Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.1Z: Simple Path Loss Model"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Mobile Kommunikation/Distanzabhängige Dämpfung und Abschattung
+
{{quiz-Header|Buchseite=Mobile_Communications/Distance_Dependent_Attenuation_and_Shading
 
}}
 
}}
  
[[File:EN_Mob_Z1_1.png|right|frame|Path loss [dB] vs. distance [m]]]
+
[[file:EN_Mob_Z1_1.png|right|frame|Simplest path loss diagram]]
 
Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations:
 
Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations:
VP(d)=V0+γ10dBlg(d/d0),
+
:VP(d)=V0+γ10dBlg(d/d0),
V0=γ10dBlg4πd0λ.
+
:V0=γ10dBlg4πd0λ.
  
 
The graphic shows the path loss  VP(d)  in  dB. The abscissa  d  is also displayed logarithmically.  
 
The graphic shows the path loss  VP(d)  in  dB. The abscissa  d  is also displayed logarithmically.  
Line 17: Line 17:
  
 
Two scenarios are shown  (A)  and  (B)  with the same path loss at distance  d0=1 m:
 
Two scenarios are shown  (A)  and  (B)  with the same path loss at distance  d0=1 m:
V0=VP(d=d0)=20dB.
+
:V0=VP(d=d0)=20dB.
  
One of these two scenarios describes the so-called <i>free space attenuation</i>, characterized by the path loss exponent&nbsp; γ=2. However, the equation for the free space attenuation only applies in the <i>far-field</i>, i.e. when the distance&nbsp; d&nbsp; between transmitter and receiver is greater than the <i>Fraunhofer distance</i>;
+
One of these two scenarios describes the so-called <i>free-space attenuation</i>, characterized by the path loss exponent&nbsp; γ=2. However, the equation for the free-space attenuation only applies in the <i>far-field</i>, i.e. when the distance&nbsp; d&nbsp; between transmitter and receiver is greater than the <i>Fraunhofer distance</i>,
dF=2D2/λ.
+
:dF=2D2/λ.
  
 
Here,&nbsp; D&nbsp; is the largest physical dimension of the transmitting antenna. With an&nbsp; λ/2&ndash;antenna, the Fraunhofer distance has a simple expression:
 
Here,&nbsp; D&nbsp; is the largest physical dimension of the transmitting antenna. With an&nbsp; λ/2&ndash;antenna, the Fraunhofer distance has a simple expression:
dF=2(λ/2)2λ=λ/2.
+
:dF=2(λ/2)2λ=λ/2.
  
  
Line 31: Line 31:
  
 
''Notes:''  
 
''Notes:''  
* This task belongs to the chapter&nbsp; [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distanzabhängige Dämpfung und Abschattung]].
+
* This task belongs to the chapter&nbsp; [[Mobile_Communications/Distance_dependent_attenuation_and_shading|Distance dependent attenuation and shading]].
 
* The speed of light is&nbsp; c=3108 m/s.
 
* The speed of light is&nbsp; c=3108 m/s.
 
   
 
   
Line 38: Line 38:
  
  
===Questionnaire===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
Line 62: Line 62:
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; The (simplest) path loss equation is
 
'''(1)'''&nbsp; The (simplest) path loss equation is
VP(d)=V0+γ10dBlg(d/d0).
+
:VP(d)=V0+γ10dBlg(d/d0).
  
 
*In scenario (A), the decay per decade (for example, between d0=1 m and d=10 m) is exactly 20 dB and in scenario (B) 25 dB.  
 
*In scenario (A), the decay per decade (for example, between d0=1 m and d=10 m) is exactly 20 dB and in scenario (B) 25 dB.  
 
*It follows:
 
*It follows:
γA=2_,γB=2.5_.
+
:γA=2_,γB=2.5_.
  
  
 
+
'''(2)'''&nbsp; <u>Solution 1</u> is correct, since the free-space attenuation is characterized by the path loss exponent γ=2.
'''(2)'''&nbsp; <u>Solution 1</u> is correct, since the free space attenuation is characterized by the path loss exponent γ=2.
 
 
 
  
  
 
'''(3)'''&nbsp; The path loss at d0=1 m is in both cases V0=20 dB. For scenario (A) the same applies:
 
'''(3)'''&nbsp; The path loss at d0=1 m is in both cases V0=20 dB. For scenario (A) the same applies:
$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
+
:$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
  \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m}
 
  \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*The frequency fA is related to the wavelength λA over the speed of light c:
+
*The frequency fA is related to the wavelength λA over the speed of light $(c)$:
 
:$$f_{\rm A} =  \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}}  = 2.39 \cdot 10^8\,{\rm Hz}
 
:$$f_{\rm A} =  \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}}  = 2.39 \cdot 10^8\,{\rm Hz}
 
  \hspace{0.15cm} \underline{\approx  240 \,\,{\rm MHz}}
 
  \hspace{0.15cm} \underline{\approx  240 \,\,{\rm MHz}}
Line 89: Line 87:
  
 
*On the other hand, for scenario (B),
 
*On the other hand, for scenario (B),
10lg[4πd0λB]2.5=20dB25lg[4πd0λB]=20dB
+
:10lg[4πd0λB]2.5=20dB25lg[4πd0λB]=20dB
 
:$$\Rightarrow \hspace{0.3cm}  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31
 
:$$\Rightarrow \hspace{0.3cm}  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
Line 96: Line 94:
 
  {f_{\rm B}} = \frac{6.31}{10} \cdot {f_{\rm A}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline{\approx  151.4 \,\,{\rm MHz}}
 
  {f_{\rm B}} = \frac{6.31}{10} \cdot {f_{\rm A}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline{\approx  151.4 \,\,{\rm MHz}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
 
  
 
'''(4)'''&nbsp; The <u>first suggested solution</u> is correct:  
 
'''(4)'''&nbsp; The <u>first suggested solution</u> is correct:  
Line 105: Line 102:
  
  
[[Category:Exercises for Mobile Communications|^1.1 Distance-dependent attenuation^]]
+
[[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]]

Latest revision as of 14:37, 23 March 2021

Simplest path loss diagram

Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations:

VP(d)=V0+γ10dBlg(d/d0),
V0=γ10dBlg4πd0λ.

The graphic shows the path loss  VP(d)  in  dB. The abscissa  d  is also displayed logarithmically.

In the above equation, the following parameters are used:

  • the distance  d  of transmitter and receiver,
  • the reference distance  d0=1 m,
  • the path loss exponent  γ,
  • the wavelength  λ  of the electromagnetic wave.


Two scenarios are shown  (A)  and  (B)  with the same path loss at distance  d0=1 m:

V0=VP(d=d0)=20dB.

One of these two scenarios describes the so-called free-space attenuation, characterized by the path loss exponent  γ=2. However, the equation for the free-space attenuation only applies in the far-field, i.e. when the distance  d  between transmitter and receiver is greater than the Fraunhofer distance,

dF=2D2/λ.

Here,  D  is the largest physical dimension of the transmitting antenna. With an  λ/2–antenna, the Fraunhofer distance has a simple expression:

dF=2(λ/2)2λ=λ/2.




Notes:



Questions

1

Which path loss exponents apply to the scenarios  (A)  and  (B)?

γA = 

γB = 

2

Which scenario describes free-space attenuation?

Scenario  (A),
Scenario  (B).

3

Which signal frequencies are the basis for the scenarios  (A)  and  (B) ?

fA = 

  MHz
fB = 

  MHz

4

Does the free-space scenario apply to all distances between  1 m  and  10 km?

Yes,
No.


Solution

(1)  The (simplest) path loss equation is

VP(d)=V0+γ10dBlg(d/d0).
  • In scenario (A), the decay per decade (for example, between d0=1 m and d=10 m) is exactly 20 dB and in scenario (B) 25 dB.
  • It follows:
γA=2_,γB=2.5_.


(2)  Solution 1 is correct, since the free-space attenuation is characterized by the path loss exponent γ=2.


(3)  The path loss at d0=1 m is in both cases V0=20 dB. For scenario (A) the same applies:

10lg[4πd0λA]2=20dB4πd0λA=10λA=4π0.1m=1,257m.
  • The frequency fA is related to the wavelength λA over the speed of light (c):
fA=cλA=3108m/s1.257m=2.39108Hz240MHz_.
  • On the other hand, for scenario (B),
10lg[4πd0λB]2.5=20dB25lg[4πd0λB]=20dB
4πd0λB=100.86.31λB=106.31λAfB=6.3110fA=0.631240MHz151.4MHz_.

(4)  The first suggested solution is correct:

  • In the free-space scenario (A), the Fraunhofer distance  dF=λA/263 cm. Thus,   d>dF always holds.
  • Also in scenario (B), the entire path loss curve is correct because   λB2 m  or  dF1 m  .