_3 +1} \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{B^{2k_3+1}}{f_0^{2k_3}} - \hspace{0.15cm} \frac{2 k_2 \alpha_1}{k_3 + 2} \hspace{0.05cm}\cdot\hspace{0.05cm}
- This equation contains the cable parameters \alpha_1, \alpha_2, k_2 and k_3 to be calculated as well as the bandwidth B, within which the approximation should be valid.
- By setting the derivatives of {\rm E}\big[\varepsilon^2(f)\big] to \alpha_1 and \alpha_2 to zero, two equations are obtained for the best possible coefficients \alpha_1 and \alpha_2 that minimize the mean square error. These can be represented in the following form:
- \frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_1}} = 0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \alpha_1 + C_1 \cdot \alpha_2 + C_2 = 0 \hspace{0.05cm} ,
- \frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_2}} = 0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 \hspace{0.05cm} .
- From the equation C_1 \cdot \alpha_2 + C_2 = D_1 \cdot \alpha_2 + D_2, the coefficient \alpha_2 can be calculated and then the coefficient \alpha_1 can be calculated from each of the two equations above.
The graph shows the attenuation function per unit length for a copper twin wire with \text{0.5 mm} diameter, whose k–parameters are:
- k_1 = 4.4\, {\rm dB}/{\rm km} \hspace{0.05cm}, \hspace{0.2cm} k_2 = 10.8\, {\rm dB}/{\rm km}\hspace{0.05cm}, \hspace{0.2cm}k_3 = 0.60\hspace{0.05cm} \hspace{0.05cm}.
- The red curve shows the function \alpha(f) calculated with this parameters. For f = 30 \ \rm MHz the attenuation function per unit length is \alpha(f)= 87.5 \ \rm dB/km.
- The blue curve gives the approximation with the \alpha–coefficients. This is almost indistinguishable from the red curve within the drawing accuracy.
Notes:
- The exercise belongs to the chapter Properties of Balanced Copper Pairs.
- You can use the (German language) interactive SWF applet "Dämpfung von Kupferkabeln" ⇒ "Attenuation of copper cables" .
- [PW95] denotes the following literature reference: Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
Questions
Solution
- The derivative of the given expected value with respect to \alpha_1 gives:
- \frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}} = \frac{2}{3}\cdot B^3 \cdot \alpha_1 + \frac{4}{5}\cdot B^{2.5} \cdot \alpha_2 - \frac{2 k_2 }{k_3 + 2} \cdot \frac{B^{k_3+2}}{f_0^{k_3}}= 0 \hspace{0.05cm} .
- By setting it to zero and dividing by 2B^2/3, we obtain:
- \alpha_1 + \frac{6}{5}\cdot B^{-0.5} \cdot \alpha_2 - \frac{3 k_2 }{k_3 +2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C_1 = \frac{6}{5}\cdot B^{-0.5} \hspace{0.05cm} , \hspace{0.5cm} C_2 = - \frac{3 k_2 }{k_3 +2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} \hspace{0.05cm} .
(2) Solutions 2 and 5 are correct:
- Using the same procedure as in subtask (1), we obtain:
- \frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}} = \frac{4}{5}\cdot B^{2.5} \cdot \alpha_1 + B^{2} \cdot \alpha_2 - \frac{2 k_2 }{k_3 + 1.5} \cdot \frac{B^{k_3+1.5}}{f_0^{k_3}}= 0
- \Rightarrow \hspace{0.3cm} \alpha_1 + \frac{5}{4}\cdot B^{-0.5} \cdot \alpha_2 - \frac{2.5 \cdot k_2 }{k_3 +1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_1 = \frac{5}{4}\cdot B^{-0.5} \hspace{0.05cm} , \hspace{0.3cm}D_2 = - \frac{2.5 \cdot k_2 }{k_3 +1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} \hspace{0.05cm} .
(3) Both solutions are correct:
- From C_1 \cdot \alpha_2 + C_2 = D_1 \cdot \alpha_2 + D_2 we obtain a linear equation for \alpha_2. With the result from (2) we can write:
- \alpha_2 = \frac{D_2 - C_2}{C_1 - D_1} = \frac{- \frac{2.5 \cdot k_2 }{k_3 +1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} + \frac{3 k_2 }{k_3 +2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}}{{6}/{5}\cdot B^{-0.5} - {5}/{4}\cdot B^{-0.5}} = \frac{- {2.5 \cdot k_2 }\cdot(k_3 +2) + {3 k_2 }\cdot (k_3 +1.5) }{({6}/{5} - {5}/{4})(k_3 +1.5)(k_3 +2)} \cdot \frac{B^{k_3-0.5}}{f_0^{k_3}}
- \Rightarrow \hspace{0.3cm}\alpha_2 = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}} \hspace{0.05cm} .
- For the parameter \alpha_1 then holds:
- \alpha_1 = - C_1 \cdot \alpha_2 - C_2 = -\frac{6}{5}\cdot B^{-0.5} \cdot 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}} +\frac{3 k_2 }{k_3 +2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}
- \Rightarrow \hspace{0.3cm}\alpha_1 = (B/f_0)^{k_3 -1}\cdot \frac{-12 \cdot (1-k_3) + 3 \cdot (k_3 + 1.5)}{(k_3 + 1.5)(k_3 + 2)} \cdot \frac {k_2}{f_0} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\alpha_1 =15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{f_0}\hspace{0.05cm} .
- Regardless of the bandwidth, we obtain for k_3 = 1:
- \alpha_1 = (B/f_0)^{k_3 -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{f_0} = \frac{15 \cdot 0.5}{2.5 \cdot 3}\cdot \frac {k_2}{f_0} \hspace{0.15cm}\underline{ = {k_2}/{f_0}}\hspace{0.05cm} ,
- \alpha_2 = (B/f_0)^{k_3 -0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}}\hspace{0.15cm}\underline{= 0} \hspace{0.05cm} .
- In contrast, for k_3 = 0.5:
- \alpha_1 = (B/f_0)^{k_3 -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{f_0} \hspace{0.15cm}\underline{= 0}\hspace{0.05cm} ,
- \alpha_2 = (B/f_0)^{k_3 -0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}}= \frac{10 \cdot 0.5}{2 \cdot 2.5}\cdot \frac {k_2}{\sqrt{f_0}} = \hspace{0.15cm}\underline{ {k_2}/{\sqrt{f_0}}} \hspace{0.05cm} .
(4) For the two coefficients, with k_2 = 10.8 \ \rm dB/km, k_3 = 0.6 \ \rm dB/km and B/f_0 = 30:
- \alpha_1 = (B/f_0)^{k_3 -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{f_0} = 30^{-0.4}\cdot \frac{15 \cdot 0.1}{2.1 \cdot 2.6}\cdot \frac {10.8 \, {\rm dB/km} }{1 \, {\rm MHz}} \hspace{0.15cm}\underline{ \approx 0.761\, {{\rm dB} }/{({\rm km \cdot MHz})}} \hspace{0.05cm} ,
- \alpha_2 = (B/f_0)^{k_3 -0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}}= \frac {k_2}{\sqrt{f_0}} = 30^{0.1}\cdot \frac{10 \cdot 0.4}{2.1 \cdot 2.6}\cdot \frac {10.8 \, {\rm dB/km} }{1 \, {\rm MHz^{0.5}}} \hspace{0.15cm}\underline{ \approx 11.1\, {{\rm dB} }/{({\rm km \cdot \sqrt{MHz}}})}\hspace{0.05cm} .
(5) According to the given equation \alpha_{\rm II}(f) thus also holds:
- \alpha_{\rm II}(f = 30 \, {\rm MHz}) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} = \big [ \hspace{0.05cm} 4.4 + 0.761 \cdot 30 + 11.1 \cdot \sqrt {30}\hspace{0.05cm} \big ]\frac {\rm dB}{\rm km } \hspace{0.15cm}\underline{\approx 88.1\, {\rm dB}/{\rm km }} \hspace{0.05cm}.