Difference between revisions of "Aufgaben:Exercise 1.3: Rayleigh Fading"

From LNTwww
m (Text replacement - "”" to """)
 
(30 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Probability_Density_of_Rayleigh_Fading}}
  
 
[[File:P_ID2106__Mob_A_1_3.png|right|frame|Time evolution of Rayleigh fading]]
 
[[File:P_ID2106__Mob_A_1_3.png|right|frame|Time evolution of Rayleigh fading]]
Rayleigh–Fading should be used when
+
Rayleigh fading should be used when
 
* there is no direct connection between transmitter and receiver, and
 
* there is no direct connection between transmitter and receiver, and
 
* the signal reaches the receiver through many paths, but their transit times are approximately the same.
 
* the signal reaches the receiver through many paths, but their transit times are approximately the same.
Line 9: Line 9:
 
An example of such a Rayleigh channel occurs in urban mobile communications when narrow-band signals are used with ranges between  $50$  and  $100$  meters.
 
An example of such a Rayleigh channel occurs in urban mobile communications when narrow-band signals are used with ranges between  $50$  and  $100$  meters.
  
Looking at the radio signals  $s(t)$  and  $r(t)$  in the equivalent low-pass range $($that is, around the frequency  $f = 0)$, the signal transmission is described completely by the equation
+
Looking at the radio signals  $s(t)$  and  $r(t)$  in the equivalent low-pass range  $($that is, around the frequency  $f = 0)$,  the signal transmission is described completely by the equation
 
:$$r(t)= z(t) \cdot s(t)$$
 
:$$r(t)= z(t) \cdot s(t)$$
  
Line 16: Line 16:
  
 
is always complex and has the following characteristics:
 
is always complex and has the following characteristics:
* The real part  $x(t)$  and the imaginary part  $y(t)$  are Gaussian mean-free random variables, both with equal variance  $\sigma^2$. Within the components  $x(t)$  and  $y(t)$  there may be statistical dependence, but this is not relevant for the solution of the present task. We assume that $x(t)$  and  $y(t)$; are uncorrelated.
+
* The real part  $x(t)$  and the imaginary part  $y(t)$  are Gaussian mean-free random variables, both with equal variance  $\sigma^2$.  Within the components  $x(t)$  and  $y(t)$  there may be statistical dependence, but this is not relevant for the solution of the present task.  We assume that  $x(t)$  and  $y(t)$  are uncorrelated.
  
* The magnitude&nbsp; $a(t) = |z(t)|$&nbsp; has a Rayleigh PDF, from which the name <i>Rayleigh Fading</i> is derived:
+
* The magnitude&nbsp; $a(t) = |z(t)|$&nbsp; has a Rayleigh PDF, from which the name "Rayleigh Fading" is derived:
 
:$$f_a(a) =
 
:$$f_a(a) =
 
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\
 
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\
 
0  \end{array} \right.\quad
 
0  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0
+
\begin{array}{*{1}c} {\rm for}\hspace{0.15cm} a \ge 0
\\  {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\ \end{array}
+
\\  {\rm for}\hspace{0.15cm} a < 0 \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Line 29: Line 29:
 
:$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
 
:$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\
 
0  \end{array} \right.\quad
 
0  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0
+
\begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \ge 0
\\  {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array}
+
\\  {\rm for}\hspace{0.15cm} p < 0 \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Measurements have shown that the time intervals with&nbsp; $a(t) &#8804; 1$&nbsp; (highlighted in yellow in the graphic) add up to&nbsp; $\text{59 ms}$&nbsp; (intervals highlighted in red). Being the total measurement time &nbsp; $\text{150 ms}$,&nbsp; the probability that the magnitude of the Rayleigh fading is less than or equal to&nbsp; $1$&nbsp; is
+
Measurements have shown that the time intervals with&nbsp; $a(t) &#8804; 1$&nbsp; $($highlighted in yellow in the graphic$)$ add up to&nbsp; $\text{59 ms}$&nbsp; $($intervals highlighted in red$).$&nbsp; Being the total measurement time&nbsp; $\text{150 ms}$,&nbsp; the probability that the magnitude of the Rayleigh fading is less than or equal to&nbsp; $1$&nbsp; is
$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \%
+
:$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \%
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In the lower graphic the value range between&nbsp; $\text{-3 dB}$&nbsp; and&nbsp; $\text{+3 dB}$&nbsp; regarding the logarithmic Rayleigh&ndash;Size&nbsp; $20 \cdot {\rm lg} is highlighted in green. \ a(t)$. The subtask '''(4)'' refers to this.
+
In the lower graph, the value range between&nbsp; $\text{-3 dB}$&nbsp; and&nbsp; $\text{+3 dB}$&nbsp; of the logarithmic Rayleigh coefficient&nbsp; $20 \cdot {\rm lg} \ a(t)$&nbsp; is highlighted in green.&nbsp; The subtask '''(4)'''&nbsp; refers to this.
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
 
''Notes:''  
 
''Notes:''  
* The task belongs to chapter&nbsp; [[Mobile_Communications/Probability Density_of_Rayleigh%E2%80%93Fadings|Probability Density of Rayleigh&ndash;Fadings]]&nbsp; of this book.  
+
* This task belongs to chapter&nbsp; [[Mobile_Communications/Probability_density_of_Rayleigh_fading|Probability density of Rayleigh fading]]&nbsp; of this book.  
* A similar topic is treated with a different approach in chapter&nbsp; [[Stochastic_Signal Theory/Weitere_Verteilungen|Weitere Verteilungen]]&nbsp; of the book &bdquo;Stochastic Signal Theory&rdquo;.
+
* A similar topic is treated with a different approach in chapter&nbsp; [[Theory_of_Stochastic_Signals/Further_distributions|Further distributions]]&nbsp; of the book "Stochastic Signal Theory".
* To check your results you can use the interactive applet&nbsp; [[Applets:WDF_VTF|WDF, VTF and Moments]]&nbsp; of the book &bdquo;Stochastic Signal Theory&rdquo;.
+
* To check your results, you can use the interactive applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|PDF, CDF and Moments of Special Distributions]]&nbsp; of the book "Stochastic Signal Theory".
 
   
 
   
  
  
===Questionnaire===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{For the entire range, the amount function&nbsp; $a(t) &#8804; 2$ applies. What is the maximum value for the logarithmic quantity in this range?
+
{For the entire range,&nbsp; we have&nbsp; $a(t) &#8804; 2$.&nbsp; What is the maximum value of the logarithmic quantity in this range?
 
|type="{}"}
 
|type="{}"}
 
${\rm Max}\big [20 \cdot {\rm lg} \ {a(t)}\big] \ = \ $ { 6 3% } $\ \rm dB$
 
${\rm Max}\big [20 \cdot {\rm lg} \ {a(t)}\big] \ = \ $ { 6 3% } $\ \rm dB$
  
{What is the maximum value for&nbsp; $p(t) = |z(t)|^2$&nbsp; both in linear and logarithmic representation?
+
{What is the maximum value of&nbsp; $p(t) = |z(t)|^2$,&nbsp; both in linear and logarithmic representation?
 
|type="{}"}
 
|type="{}"}
${\rm Max}\big[p(t)\big] \ = \ $ {\ $ 4 3% }  
+
${\rm Max}\big[p(t)\big] \ = \ $ { 4 3% }  
${\rm Max}\big [10 \cdot {\rm lg} \ p(t)\big] \ = \ $ { 6 3% } $ \ \rm dB$
+
${\rm Max}\big[10 \cdot {\rm lg} \ p(t)\big] \ = \ $ { 6 3% } $ \ \rm dB$
  
{Let &nbsp; ${\rm Pr}\big[a(t) &#8804; 1\big] = $0.394 Determine the Rayleigh&ndash;parameter&nbsp; $\sigma$.
+
{Let &nbsp; ${\rm Pr}\big[a(t) &#8804; 1\big] = 0.394$.&nbsp; Determine the Rayleigh parameter&nbsp; $\sigma$.
 
|type="{}"}
 
|type="{}"}
 
$\sigma \ = \ $ { 1 3% }
 
$\sigma \ = \ $ { 1 3% }
  
{What is the probability of the logarithmic Rayleigh&ndash;size &nbsp; &#8658; &nbsp; $10 \cdot {\rm lg} \ p(t)$&nbsp; in the range between between&nbsp; $\text{-3 dB}$&nbsp; and&nbsp; $\text{+3 dB}$?
+
{What is the probability that the logarithmic Rayleigh coefficient&nbsp; $10 \cdot {\rm lg} \ p(t)$&nbsp; is between &nbsp; $\text{-3 dB}$&nbsp; and&nbsp; $\text{+3 dB}$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(|10 \cdot {\rm lg} \ p(t)| < 3 \ \rm dB) \ = \ $ { 0.411 3% }
 
${\rm Pr}(|10 \cdot {\rm lg} \ p(t)| < 3 \ \rm dB) \ = \ $ { 0.411 3% }
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''&nbsp; From ${\rm Max}[a(t)] = 2$ follows directly:
+
'''(1)'''&nbsp; From&nbsp; ${\rm Max}[a(t)] = 2$&nbsp; follows directly:
$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
+
:$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; The maximum value of the square $p(t) = a(t)^2$ is
+
'''(2)'''&nbsp; The maximum value of the square&nbsp; $p(t) = a(t)^2$&nbsp; is
$$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{\4}
+
:$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{=4}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*The logarithmic representation of the square of the amount $p(t)$ is identical to the logarithmic representation of the amount $a(t)$. Since $p(t)$ is a power quantity
+
*The logarithmic representation of the squared magnitude&nbsp; $p(t)$&nbsp; is identical to the logarithmic representation of the magnitude&nbsp; $a(t)$.&nbsp;
$$10 \cdot {\rm lg}\hspace{0.15cm} p(t) = 10 \cdot {\rm lg}\hspace{0.15cm}a(t)^2 = 20 \cdot {\rm lg}\hspace{0.15cm} a(t)
+
*Since&nbsp; $p(t)$&nbsp; is a power quantity:
 +
:$${\rm Max} \left [  p(t) \right ] = {\rm Max} \left [  a(t)^2 \right ]  \hspace{0.15cm} \underline{= 4}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*The maximum value is thus also $\underline{\approx 6\,\,{\rm dB}}$.
+
*The maximum value is thus also&nbsp; $\underline{\approx 6\,\,{\rm dB}}$.
  
  
  
'''(3)'''&nbsp; The condition $a(t) &#8804; 1$ is equivalent to the requirement $p(t) = a(t)^2 &#8804; 1$.  
+
'''(3)'''&nbsp; The condition&nbsp; $a(t) &#8804; 1$&nbsp; is equivalent to the requirement&nbsp; $p(t) = a(t)^2 &#8804; 1$.  
*The absolute square is known to be exponentially distributed, and for $p &#8805; 0$ applies accordingly:
+
*The absolute square is known to be exponentially distributed, and for&nbsp; $p &#8805; 0$&nbsp; we have
$$f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm exp} [ -\frac{p}{2\sigma^2}]
+
:$$f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm e}^{ -p/(2\sigma^2)}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
[[File:P_ID2112__Mob_A_1_3c.png|right|frame|WDF and probability regions ]]
+
[[File:EN_Mob_A_1_3_c.png|right|frame|PDF and probability regions ]]
 
*It follows:
 
*It follows:
  
$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm exp} [ -\frac{p}{2\sigma^2}] \hspace{0.15cm}{\rm d}p =  
+
:$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm e}^{ -p/(2\sigma^2)} \hspace{0.15cm}{\rm d}p =  
  1 - {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.394$$
+
  1 - {\rm e}^{ -1/(2\sigma^2)} = 0.394$$
$$\Rightarrow \hspace{0.3cm} {\rm exp} [ -\frac{1}{2\sigma^2}] = 0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
+
:$$\Rightarrow \hspace{0.3cm} {\rm e}^{ -1/(2\sigma^2)} =0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
  \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  
+
  \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  
 
  \underline{\sigma = 1} \hspace{0.05cm}.$$
 
  \underline{\sigma = 1} \hspace{0.05cm}.$$
  
The graphic shows  
+
The graph shows  
* left the probability&nbsp; ${\rm Pr}(p(t) &#8804; 1)$,
+
* on the left side the probability&nbsp; ${\rm Pr}(p(t) &#8804; 1)$,
* right the probability&nbsp; ${\rm Pr}(0.5 \le p(t) &#8804; 2)$.
+
* on the right side the probability&nbsp; ${\rm Pr}(0.5 \le p(t) &#8804; 2)$.
 
+
<br clear=all>
 
+
'''(4)'''&nbsp; From&nbsp; $10 \cdot {\rm lg} \ p_1 = \ -3 \ \ \rm dB$&nbsp; follows&nbsp; $p_1 = 0.5$.&nbsp; The upper limit of the integration range results from the condition&nbsp; $10 \cdot {\rm lg} \ p_2 = +3 \ \ \rm dB$,&nbsp; so&nbsp; $p_2 = 2$.  
 
+
*This gives, according to the above graph:
 
 
'''(4)''&nbsp; From $10 \cdot {\rm lg} \ p_1 = \ &ndash;3 \ \ \rm dB$ follows $p_1 = 0.5$ and the upper limit of the integration range results from the condition $10 \cdot {\rm lg} \ p_2 = +3 \ \ \rm dB$ to $p_2 = 2$.  
 
*This gives you, according to the above graphic:
 
 
$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p =  
 
$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p =  
 
   \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$
 
   \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$
Line 117: Line 120:
  
  
[[Category:Exercises for Mobile Communications|^1.2 PDF of Rayleigh Fading^]]
+
[[Category:Mobile Communications: Exercises|^1.2 PDF of Rayleigh Fading^]]

Latest revision as of 15:41, 28 May 2021

Time evolution of Rayleigh fading

Rayleigh fading should be used when

  • there is no direct connection between transmitter and receiver, and
  • the signal reaches the receiver through many paths, but their transit times are approximately the same.


An example of such a Rayleigh channel occurs in urban mobile communications when narrow-band signals are used with ranges between  $50$  and  $100$  meters.

Looking at the radio signals  $s(t)$  and  $r(t)$  in the equivalent low-pass range  $($that is, around the frequency  $f = 0)$,  the signal transmission is described completely by the equation

$$r(t)= z(t) \cdot s(t)$$

The multiplicative fading coefficient

$$z(t)= x(t) + {\rm j} \cdot y(t)$$

is always complex and has the following characteristics:

  • The real part  $x(t)$  and the imaginary part  $y(t)$  are Gaussian mean-free random variables, both with equal variance  $\sigma^2$.  Within the components  $x(t)$  and  $y(t)$  there may be statistical dependence, but this is not relevant for the solution of the present task.  We assume that  $x(t)$  and  $y(t)$  are uncorrelated.
  • The magnitude  $a(t) = |z(t)|$  has a Rayleigh PDF, from which the name "Rayleigh Fading" is derived:
$$f_a(a) = \left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^ { -a^2/(2\sigma^2)} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} a \ge 0 \\ {\rm for}\hspace{0.15cm} a < 0 \\ \end{array} \hspace{0.05cm}.$$
  • The squared magnitude  $p(t) = a(t)^2 = |z(t)|^2$  is exponentially distributed according to the equation
$$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^ { -p/(2\sigma^2)} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \ge 0 \\ {\rm for}\hspace{0.15cm} p < 0 \\ \end{array} \hspace{0.05cm}.$$

Measurements have shown that the time intervals with  $a(t) ≤ 1$  $($highlighted in yellow in the graphic$)$ add up to  $\text{59 ms}$  $($intervals highlighted in red$).$  Being the total measurement time  $\text{150 ms}$,  the probability that the magnitude of the Rayleigh fading is less than or equal to  $1$  is

$${\rm Pr}(a(t) \le 1) = \frac{59\,\,{\,{\rm ms}}}{150\,\,{\rm ms}} = 39.4 \% \hspace{0.05cm}.$$

In the lower graph, the value range between  $\text{-3 dB}$  and  $\text{+3 dB}$  of the logarithmic Rayleigh coefficient  $20 \cdot {\rm lg} \ a(t)$  is highlighted in green.  The subtask (4)  refers to this.




Notes:


Questions

1

For the entire range,  we have  $a(t) ≤ 2$.  What is the maximum value of the logarithmic quantity in this range?

${\rm Max}\big [20 \cdot {\rm lg} \ {a(t)}\big] \ = \ $

$\ \rm dB$

2

What is the maximum value of  $p(t) = |z(t)|^2$,  both in linear and logarithmic representation?

${\rm Max}\big[p(t)\big] \ = \ $

${\rm Max}\big[10 \cdot {\rm lg} \ p(t)\big] \ = \ $

$ \ \rm dB$

3

Let   ${\rm Pr}\big[a(t) ≤ 1\big] = 0.394$.  Determine the Rayleigh parameter  $\sigma$.

$\sigma \ = \ $

4

What is the probability that the logarithmic Rayleigh coefficient  $10 \cdot {\rm lg} \ p(t)$  is between   $\text{-3 dB}$  and  $\text{+3 dB}$?

${\rm Pr}(|10 \cdot {\rm lg} \ p(t)| < 3 \ \rm dB) \ = \ $


Solution

(1)  From  ${\rm Max}[a(t)] = 2$  follows directly:

$${\rm Max} \left [ 20 \cdot {\rm lg}\hspace{0.15cm}a(t) \right ] = 20 \cdot {\rm lg}\hspace{0.15cm}(2) \hspace{0.15cm} \underline{\approx 6\,\,{\rm dB}} \hspace{0.05cm}.$$


(2)  The maximum value of the square  $p(t) = a(t)^2$  is

$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{=4} \hspace{0.05cm}.$$
  • The logarithmic representation of the squared magnitude  $p(t)$  is identical to the logarithmic representation of the magnitude  $a(t)$. 
  • Since  $p(t)$  is a power quantity:
$${\rm Max} \left [ p(t) \right ] = {\rm Max} \left [ a(t)^2 \right ] \hspace{0.15cm} \underline{= 4} \hspace{0.05cm}.$$
  • The maximum value is thus also  $\underline{\approx 6\,\,{\rm dB}}$.


(3)  The condition  $a(t) ≤ 1$  is equivalent to the requirement  $p(t) = a(t)^2 ≤ 1$.

  • The absolute square is known to be exponentially distributed, and for  $p ≥ 0$  we have
$$f_p(p) = \frac{1}{2\sigma^2} \cdot {\rm e}^{ -p/(2\sigma^2)} \hspace{0.05cm}.$$
PDF and probability regions
  • It follows:
$${\rm Pr}(p(t) \le 1) = \frac{1}{2\sigma^2} \cdot \int_{0}^{1}{\rm e}^{ -p/(2\sigma^2)} \hspace{0.15cm}{\rm d}p = 1 - {\rm e}^{ -1/(2\sigma^2)} = 0.394$$
$$\Rightarrow \hspace{0.3cm} {\rm e}^{ -1/(2\sigma^2)} =0.606 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sigma^2 = \frac{1}{2 \cdot {\rm ln}\hspace{0.1cm}(0.606)} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{\sigma = 1} \hspace{0.05cm}.$$

The graph shows

  • on the left side the probability  ${\rm Pr}(p(t) ≤ 1)$,
  • on the right side the probability  ${\rm Pr}(0.5 \le p(t) ≤ 2)$.


(4)  From  $10 \cdot {\rm lg} \ p_1 = \ -3 \ \ \rm dB$  follows  $p_1 = 0.5$.  The upper limit of the integration range results from the condition  $10 \cdot {\rm lg} \ p_2 = +3 \ \ \rm dB$,  so  $p_2 = 2$.

  • This gives, according to the above graph:

$${\rm Pr}(-3\,\,{\rm dB}\le 10 \cdot {\rm lg}\hspace{0.15cm}p(t) \le +3\,\,{\rm dB}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{0.5}^{2}f_p(p)\hspace{0.15cm}{\rm d}p = \left [ - {\rm e}^{ -{p}/(2\sigma^2)}\hspace{0.15cm} \right ]_{0.5}^{2} ={\rm e}^{-0.25}- {\rm e}^{-1} \approx 0.779 - 0.368 \hspace{0.15cm} \underline{ = 0.411} \hspace{0.05cm}.$$