Difference between revisions of "Aufgaben:Exercise 1.1: Dual Slope Loss Model"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Mobile Kommunikation/Distanzabhängige Dämpfung und Abschattung }} Datei:P_ID2120__Mob_A_1_1.png|right|frame|Dual-Slope-Pfadverlust…“)
 
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(31 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Mobile Kommunikation/Distanzabhängige Dämpfung und Abschattung
+
{{quiz-Header|Buchseite=Mobile_Communications/Distance_Dependent_Attenuation_and_Shading
 
}}
 
}}
  
[[File:P_ID2120__Mob_A_1_1.png|right|frame|Dual-Slope-Pfadverlustmodell]]
+
[[File:EN_Mob_A1_1.png|right|frame|Dual-slope path loss diagram]]
Zur Simulation des Pfadverlustes in städtischer Umgebung verwendet man oft das asymptotische Dual–Slope–Modell, das im Diagramm als rote Kurve dargestellt ist. Dieses einfache Modell ist durch zwei lineare Abschnitte gekennzeichnet, die durch den so genannten Breakpoint (BP) getrennt sind:
+
To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram.  This simple model is characterized by two linear sections separated by the so-called breakpoint  $\rm (BP)$. The variable name "$V$" stands for "Verlust", which is the German word for "loss":
* Für  $d \le d_{\rm BP}$  gilt mit dem Exponenten  $\gamma_0$:
+
* For  $d \le d_{\rm BP}$  and the exponent   $\gamma_0$  we have:
:$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.$$
+
:$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.$$
  
* Für  $d > d_{\rm BP}$  ist der Pfadverlustexponent  $\gamma_1$  anzusetzen, wobei  $\gamma_1 > \gamma_0$  gilt:  
+
* For  $d > d_{\rm BP}$  we must apply the path loss exponent  $\gamma_1$  where  $\gamma_1 > \gamma_0$:  
:$$V_{\rm P}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.$$
+
:$$V_{\rm S}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.$$
 
   
 
   
In diesen Gleichungen bedeuten:  
+
In these equations, the variables are:  
* $V_0$  ist der Pfadverlust (in dB) bei  $d_0$  (Normierungsdistanz).
+
* $V_0$  is the path loss (in dB) at  $d_0$  (normalization distance).
* $V_{\rm BP}$  ist der Pfadverlust (in dB) bei  $d=d_{\rm BP}$  ("Breakpoint").
+
* $V_{\rm BP}$  is the path loss (in dB) at  $d=d_{\rm BP}$  ("Breakpoint").
  
  
Die Grafik gilt für die Modellparameter
+
The graph applies to the model parameters
 
:$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}
 
:$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}
 
  V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm}
 
  V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm}
Line 21: Line 21:
 
  V_{\rm BP} = 50\,{\rm dB}\hspace{0.05cm}.$$
 
  V_{\rm BP} = 50\,{\rm dB}\hspace{0.05cm}.$$
  
In den Fragen wird dieser abschnittsweise definierte Verlauf mit Profil  $\rm A$ bezeichnet.  
+
In the questions, this piece-wise defined profile is called  $\rm A$.  
  
Als zweite Kurve ist das Profil  $\rm B$  eingezeichnet, das durch folgende Gleichung gegeben ist:
+
The second curve is the profile  $\rm B$  given by the following equation:
:$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right )  
+
:$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right )  
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$
  
Mit diesem  Dual–Slope–Modell ist der gesamte Distanzverlauf geschlossen beschreibbar, und die Empfangsleistung hängt von der Distanz  $d$  entsprechend der folgenden Gleichung  ab:
+
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  $d$  according to the following equation:
:$$P_{\rm E}(d) =  \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm zus}}{K_{\rm P}(d)}
+
:$$P_{\rm E}(d) =  \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm tot}}{V_{\rm S}(d)}
  \hspace{0.05cm},\hspace{0.2cm}K_{\rm P}(d) = 10^{V_{\rm P}(d)/10}  
+
  \hspace{0.05cm},\hspace{0.2cm}V_{\rm S}(d) = 10^{V_{\rm S}(d)/10}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Hierbei sind alle Parameter absolut einzusetzen, also nicht logarithmisch in dB. Die Sendeleistung wird zu  $P_{\rm S} = 5 \ \rm W$  angenommen. Die weiteren Größen haben folgende Bedeutungen und Werte:
+
Here, all parameters are in natural units (not in dB).  The transmit power is assumed to be  $P_{\rm S} = 5 \ \rm W$ .  The other quantities have the following meanings and values:
* $10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB$  (Gewinn der Sendeantenne),
+
* $10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB$  (gain of the transmit antenna),
* $10 \cdot \lg \ G_{\rm E} = -3 \ \rm dB$  (Gewinn der Empfangsantenne – also eigentlich ein Verlust),
+
* $10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB$  (gain of receiving antenna – so actually a loss),
* $10 \cdot \lg \ V_{\rm zus} = 4 \ \rm dB$  (Verlust durch Zuführungen).
+
* $10 \cdot \lg \ V_{\rm tot} = 4 \ \ \rm dB$  (loss through feeds).
  
  
Line 42: Line 42:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum Kapitel  [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distanzabhängige Dämpfung und Abschattung]].
+
*This task belongs to the chapter  [[Mobile_Communications/Distance_dependent_attenuation_and_shading|Distance dependent attenuation and shading]].
*Würde man das Profil  $\rm B$  entsprechend
+
*If the profile  $\rm B$  were
:$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right )  
+
:$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right )  
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$
:definieren, so wären Profil  $\rm A$  und Profil  $\rm B$  für  $d ≥ d_{\rm BP}$  identisch.  
+
:then profile  $\rm A$  and profile  $\rm B$  would be identical  for  $d ≥ d_{\rm BP}$.  
*In diesem Fall würde jedoch im unteren Bereich  $(d < d_{\rm BP})$  das Profil  $\rm B$  oberhalb von Profil  $\rm A$   liegen, und somit deutlich zu gute Verhältnisse suggerieren. Beispielsweise ergäbe sich für  $d = d_0 = 1 \ \rm m$  bei den zugrundeliegenden Zahlenwerten ein um  $40 \ \rm dB$  zu gutes Ergebnis:
+
*In this case, however, profile  $\rm B$  would be above profile  $\rm A$  for   $d < d_{\rm BP}$, suggesting clearly too good conditions.  
:$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right )
+
*For example,   $d = d_0 = 1 \ \ \rm m$  with the given numerical values gives a result that is   $40 \ \ \rm dB$  too good:
 +
:$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right )
 
  = -30\,{\rm dB} \hspace{0.05cm}. $$
 
  = -30\,{\rm dB} \hspace{0.05cm}. $$
 
   
 
   
Line 55: Line 56:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist der Pfadverlust $($in &nbsp;$\rm dB)$&nbsp; nach&nbsp; $d= 100 \ \rm m$&nbsp; gemäß Profil &nbsp;$\rm A$?
+
{How large is the path loss $($in &nbsp;$\rm dB)$&nbsp; after&nbsp; $d= 100 \ \rm m$&nbsp; according to profile &nbsp;$\rm A$?
 
|type="{}"}
 
|type="{}"}
$V_{\rm P}(d = 100 \ \rm m) \ = \ $ { 50 3% } $\ \rm dB$
+
$V_{\rm S}(d = 100 \ \rm m) \ = \ $ { 50 3% } $\ \rm dB$
  
{Wie groß ist der Pfadverlust $($in &nbsp;$\rm dB)$&nbsp; nach&nbsp; $d= 100 \ \rm m$&nbsp; gemäß Profil &nbsp;$\rm B$?
+
{How large is the path loss $($in &nbsp;$\rm dB)$&nbsp; after&nbsp; $d= 100 \ \rm m$&nbsp; according to profile &nbsp;$\rm B$?
 
|type="{}"}
 
|type="{}"}
$V_{\rm P}(d = 100 \ \rm m) \ = \ $ { 56 3% } $\ \rm dB$
+
$V_{\rm S}(d = 100 \ \rm m) \ = \ $ { 56 3% } $\ \rm dB$
  
{Welche Empfangsleistung ergibt sich nach&nbsp; $100 \ \rm m$&nbsp; mit beiden Profilen?
+
{What is the received power after&nbsp; $100 \ \ \rm m$&nbsp; with both profiles?
 
|type="{}"}
 
|type="{}"}
Profil $\text{A:}  \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $ { 0.5 3% } $\ \rm mW$
+
Profile $\text{A:}  \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $ { 0.5 3% } $\ \ \rm mW$
Profil $\text{B:}  \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $ { 0.125 3% } $\ \rm mW$
+
Profile $\text{B:}  \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $ { 0.125 3% } $\ \ \rm mW$
  
{Wie groß ist die Abweichung&nbsp; $ΔV_{\rm P}$&nbsp; zwischen Profil &nbsp;$\rm A$&nbsp; und &nbsp;$\rm B$&nbsp; bei&nbsp; $d = 50 \ \rm m$?
+
{How big is the deviation&nbsp; $ΔV_{\rm S}$&nbsp; between profile &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$&nbsp; at&nbsp; $d = 50 \ \rm m$?
 
|type="{}"}
 
|type="{}"}
 
$ΔV_{\rm P}(d = 50 \ \rm m) \ = \ $ { 3.5 3% } $\ \rm dB$
 
$ΔV_{\rm P}(d = 50 \ \rm m) \ = \ $ { 3.5 3% } $\ \rm dB$
  
{Wie groß ist die Abweichung&nbsp; $ΔV_{\rm P}$&nbsp; zwischen Profil &nbsp;$\rm A$&nbsp; und &nbsp;$\rm B$&nbsp; bei&nbsp; $d = 200 \ \rm m$?
+
{How big is the deviation&nbsp; $ΔV_{\rm S}$&nbsp; between profile &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$&nbsp; at&nbsp; $d = 200 \ \rm m$?
 
|type="{}"}
 
|type="{}"}
 
$ΔV_{\rm P}(d = 200 \ \rm m)\ = \ $ { 3.5 3% } $\ \rm dB$
 
$ΔV_{\rm P}(d = 200 \ \rm m)\ = \ $ { 3.5 3% } $\ \rm dB$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Man erkennt direkt aus der Grafik, dass das Profil '''(A)''' mit den beiden linearen Abschnitten beim &bdquo;Breakpoint&rdquo; $(d = 100 \ \rm m)$ das folgende Ergebnis liefert:
+
'''(1)'''&nbsp; You can see directly from the graphic that the profile&nbsp; $\rm (A)$&nbsp; with the two linear sections at the breakpoint&nbsp; $(d = 100 \ \rm m)$&nbsp; gives the following result:
:$$V_{\rm P}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}}  \hspace{0.05cm}.$$
+
:$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}}  \hspace{0.05cm}.$$
  
  
  
'''(2)'''&nbsp; Mit dem Profil <b>(B)</b> erhält man dagegen bei Verwendung von $V_0 = 10 \ \rm dB$, $\gamma_0 = 2$ und $\gamma_1 = 4$:
+
'''(2)'''&nbsp; With the profile&nbsp; $\rm (B)$&nbsp; on the other hand, using&nbsp; $V_0 = 10 \ \rm dB$,&nbsp; $\gamma_0 = 2$&nbsp; and&nbsp; $\gamma_1 = 4$:
:$$V_{\rm P}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2)  
+
:$$V_{\rm S}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2)  
 
   \hspace{0.15cm} \underline{\approx 56\,{\rm dB}}  \hspace{0.05cm}.$$
 
   \hspace{0.15cm} \underline{\approx 56\,{\rm dB}}  \hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; Die Antennengewinne vom Sender $(+17 \ \rm dB)$ und Empfänger $(-3 \ \rm dB)$ sowie die internen Verluste der Basisstation $(+4 \ \rm dB)$ können zusammengefasst werden zu
+
'''(3)'''&nbsp; The antenna gains from the transmitter&nbsp; $(+17 \ \rm dB)$&nbsp; and receiver&nbsp; $(-3 \ \rm dB)$&nbsp; and the internal losses of the base station&nbsp; $(+4 \ \rm dB)$&nbsp; can be combined to
:$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm zus} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB}
+
:$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm tot} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Für das Profil '''(A)''' ergab sich folgender Pfadverlust:
+
*For the profile&nbsp; $\rm (A)$&nbsp; the following path loss occurred:
:$$V_{\rm P}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.$$
+
:$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.$$
  
:Damit erhält man für die Empfangsleistung nach $d = 100 \ \rm m$:
+
:This gives you for the received power after&nbsp; $d = 100\ \rm m$:
:$$P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\rm W} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}}  \hspace{0.05cm}.$$
+
:$$P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}}  \hspace{0.05cm}.$$
  
*Bei Profil '''(B)''' ist die Empfangsleistung etwa um den Faktor $4$ kleiner:
+
*For profile&nbsp; $\rm (B)$&nbsp; the received power is about&nbsp; $4$&nbsp; times smaller:
 
:$$P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}}  \hspace{0.05cm}.$$
 
:$$P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}}  \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Unterhalb des Breakpoints $(d < 100 \ \rm m)$ ist die Abweichung durch den letzten Summand von Profil '''(B)''' bestimmt:
+
'''(4)'''&nbsp; Below the breakpoint&nbsp; $(d < 100 \ \rm m)$, the deviation is determined by the last summand of profile&nbsp; $\rm (B)$:
:$${\rm \Delta}V_{\rm P}(d = 50\,{\rm m}) =   (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm}
+
:$${\rm \Delta}V_{\rm S}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm}
 
  \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
 
  \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
  
  
  
'''(5)'''&nbsp; Hier liefert das Profil '''(A)''' mit $V_{\rm BP} = 50 \ \rm dB$:
+
'''(5)'''&nbsp; Here the profile&nbsp; $\rm (A)$&nbsp; with&nbsp; $V_{\rm BP} = 50 \ \rm dB$&nbsp; gives:
:$$V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm}
+
:$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm}
 
  {\approx 62\,{\rm dB}} \hspace{0.05cm}.$$
 
  {\approx 62\,{\rm dB}} \hspace{0.05cm}.$$
  
*Dagegen führt das Profil '''(B)''' zum Ergebnis:
+
*On the other hand, the profile&nbsp; $\rm (B)$&nbsp; leads to the result:
:$$V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200)
+
:$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200)
 
  + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB}
 
  + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB}
 
  \hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$
 
  \hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$
:$$\Rightarrow \hspace{0.3cm} {\rm \Delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm}
+
:$$\Rightarrow \hspace{0.3cm} {\rm \Delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm}
 
  \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
 
  \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
  
*Man erkennt, dass $\Delta V_{\rm P}$ nahezu symmetrisch zu $d = d_{\rm BP}$ ist, wenn man die Entfernung $d$ wie in der angegebenen Grafik logarithmisch aufträgt.
+
*You can see that&nbsp; $\Delta V_{\rm S}$&nbsp; is almost symmetrical to&nbsp; $d = d_{\rm BP}$&nbsp; if you plot the distance&nbsp; $d$&nbsp; logarithmically as in the given graph.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Mobile Communications|^1.1 Distance-dependent attenuation^]]
+
[[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]]
 +
[[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]]

Latest revision as of 13:37, 23 March 2021

Dual-slope path loss diagram

To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram.  This simple model is characterized by two linear sections separated by the so-called breakpoint  $\rm (BP)$. The variable name "$V$" stands for "Verlust", which is the German word for "loss":

  • For  $d \le d_{\rm BP}$  and the exponent   $\gamma_0$  we have:
$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.$$
  • For  $d > d_{\rm BP}$  we must apply the path loss exponent  $\gamma_1$  where  $\gamma_1 > \gamma_0$:
$$V_{\rm S}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.$$

In these equations, the variables are:

  • $V_0$  is the path loss (in dB) at  $d_0$  (normalization distance).
  • $V_{\rm BP}$  is the path loss (in dB) at  $d=d_{\rm BP}$  ("Breakpoint").


The graph applies to the model parameters

$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm} V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} V_{\rm BP} = 50\,{\rm dB}\hspace{0.05cm}.$$

In the questions, this piece-wise defined profile is called  $\rm A$.

The second curve is the profile  $\rm B$  given by the following equation:

$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$

With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  $d$  according to the following equation:

$$P_{\rm E}(d) = \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm tot}}{V_{\rm S}(d)} \hspace{0.05cm},\hspace{0.2cm}V_{\rm S}(d) = 10^{V_{\rm S}(d)/10} \hspace{0.05cm}.$$

Here, all parameters are in natural units (not in dB).  The transmit power is assumed to be  $P_{\rm S} = 5 \ \rm W$ .  The other quantities have the following meanings and values:

  • $10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB$  (gain of the transmit antenna),
  • $10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB$  (gain of receiving antenna – so actually a loss),
  • $10 \cdot \lg \ V_{\rm tot} = 4 \ \ \rm dB$  (loss through feeds).




Notes:

$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$
then profile  $\rm A$  and profile  $\rm B$  would be identical for  $d ≥ d_{\rm BP}$.
  • In this case, however, profile  $\rm B$  would be above profile  $\rm A$  for   $d < d_{\rm BP}$, suggesting clearly too good conditions.
  • For example,   $d = d_0 = 1 \ \ \rm m$  with the given numerical values gives a result that is   $40 \ \ \rm dB$  too good:
$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) = -30\,{\rm dB} \hspace{0.05cm}. $$



Questions

1

How large is the path loss $($in  $\rm dB)$  after  $d= 100 \ \rm m$  according to profile  $\rm A$?

$V_{\rm S}(d = 100 \ \rm m) \ = \ $

$\ \rm dB$

2

How large is the path loss $($in  $\rm dB)$  after  $d= 100 \ \rm m$  according to profile  $\rm B$?

$V_{\rm S}(d = 100 \ \rm m) \ = \ $

$\ \rm dB$

3

What is the received power after  $100 \ \ \rm m$  with both profiles?

Profile $\text{A:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $

$\ \ \rm mW$
Profile $\text{B:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $

$\ \ \rm mW$

4

How big is the deviation  $ΔV_{\rm S}$  between profile  $\rm A$  and  $\rm B$  at  $d = 50 \ \rm m$?

$ΔV_{\rm P}(d = 50 \ \rm m) \ = \ $

$\ \rm dB$

5

How big is the deviation  $ΔV_{\rm S}$  between profile  $\rm A$  and  $\rm B$  at  $d = 200 \ \rm m$?

$ΔV_{\rm P}(d = 200 \ \rm m)\ = \ $

$\ \rm dB$


Solution

(1)  You can see directly from the graphic that the profile  $\rm (A)$  with the two linear sections at the breakpoint  $(d = 100 \ \rm m)$  gives the following result:

$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.$$


(2)  With the profile  $\rm (B)$  on the other hand, using  $V_0 = 10 \ \rm dB$,  $\gamma_0 = 2$  and  $\gamma_1 = 4$:

$$V_{\rm S}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.$$


(3)  The antenna gains from the transmitter  $(+17 \ \rm dB)$  and receiver  $(-3 \ \rm dB)$  and the internal losses of the base station  $(+4 \ \rm dB)$  can be combined to

$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm tot} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} \hspace{0.05cm}.$$
  • For the profile  $\rm (A)$  the following path loss occurred:
$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.$$
This gives you for the received power after  $d = 100\ \rm m$:
$$P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}.$$
  • For profile  $\rm (B)$  the received power is about  $4$  times smaller:
$$P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}.$$


(4)  Below the breakpoint  $(d < 100 \ \rm m)$, the deviation is determined by the last summand of profile  $\rm (B)$:

$${\rm \Delta}V_{\rm S}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$


(5)  Here the profile  $\rm (A)$  with  $V_{\rm BP} = 50 \ \rm dB$  gives:

$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} {\approx 62\,{\rm dB}} \hspace{0.05cm}.$$
  • On the other hand, the profile  $\rm (B)$  leads to the result:
$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} \hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$
$$\Rightarrow \hspace{0.3cm} {\rm \Delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
  • You can see that  $\Delta V_{\rm S}$  is almost symmetrical to  $d = d_{\rm BP}$  if you plot the distance  $d$  logarithmically as in the given graph.