Difference between revisions of "Aufgaben:Exercise 3.8: OVSF Codes"
m (Javier moved page Exercises:Exercise 3.8: OVSF Codes to Exercise 3.8: OVSF Codes: Text replacement - "Exercises:Exercise" to "Aufgaben:Exercise") |
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises") |
||
(18 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Mobile_Communications/Characteristics_of_UMTS |
}} | }} | ||
− | [[File:EN_Mob_A_3_9.png|right|frame| | + | [[File:EN_Mob_A_3_9.png|right|frame|Tree diagram to construct <br>an OVSF–Code]] |
− | + | The spreading codes for UMTS should | |
− | *orthogonal | + | *be orthogonal, in order to avoid mutual influence of the participants, |
− | * | + | *at the same time also allow a flexible realization of different spreading factors $J$. |
− | + | An example are the "Orthogonal Variable Spreading Factor Codes" $\rm (OVSF)$, which provide the spreading codes of lengths from $J = 4$ to $J = 512$. | |
− | + | As shown in the graphic, these can be created with the help of a code tree. In doing so, each branching from a code $\mathcal{C}$ results in two new codes $(+\mathcal{C}\ +\mathcal{C})$ and $(+\mathcal{C} \ –\mathcal{C})$. | |
− | + | The diagram illustrates the principle given here using the following example $J = 4$. If you number the spreading sequences from $0$ to $J -1$, the spreading sequences result | |
:$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$ | :$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$ | ||
:$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ | :$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ | ||
Line 19: | Line 19: | ||
:$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$ | :$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$ | ||
− | + | According to this nomenclature, there are the spreading sequences $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle$ for the spreading factor $J = 8$. | |
− | + | It should be noted that no predecessor or successor of a code may be used by other participants. | |
− | * | + | *In the example, four spreading codes with spreading factor $J = 4$ could be used, or |
− | * | + | *the three codes highlighted in yellow – once with $J = 2$ and twice with $J = 4$. |
Line 31: | Line 31: | ||
− | '' | + | ''Notes:'' |
− | * | + | *This task belongs to the chapter [[Modulation_Methods/Spreizfolgen_für_CDMA|Spreading sequences for CDMA]]. |
− | * | + | *Particular reference is made to the page [[Modulation_Methods/Spreading_Sequences_for_CDMA#Codes_with_variable_spreading_factor_.28OVSF_codes.29|Codes with variable spreading factor]]. |
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Construct the tree diagram for $J = 8$. What are the resulting OVSF codes? |
|type="[]"} | |type="[]"} | ||
+ $\langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$, | + $\langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$, | ||
Line 48: | Line 48: | ||
+ $\langle c_\nu^{(7)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$. | + $\langle c_\nu^{(7)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$. | ||
− | { | + | {How many UMTS users can be served with $J = 8$ at maximum? |
|type="{}"} | |type="{}"} | ||
$K_{\rm max} \ = \ $ { 8 } | $K_{\rm max} \ = \ $ { 8 } | ||
− | { | + | {How many users can be supplied with $J = 8$ if three of them should use a spreading code with $J = 4$ ? |
|type="{}"} | |type="{}"} | ||
$K \ = \ $ { 5 } | $K \ = \ $ { 5 } | ||
− | { | + | {The tree structure applies to $J = 32$. Is the following assignment feasible: Twice $J = 4$, once $J = 8$, once $J = 164$ and eight times $J = 32$? |
|type="()"} | |type="()"} | ||
− | + | + | + Yes. |
− | - | + | - No. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | [[File:P_ID2263__Bei_A_4_6a.png|right|frame| | + | [[File:P_ID2263__Bei_A_4_6a.png|right|frame|OVSF tree structure for $J = 8$]] |
− | '''(1)''' | + | '''(1)''' The following graphic shows the OVSF tree structure for $J = $8 users. |
− | * | + | *From this it can be seen that the <u>solutions 1, 3 and 4</u> apply, but not the second. |
− | |||
+ | '''(2)''' If each user is assigned a spreading code with the spreading degree $J = 8$, $K_{\rm max} \ \underline{= 8}$ users can be supplied. | ||
− | |||
− | '''( | + | '''(3)''' If three users are supplied with $J = 4$, only two users can be served by a spreading sequence with $J = 8$ (see example yellow background in the graphic) $\ \Rightarrow \ \ \underline{K = 5}$. |
− | |||
− | |||
− | |||
− | |||
− | + | ||
+ | '''(4)''' We denote | ||
+ | *$K_{4} = 2$ as the number of spreading sequences with $J = 4$, | ||
+ | *$K_{8} = 1$ as the number of spreading sequences with $J = 8$, | ||
+ | *$K_{16} = 2$ as the number of spreading sequences with $J = 16$, | ||
+ | *$K_{32} = 8$ as the number of spreading sequences with $J = 32$, | ||
+ | |||
+ | |||
+ | Then the following condition must be fulfilled: | ||
:$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} | :$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ | \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ | ||
− | * | + | *Because $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ the desired assignment is just allowed ⇒ <u>The answer is YES</u>. |
− | * | + | *For example, providing the $J = 4$ twice blocks the upper half of the tree, after providing a $J = 8$ spreading code, $3$ of the $8$ branches remain to be occupied at the $J = 8$ level, and so on and so forth. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 95: | Line 98: | ||
− | [[Category: | + | [[Category:Mobile Communications: Exercises|^3.4 Characteristics of UMTS^]] |
Latest revision as of 13:37, 23 March 2021
The spreading codes for UMTS should
- be orthogonal, in order to avoid mutual influence of the participants,
- at the same time also allow a flexible realization of different spreading factors $J$.
An example are the "Orthogonal Variable Spreading Factor Codes" $\rm (OVSF)$, which provide the spreading codes of lengths from $J = 4$ to $J = 512$.
As shown in the graphic, these can be created with the help of a code tree. In doing so, each branching from a code $\mathcal{C}$ results in two new codes $(+\mathcal{C}\ +\mathcal{C})$ and $(+\mathcal{C} \ –\mathcal{C})$.
The diagram illustrates the principle given here using the following example $J = 4$. If you number the spreading sequences from $0$ to $J -1$, the spreading sequences result
- $$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
According to this nomenclature, there are the spreading sequences $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle$ for the spreading factor $J = 8$.
It should be noted that no predecessor or successor of a code may be used by other participants.
- In the example, four spreading codes with spreading factor $J = 4$ could be used, or
- the three codes highlighted in yellow – once with $J = 2$ and twice with $J = 4$.
Notes:
- This task belongs to the chapter Spreading sequences for CDMA.
- Particular reference is made to the page Codes with variable spreading factor.
Questionnaire
Solution
(1) The following graphic shows the OVSF tree structure for $J = $8 users.
- From this it can be seen that the solutions 1, 3 and 4 apply, but not the second.
(2) If each user is assigned a spreading code with the spreading degree $J = 8$, $K_{\rm max} \ \underline{= 8}$ users can be supplied.
(3) If three users are supplied with $J = 4$, only two users can be served by a spreading sequence with $J = 8$ (see example yellow background in the graphic) $\ \Rightarrow \ \ \underline{K = 5}$.
(4) We denote
- $K_{4} = 2$ as the number of spreading sequences with $J = 4$,
- $K_{8} = 1$ as the number of spreading sequences with $J = 8$,
- $K_{16} = 2$ as the number of spreading sequences with $J = 16$,
- $K_{32} = 8$ as the number of spreading sequences with $J = 32$,
Then the following condition must be fulfilled:
- $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
- Because $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ the desired assignment is just allowed ⇒ The answer is YES.
- For example, providing the $J = 4$ twice blocks the upper half of the tree, after providing a $J = 8$ spreading code, $3$ of the $8$ branches remain to be occupied at the $J = 8$ level, and so on and so forth.