Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.3: Rayleigh Fading"

From LNTwww
m (Text replacement - "”" to """)
 
(35 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Probability_Density_of_Rayleigh_Fading}}
  
 
[[File:P_ID2106__Mob_A_1_3.png|right|frame|Time evolution of Rayleigh fading]]
 
[[File:P_ID2106__Mob_A_1_3.png|right|frame|Time evolution of Rayleigh fading]]
Rayleigh–Fading should be used when
+
Rayleigh fading should be used when
 
* there is no direct connection between transmitter and receiver, and
 
* there is no direct connection between transmitter and receiver, and
 
* the signal reaches the receiver through many paths, but their transit times are approximately the same.
 
* the signal reaches the receiver through many paths, but their transit times are approximately the same.
Line 9: Line 9:
 
An example of such a Rayleigh channel occurs in urban mobile communications when narrow-band signals are used with ranges between  50  and  100  meters.
 
An example of such a Rayleigh channel occurs in urban mobile communications when narrow-band signals are used with ranges between  50  and  100  meters.
  
Looking at the radio signals  s(t)  and  r(t)  in the equivalent low-pass range (that is, around the frequency  f=0), the signal transmission is described completely by the equation
+
Looking at the radio signals  s(t)  and  r(t)  in the equivalent low-pass range  (that is, around the frequency  f=0),  the signal transmission is described completely by the equation
 
:r(t)=z(t)s(t)
 
:r(t)=z(t)s(t)
  
Line 16: Line 16:
  
 
is always complex and has the following characteristics:
 
is always complex and has the following characteristics:
* The real part  x(t)  and the imaginary part  y(t)  are Gaussian mean-free random variables, both with equal variance  σ2. Within the components  x(t)  and  y(t)  there may be statistical dependence, but this is not relevant for the solution of the present task. We assume that x(t)  and  y(t); are uncorrelated.
+
* The real part  x(t)  and the imaginary part  y(t)  are Gaussian mean-free random variables, both with equal variance  σ2.  Within the components  x(t)  and  y(t)  there may be statistical dependence, but this is not relevant for the solution of the present task.  We assume that  x(t)  and  y(t)  are uncorrelated.
  
* The amount&nbsp; a(t)=|z(t)|&nbsp; has a Rayleigh&ndash;WDF, from which the name &bdquo;<i>Rayleigh&ndash;Fading</i>&rdquo; is derived:
+
* The magnitude&nbsp; a(t)=|z(t)|&nbsp; has a Rayleigh PDF, from which the name "Rayleigh Fading" is derived:
 
:$$f_a(a) =
 
:$$f_a(a) =
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\\
+
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\
0 \end{array} \right.\quad
+
0 \end{array} \right.\quad
\begin{array}{*{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0
+
\begin{array}{*{1}c} {\rm for}\hspace{0.15cm} a \ge 0
\\ {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\\ \\ \end{array}
+
\\ {\rm for}\hspace{0.15cm} a < 0 \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* The absolute square&nbsp; p(t)=a(t)2=|z(t)|2&nbsp; is exponentially distributed according to the equation
+
* The squared magnitude&nbsp; p(t)=a(t)2=|z(t)|2&nbsp; is exponentially distributed according to the equation
$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
+
:$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
0 \end{array} \right.\quad
+
0 \end{array} \right.\quad
\begin{array}{*{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0
+
\begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \ge 0
\\ {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\\ \\ \end{array}
+
\\ {\rm for}\hspace{0.15cm} p < 0 \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Measurements have shown that the time intervals with&nbsp; a(t) &#8804; 1&nbsp; (highlighted in yellow in the graphic) add up to&nbsp; 59 ms&nbsp; (areas highlighted in red). With the total measurement time of&nbsp; 150 ms&nbsp; the probability that the amount of the <i>Rayleigh&ndash;fading</i> is less than or equal to&nbsp; 1&nbsp; results in
+
Measurements have shown that the time intervals with&nbsp; a(t) &#8804; 1&nbsp; $($highlighted in yellow in the graphic$)$ add up to&nbsp; 59 ms&nbsp; $($intervals highlighted in red$).$&nbsp; Being the total measurement time&nbsp; 150 ms,&nbsp; the probability that the magnitude of the Rayleigh fading is less than or equal to&nbsp; 1&nbsp; is
$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \%
+
:$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \%
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In the lower graphic the value range between&nbsp; -3 dB&nbsp; and&nbsp; +3 dB&nbsp; regarding the logarithmic Rayleigh&ndash;Size&nbsp; $20 \cdot {\rm lg} is highlighted in green. \ a(t)$. The subtask '''(4)'' refers to this.
+
In the lower graph, the value range between&nbsp; -3 dB&nbsp; and&nbsp; +3 dB&nbsp; of the logarithmic Rayleigh coefficient&nbsp; 20lg a(t)&nbsp; is highlighted in green.&nbsp; The subtask '''(4)'''&nbsp; refers to this.
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
 
''Notes:''  
 
''Notes:''  
* The task belongs to chapter&nbsp; [[Mobile_Communications/Probability Density_of_Rayleigh%E2%80%93Fadings|Probability Density of Rayleigh&ndash;Fadings]]&nbsp; of this book.  
+
* This task belongs to chapter&nbsp; [[Mobile_Communications/Probability_density_of_Rayleigh_fading|Probability density of Rayleigh fading]]&nbsp; of this book.  
* A similar topic is treated with a different approach in chapter&nbsp; [[Stochastic_Signal Theory/Weitere_Verteilungen|Weitere Verteilungen]]&nbsp; of the book &bdquo;Stochastic Signal Theory&rdquo;.
+
* A similar topic is treated with a different approach in chapter&nbsp; [[Theory_of_Stochastic_Signals/Further_distributions|Further distributions]]&nbsp; of the book "Stochastic Signal Theory".
* To check your results you can use the interactive applet&nbsp; [[Applets:WDF_VTF|WDF, VTF and Moments]]&nbsp; of the book &bdquo;Stochastic Signal Theory&rdquo;.
+
* To check your results, you can use the interactive applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|PDF, CDF and Moments of Special Distributions]]&nbsp; of the book "Stochastic Signal Theory".
 
   
 
   
  
  
===Questionnaire===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{For the entire range, the amount function&nbsp; a(t) &#8804; 2 applies. What is the maximum value for the logarithmic quantity in this range?
+
{For the entire range,&nbsp; we have&nbsp; a(t) &#8804; 2.&nbsp; What is the maximum value of the logarithmic quantity in this range?
 
|type="{}"}
 
|type="{}"}
 
Max[20lg a(t)] =  { 6 3% }  dB
 
Max[20lg a(t)] =  { 6 3% }  dB
  
{What is the maximum value for&nbsp; p(t)=|z(t)|2&nbsp; both in linear and logarithmic representation?
+
{What is the maximum value of&nbsp; p(t)=|z(t)|2,&nbsp; both in linear and logarithmic representation?
 
|type="{}"}
 
|type="{}"}
Max[p(t)] =  {\ $ 4 3% }  
+
${\rm Max}\big[p(t)\big] \ = \ $ { 4 3% }  
Max[10lg p(t)] =  { 6 3% }  dB
+
${\rm Max}\big[10 \cdot {\rm lg} \ p(t)\big] \ = \ { 6 3% } \ \rm dB$
  
{Let &nbsp; ${\rm Pr}\big[a(t) &#8804; 1\big] = $0.394 Determine the Rayleigh&ndash;parameter&nbsp; σ.
+
{Let &nbsp; ${\rm Pr}\big[a(t) &#8804; 1\big] = 0.394$.&nbsp; Determine the Rayleigh parameter&nbsp; σ.
 
|type="{}"}
 
|type="{}"}
 
σ =  { 1 3% }
 
σ =  { 1 3% }
  
{What is the probability of the logarithmic Rayleigh&ndash;size &nbsp; &#8658; &nbsp; 10lg p(t)&nbsp; in the range between between&nbsp; -3 dB&nbsp; and&nbsp; +3 dB?
+
{What is the probability that the logarithmic Rayleigh coefficient&nbsp; 10lg p(t)&nbsp; is between &nbsp; -3 dB&nbsp; and&nbsp; +3 dB?
 
|type="{}"}
 
|type="{}"}
 
Pr(|10lg p(t)|<3 dB) =  { 0.411 3% }
 
Pr(|10lg p(t)|<3 dB) =  { 0.411 3% }
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''&nbsp; From Max[a(t)]=2 follows directly:
+
'''(1)'''&nbsp; From&nbsp; Max[a(t)]=2&nbsp; follows directly:
$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
+
:$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; The maximum value of the square p(t)=a(t)2 is
+
'''(2)'''&nbsp; The maximum value of the square&nbsp; p(t)=a(t)2&nbsp; is
$$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{\4}
+
:$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{=4}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*The logarithmic representation of the square of the amount p(t) is identical to the logarithmic representation of the amount a(t). Since p(t) is a power quantity
+
*The logarithmic representation of the squared magnitude&nbsp; p(t)&nbsp; is identical to the logarithmic representation of the magnitude&nbsp; a(t).&nbsp;
$$10 \cdot {\rm lg}\hspace{0.15cm} p(t) = 10 \cdot {\rm lg}\hspace{0.15cm}a(t)^2 = 20 \cdot {\rm lg}\hspace{0.15cm} a(t)
+
*Since&nbsp; p(t)&nbsp; is a power quantity:
 +
:$${\rm Max} \left [  p(t) \right ] = {\rm Max} \left [  a(t)^2 \right ]  \hspace{0.15cm} \underline{= 4}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*The maximum value is thus also 6dB_.
+
*The maximum value is thus also&nbsp; 6dB_.
  
  
  
'''(3)'''&nbsp; The condition a(t) &#8804; 1 is equivalent to the requirement p(t) = a(t)^2 &#8804; 1.  
+
'''(3)'''&nbsp; The condition&nbsp; a(t) &#8804; 1&nbsp; is equivalent to the requirement&nbsp; p(t) = a(t)^2 &#8804; 1.  
*The absolute square is known to be exponentially distributed, and for p &#8805; 0 applies accordingly:
+
*The absolute square is known to be exponentially distributed, and for&nbsp; p &#8805; 0&nbsp; we have
$$f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm exp} [ -\frac{p}{2\sigma^2}]
+
:$$f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm e}^{ -p/(2\sigma^2)}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
[[File:P_ID2112__Mob_A_1_3c.png|right|frame|WDF and probability regions ]]
+
[[File:EN_Mob_A_1_3_c.png|right|frame|PDF and probability regions ]]
 
*It follows:
 
*It follows:
  
$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm exp} [ -\frac{p}{2\sigma^2}] \hspace{0.15cm}{\rm d}p =  
+
:$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm e}^{ -p/(2\sigma^2)} \hspace{0.15cm}{\rm d}p =  
  1 - {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.394$$
+
  1 - {\rm e}^{ -1/(2\sigma^2)} = 0.394$$
$$\Rightarrow \hspace{0.3cm} {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
+
:$$\Rightarrow \hspace{0.3cm} {\rm e}^{ -1/(2\sigma^2)} =0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
  \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  
+
  \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  
 
  \underline{\sigma = 1} \hspace{0.05cm}.$$
 
  \underline{\sigma = 1} \hspace{0.05cm}.$$
  
The graphic shows  
+
The graph shows  
* left the probability&nbsp; {\rm Pr}(p(t) &#8804; 1),
+
* on the left side the probability&nbsp; {\rm Pr}(p(t) &#8804; 1),
* right the probability&nbsp; {\rm Pr}(0.5 \le p(t) &#8804; 2).
+
* on the right side the probability&nbsp; {\rm Pr}(0.5 \le p(t) &#8804; 2).
 
+
<br clear=all>
 
+
'''(4)'''&nbsp; From&nbsp; $10 \cdot {\rm lg} \ p_1 = \ -3 \ \ \rm dB$&nbsp; follows&nbsp; p1=0.5.&nbsp; The upper limit of the integration range results from the condition&nbsp; 10lg p2=+3  dB,&nbsp; so&nbsp; p2=2.  
 
+
*This gives, according to the above graph:
 
 
'''(4)''&nbsp; From $10 \cdot {\rm lg} \ p_1 = \ &ndash;3 \ \ \rm dBfollowsp_1 = 0.5$ and the upper limit of the integration range results from the condition 10lg p2=+3  dB to p2=2.  
 
*This gives you, according to the above graphic:
 
 
$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p =  
 
$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p =  
 
   \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$
 
   \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$
Line 117: Line 120:
  
  
[[Category:Exercises for Mobile Communications|^1.2 PDF of Rayleigh Fading^]]
+
[[Category:Mobile Communications: Exercises|^1.2 PDF of Rayleigh Fading^]]

Latest revision as of 16:41, 28 May 2021

Time evolution of Rayleigh fading

Rayleigh fading should be used when

  • there is no direct connection between transmitter and receiver, and
  • the signal reaches the receiver through many paths, but their transit times are approximately the same.


An example of such a Rayleigh channel occurs in urban mobile communications when narrow-band signals are used with ranges between  50  and  100  meters.

Looking at the radio signals  s(t)  and  r(t)  in the equivalent low-pass range  (that is, around the frequency  f=0),  the signal transmission is described completely by the equation

r(t)=z(t)s(t)

The multiplicative fading coefficient

z(t)=x(t)+jy(t)

is always complex and has the following characteristics:

  • The real part  x(t)  and the imaginary part  y(t)  are Gaussian mean-free random variables, both with equal variance  σ2.  Within the components  x(t)  and  y(t)  there may be statistical dependence, but this is not relevant for the solution of the present task.  We assume that  x(t)  and  y(t)  are uncorrelated.
  • The magnitude  a(t)=|z(t)|  has a Rayleigh PDF, from which the name "Rayleigh Fading" is derived:
fa(a)={a/σ2ea2/(2σ2)0fora0fora<0.
  • The squared magnitude  p(t)=a(t)2=|z(t)|2  is exponentially distributed according to the equation
fp(p)={1/(2σ2)ep/(2σ2)0forp0forp<0.

Measurements have shown that the time intervals with  a(t)1  (highlighted in yellow in the graphic) add up to  59 ms  (intervals highlighted in red).  Being the total measurement time  150 ms,  the probability that the magnitude of the Rayleigh fading is less than or equal to  1  is

Pr(a(t)1)=59ms150ms=39.4%.

In the lower graph, the value range between  -3 dB  and  +3 dB  of the logarithmic Rayleigh coefficient  20lg a(t)  is highlighted in green.  The subtask (4)  refers to this.




Notes:


Questions

1

For the entire range,  we have  a(t)2.  What is the maximum value of the logarithmic quantity in this range?

Max[20lg a(t)] = 

 dB

2

What is the maximum value of  p(t)=|z(t)|2,  both in linear and logarithmic representation?

Max[p(t)] = 

Max[10lg p(t)] = 

 dB

3

Let   Pr[a(t)1]=0.394.  Determine the Rayleigh parameter  σ.

σ = 

4

What is the probability that the logarithmic Rayleigh coefficient  10lg p(t)  is between   -3 dB  and  +3 dB?

Pr(|10lg p(t)|<3 dB) = 


Solution

(1)  From  Max[a(t)]=2  follows directly:

Max[20lga(t)]=20lg(2)6dB_.


(2)  The maximum value of the square  p(t)=a(t)2  is

Max[p(t)]=Max[a(t)2]=4_.
  • The logarithmic representation of the squared magnitude  p(t)  is identical to the logarithmic representation of the magnitude  a(t)
  • Since  p(t)  is a power quantity:
Max[p(t)]=Max[a(t)2]=4_.
  • The maximum value is thus also  6dB_.


(3)  The condition  a(t)1  is equivalent to the requirement  p(t)=a(t)21.

  • The absolute square is known to be exponentially distributed, and for  p0  we have
fp(p)=12σ2ep/(2σ2).
PDF and probability regions
  • It follows:
Pr(p(t)1)=12σ210ep/(2σ2)dp=1e1/(2σ2)=0.394
e1/(2σ2)=0.606σ2=12ln(0.606)=1σ=1_.

The graph shows

  • on the left side the probability  Pr(p(t)1),
  • on the right side the probability  Pr(0.5p(t)2).


(4)  From  10lg p1= 3  dB  follows  p1=0.5.  The upper limit of the integration range results from the condition  10lg p2=+3  dB,  so  p2=2.

  • This gives, according to the above graph:

Pr(3dB10lgp(t)+3dB) = 20.5fp(p)dp=[ep/(2σ2)]20.5=e0.25e10.7790.368=0.411_.