Difference between revisions of "Aufgaben:Exercise 1.1: Dual Slope Loss Model"
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises") |
|||
(23 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Mobile_Communications/Distance_Dependent_Attenuation_and_Shading |
}} | }} | ||
− | [[File: | + | [[File:EN_Mob_A1_1.png|right|frame|Dual-slope path loss diagram]] |
− | To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP): | + | To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint $\rm (BP). The variable name "V$" stands for "Verlust", which is the German word for "loss": |
− | * For d \le d_{\rm BP} and the exponent \gamma_0 we have: | + | * For d \le d_{\rm BP} and the exponent \gamma_0 we have: |
− | $$V_{\rm | + | :$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.$$ |
− | * For d > d_{\rm BP} we must apply the path loss exponent \gamma_1 where \gamma_1 > \gamma_0 | + | * For d > d_{\rm BP} we must apply the path loss exponent \gamma_1 where \gamma_1 > \gamma_0: |
− | $$V_{\rm | + | :$$V_{\rm S}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.$$ |
In these equations, the variables are: | In these equations, the variables are: | ||
Line 16: | Line 16: | ||
The graph applies to the model parameters | The graph applies to the model parameters | ||
− | $$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm} | + | :$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm} |
V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm} | V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm} | \Rightarrow \hspace{0.3cm} | ||
Line 24: | Line 24: | ||
The second curve is the profile \rm B given by the following equation: | The second curve is the profile \rm B given by the following equation: | ||
− | $$V_{\rm | + | :$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) |
+ (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$ | + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$ | ||
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance d according to the following equation: | With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance d according to the following equation: | ||
− | :$$P_{\rm E}(d) = \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm | + | :$$P_{\rm E}(d) = \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm tot}}{V_{\rm S}(d)} |
− | \hspace{0.05cm},\hspace{0.2cm} | + | \hspace{0.05cm},\hspace{0.2cm}V_{\rm S}(d) = 10^{V_{\rm S}(d)/10} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Here, all parameters are in natural units (not in dB). The transmit power is assumed to be P_{\rm S} = 5 \ \rm W . The other quantities have the following meanings and values: | + | Here, all parameters are in natural units (not in dB). The transmit power is assumed to be P_{\rm S} = 5 \ \rm W . The other quantities have the following meanings and values: |
* 10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB (gain of the transmit antenna), | * 10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB (gain of the transmit antenna), | ||
* 10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB (gain of receiving antenna – so actually a loss), | * 10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB (gain of receiving antenna – so actually a loss), | ||
− | * $10 \cdot \lg \ V_{\rm | + | * $10 \cdot \lg \ V_{\rm tot} = 4 \ \ \rm dB$ (loss through feeds). |
Line 43: | Line 43: | ||
''Notes:'' | ''Notes:'' | ||
− | *This task belongs to the chapter [[ | + | *This task belongs to the chapter [[Mobile_Communications/Distance_dependent_attenuation_and_shading|Distance dependent attenuation and shading]]. |
*If the profile \rm B were | *If the profile \rm B were | ||
− | $$V_{\rm | + | :$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) |
+ (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$ | + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$ | ||
− | :then profile \rm A and profile \rm B for d ≥ d_{\rm BP} | + | :then profile \rm A and profile \rm B would be identical for d ≥ d_{\rm BP}. |
− | *In this case, however, profile \rm B would be above profile \rm A for $ | + | *In this case, however, profile \rm B would be above profile \rm A for d < d_{\rm BP}, suggesting clearly too good conditions. |
− | $$V_{\rm | + | *For example, d = d_0 = 1 \ \ \rm m with the given numerical values gives a result that is 40 \ \ \rm dB too good: |
+ | :$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) | ||
= -30\,{\rm dB} \hspace{0.05cm}. $$ | = -30\,{\rm dB} \hspace{0.05cm}. $$ | ||
Line 55: | Line 56: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
{How large is the path loss (in \rm dB) after d= 100 \ \rm m according to profile \rm A? | {How large is the path loss (in \rm dB) after d= 100 \ \rm m according to profile \rm A? | ||
|type="{}"} | |type="{}"} | ||
− | $V_{\rm | + | $V_{\rm S}(d = 100 \ \rm m) \ = \ { 50 3% } \ \rm dB$ |
{How large is the path loss (in \rm dB) after d= 100 \ \rm m according to profile \rm B? | {How large is the path loss (in \rm dB) after d= 100 \ \rm m according to profile \rm B? | ||
|type="{}"} | |type="{}"} | ||
− | $V_{\rm | + | $V_{\rm S}(d = 100 \ \rm m) \ = \ { 56 3% } \ \rm dB$ |
− | {What is the | + | {What is the received power after 100 \ \ \rm m with both profiles? |
|type="{}"} | |type="{}"} | ||
Profile \text{A:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ { 0.5 3% } \ \ \rm mW | Profile \text{A:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ { 0.5 3% } \ \ \rm mW | ||
Profile \text{B:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ { 0.125 3% } \ \ \rm mW | Profile \text{B:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ { 0.125 3% } \ \ \rm mW | ||
− | {How big is the deviation $ΔV_{\rm | + | {How big is the deviation $ΔV_{\rm S} between profile \rm A and \rm B at d = 50 \ \rm m$? |
|type="{}"} | |type="{}"} | ||
ΔV_{\rm P}(d = 50 \ \rm m) \ = \ { 3.5 3% } \ \rm dB | ΔV_{\rm P}(d = 50 \ \rm m) \ = \ { 3.5 3% } \ \rm dB | ||
− | {How big is the deviation $ΔV_{\rm | + | {How big is the deviation $ΔV_{\rm S} between profile \rm A and \rm B at d = 200 \ \rm m$? |
|type="{}"} | |type="{}"} | ||
ΔV_{\rm P}(d = 200 \ \rm m)\ = \ { 3.5 3% } \ \rm dB | ΔV_{\rm P}(d = 200 \ \rm m)\ = \ { 3.5 3% } \ \rm dB | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' You can see directly from the graphic that the profile | + | '''(1)''' You can see directly from the graphic that the profile $\rm (A)$ with the two linear sections at the breakpoint (d = 100 \ \rm m) gives the following result: |
− | $$V_{\rm | + | :$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.$$ |
− | '''(2)''' With the profile | + | '''(2)''' With the profile $\rm (B)$ on the other hand, using V_0 = 10 \ \rm dB, \gamma_0 = 2 and \gamma_1 = 4: |
− | $$V_{\rm | + | :$$V_{\rm S}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) |
\hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.$$ | \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.$$ | ||
− | '''(3)''' The antenna gains from the transmitter $(+17 | + | '''(3)''' The antenna gains from the transmitter (+17 \ \rm dB) and receiver (-3 \ \rm dB) and the internal losses of the base station (+4 \ \rm dB) can be combined to |
− | $$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm | + | :$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm tot} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} |
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | *For the profile | + | *For the profile $\rm (A)$ the following path loss occurred: |
− | $$V_{\rm | + | :$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.$$ |
− | :This gives you | + | :This gives you for the received power after $d = 100\ \rm m$: |
− | P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}. | + | :P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}. |
− | *For profile | + | *For profile $\rm (B)$ the received power is about 4 times smaller: |
:P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}. | :P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}. | ||
− | '''(4)''' Below the breakpoint (d < 100 \ \rm m) the deviation is determined by the last summand of profile | + | '''(4)''' Below the breakpoint (d < 100 \ \rm m), the deviation is determined by the last summand of profile $\rm (B)$: |
− | $${\rm \ | + | :$${\rm \Delta}V_{\rm S}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} |
\underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$ | \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$ | ||
− | '''(5)''' Here the profile | + | '''(5)''' Here the profile $\rm (A)$ with V_{\rm BP} = 50 \ \rm dB gives: |
− | $$V_{\rm | + | :$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} |
{\approx 62\,{\rm dB}} \hspace{0.05cm}.$$ | {\approx 62\,{\rm dB}} \hspace{0.05cm}.$$ | ||
− | *On the other hand, the profile | + | *On the other hand, the profile $\rm (B)$ leads to the result: |
− | $$V_{\rm | + | :$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) |
+ 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} | + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} | ||
\hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$ | \hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$ | ||
− | $$\Rightarrow \hspace{0.3cm} {\rm \ | + | :$$\Rightarrow \hspace{0.3cm} {\rm \Delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} |
\underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$ | \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$ | ||
− | *You can see that $\Delta V_{\rm | + | *You can see that $\Delta V_{\rm S}$ is almost symmetrical to d = d_{\rm BP} if you plot the distance d logarithmically as in the given graph. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category:Exercises | + | [[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]] |
+ | [[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]] |
Latest revision as of 14:37, 23 March 2021
To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint \rm (BP). The variable name "V" stands for "Verlust", which is the German word for "loss":
- For d \le d_{\rm BP} and the exponent \gamma_0 we have:
- V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.
- For d > d_{\rm BP} we must apply the path loss exponent \gamma_1 where \gamma_1 > \gamma_0:
- V_{\rm S}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.
In these equations, the variables are:
- V_0 is the path loss (in dB) at d_0 (normalization distance).
- V_{\rm BP} is the path loss (in dB) at d=d_{\rm BP} ("Breakpoint").
The graph applies to the model parameters
- d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm} V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} V_{\rm BP} = 50\,{\rm dB}\hspace{0.05cm}.
In the questions, this piece-wise defined profile is called \rm A.
The second curve is the profile \rm B given by the following equation:
- V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance d according to the following equation:
- P_{\rm E}(d) = \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm tot}}{V_{\rm S}(d)} \hspace{0.05cm},\hspace{0.2cm}V_{\rm S}(d) = 10^{V_{\rm S}(d)/10} \hspace{0.05cm}.
Here, all parameters are in natural units (not in dB). The transmit power is assumed to be P_{\rm S} = 5 \ \rm W . The other quantities have the following meanings and values:
- 10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB (gain of the transmit antenna),
- 10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB (gain of receiving antenna – so actually a loss),
- 10 \cdot \lg \ V_{\rm tot} = 4 \ \ \rm dB (loss through feeds).
Notes:
- This task belongs to the chapter Distance dependent attenuation and shading.
- If the profile \rm B were
- V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )
- then profile \rm A and profile \rm B would be identical for d ≥ d_{\rm BP}.
- In this case, however, profile \rm B would be above profile \rm A for d < d_{\rm BP}, suggesting clearly too good conditions.
- For example, d = d_0 = 1 \ \ \rm m with the given numerical values gives a result that is 40 \ \ \rm dB too good:
- V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) = -30\,{\rm dB} \hspace{0.05cm}.
Questions
Solution
- V_{\rm S}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.
(2) With the profile \rm (B) on the other hand, using V_0 = 10 \ \rm dB, \gamma_0 = 2 and \gamma_1 = 4:
- V_{\rm S}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.
(3) The antenna gains from the transmitter (+17 \ \rm dB) and receiver (-3 \ \rm dB) and the internal losses of the base station (+4 \ \rm dB) can be combined to
- 10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm tot} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} \hspace{0.05cm}.
- For the profile \rm (A) the following path loss occurred:
- V_{\rm S}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.
- This gives you for the received power after d = 100\ \rm m:
- P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}.
- For profile \rm (B) the received power is about 4 times smaller:
- P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}.
(4) Below the breakpoint (d < 100 \ \rm m), the deviation is determined by the last summand of profile \rm (B):
- {\rm \Delta}V_{\rm S}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.
(5) Here the profile \rm (A) with V_{\rm BP} = 50 \ \rm dB gives:
- V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} {\approx 62\,{\rm dB}} \hspace{0.05cm}.
- On the other hand, the profile \rm (B) leads to the result:
- V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} \hspace{0.15cm} {\approx 65.5\,{\rm dB}}
- \Rightarrow \hspace{0.3cm} {\rm \Delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.
- You can see that \Delta V_{\rm S} is almost symmetrical to d = d_{\rm BP} if you plot the distance d logarithmically as in the given graph.