Difference between revisions of "Aufgaben:Exercise 5.9: Minimization of the MSE"

From LNTwww
m (Text replacement - "[[Stochastische_Signaltheorie/" to "[[Theory_of_Stochastic_Signals/")
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Wiener–Kolmogorow–Filter
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Wiener–Kolmogorow_Filter
 
}}
 
}}
  
[[File:P_ID652__Sto_A_5_9.png|right|frame|Leistungsdichtespektren <br>beim Wiener-Filter ]]
+
[[File:P_ID652__Sto_A_5_9.png|right|frame|Power-spectral densities <br>with the Wiener filter ]]
Gegeben ist ein stochastisches Nutzsignal&nbsp; $s(t)$, von dem nur das Leistungsdichtespektrum (LDS) bekannt ist:
+
Given a stochastic signal&nbsp; $s(t)$ of which only the power-spectral density&nbsp; $\rm (PSD)$&nbsp; is known:
 
:$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$
 
:$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$
Dieses Leistungsdichtespektrum&nbsp; ${\it \Phi} _s (f)$&nbsp; ist in der nebenstehenden Grafik blau dargestellt.
+
This power-spectral density&nbsp; ${\it \Phi} _s (f)$&nbsp; is shown in blue in the accompanying diagram.
  
*Die mittlere Leistung von&nbsp; $s(t)$&nbsp; ergibt sich durch Integration über das Leistungsdichtespektrum:
+
*The average power of&nbsp; $s(t)$&nbsp; is obtained by integration over the power-spectral density:
 
:$$P_s  = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0  \cdot f_0  \cdot {\rm{\pi }}.$$
 
:$$P_s  = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0  \cdot f_0  \cdot {\rm{\pi }}.$$
*Additiv überlagert ist dem Nutzsignal&nbsp; $s(t)$&nbsp; Weißes Rauschen&nbsp; $n(t)$&nbsp; mit der Rauschleistungsdichte&nbsp; ${\it \Phi}_n(f) = N_0/2.$  
+
*Additively superimposed on this signal&nbsp; $s(t)$&nbsp; is white noise&nbsp; $n(t)$&nbsp; with noise power density&nbsp; ${\it \Phi}_n(f) = N_0/2.$  
*Als Abkürzung verwenden wir&nbsp; $Q = 2 \cdot {\it \Phi}_0/N_0$, wobei&nbsp; $Q$&nbsp; als &bdquo;Qualität&rdquo; interpretiert werden könnte.  
+
*As an abbreviation,&nbsp; we use&nbsp; $Q = 2 \cdot {\it \Phi}_0/N_0$,&nbsp; where&nbsp; $Q$&nbsp; could be interpreted as&nbsp; "quality".
*Zu beachten ist, dass&nbsp; $Q$&nbsp; kein Signal&ndash;zu&ndash;Rauschleistungsverhältnis darstellt.
+
*Note that&nbsp; $Q$&nbsp; does not represent a signal&ndash;to&ndash;noise power ratio.
  
  
In dieser Aufgabe soll der Frequenzgang&nbsp; $H(f)$&nbsp; eines Filters ermittelt werden, das den mittleren quadratischen Fehler&nbsp; $\rm (MQF)$&nbsp; zwischen dem Nutzsignal&nbsp; $s(t)$&nbsp; und dem Filterausgangssignal&nbsp; $d(t)$&nbsp; minimiert:
+
In this exercise,&nbsp; we want to determine the frequency response&nbsp; $H(f)$&nbsp; of a filter that minimizes the mean square error&nbsp; $\rm (MSE)$&nbsp; between the useful signal&nbsp; $s(t)$&nbsp; and the filter output signal&nbsp; $d(t)$:&nbsp;
:$${\rm{MQF}} = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$
+
:$${\rm{MSE}} = \mathop {\lim }\limits_{T_{\rm M}  \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$
  
  
  
  
 
+
Notes:  
 
+
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Wiener–Kolmogorow–Filter|Wiener–Kolmogorow Filter]].
 
+
*For the optimal frequency response,&nbsp; according to Wiener and Kolmogorov,&nbsp; the following applies in general:
''Hinweise:''
+
:$$H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Theory_of_Stochastic_Signals/Wiener–Kolmogorow–Filter|Wiener–Kolmogorow–Filter]].
+
*The following indefinite integral is given for solving:
 
*Zur Lösung vorgegeben wird das folgende unbestimmte Integral:
 
 
:$$\int {\frac{1}{a^2  + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$
 
:$$\int {\frac{1}{a^2  + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$
  
Line 33: Line 31:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- $H(f)$&nbsp; ist ein Gaußtiefpass.
+
- $H(f)$&nbsp; is a Gaussian low-pass.
- $H(f)$&nbsp; stellt ein Matched&ndash;Filter dar.
+
- $H(f)$&nbsp; represents a matched filter.
+ $H(f)$&nbsp; ist ein Wiener&ndash;Kolmogorow&ndash;Filter.
+
+ $H(f)$&nbsp; represents a Wiener&ndash;Kolmogorov filter.
  
  
{Bestimmen Sie den Frequenzgang&nbsp; $H(f)$&nbsp; des hierfür optimalen Filters.&nbsp; Welche Werte ergeben sich  mit&nbsp; $Q = 3$&nbsp; bei&nbsp; $f = 0$&nbsp; und&nbsp; $f = 2f_0$?
+
{Determine the frequency response&nbsp; $H(f)=H_{\rm WF} (f)$&nbsp; of the optimum filter for this purpose.&nbsp; <br>What values result with&nbsp; $Q = 3$&nbsp; at&nbsp; $f = 0$&nbsp; and&nbsp; $f = 2f_0$?
 
|type="{}"}
 
|type="{}"}
 
$H(f = 0) \ = \ $ { 0.75 3% }
 
$H(f = 0) \ = \ $ { 0.75 3% }
Line 49: Line 47:
  
  
{Es gelte weiter&nbsp; $Q = 3$.&nbsp; Berechnen Sie den mittleren quadratischen Fehler&nbsp; $(\rm MQF)$&nbsp; bezogen auf&nbsp; $P_s$&nbsp; für das bestmögliche Filter.
+
{Let&nbsp; $Q = 3$.&nbsp; Calculate the mean square error&nbsp; $(\rm MSE)$&nbsp; with respect to&nbsp; $P_s$&nbsp; of the best possible filter.
 
|type="{}"}
 
|type="{}"}
${\rm MQF}/P_s \ =  \ $ { 0.5 3% }
+
${\rm MSE}/P_s \ =  \ $ { 0.5 3% }
  
  
{Wie groß muss der &bdquo;Qualitätsfaktor&rdquo;&nbsp; $Q$&nbsp; mindestens gewählt werden, damit für den Quotienten der Wert&nbsp; ${\rm MQF}/P_s = 0.1$&nbsp; erreicht werden kann?
+
{How must the&nbsp; "quality factor"&nbsp; $Q$&nbsp; be chosen at least,&nbsp; so that for the quotient the value&nbsp; ${\rm MSE}/P_s = 0.1$&nbsp; can be reached?
 
|type="{}"}
 
|type="{}"}
 
$Q_\text{min} \ =  \ $ { 99 3% }
 
$Q_\text{min} \ =  \ $ { 99 3% }
  
  
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Ein formgleiches Filter&nbsp; $H(f) = K \cdot H_{\rm WF}(f)$&nbsp; führt zum gleichen Ergebnis.
+
- A filter of the same shape&nbsp; $H(f) = K \cdot H_{\rm WF}(f)$&nbsp; leads to the same result.
+ Das Ausgangssignal&nbsp; $d(t)$&nbsp; enthält bei größerem&nbsp; $Q$&nbsp; mehr höherfrequente Anteile.
+
+ The output signal&nbsp; $d(t)$&nbsp; contains more higher frequency components when&nbsp; $Q$&nbsp; is larger.
  
  
Line 68: Line 66:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist <u>nur der letzte Lösungsvorschlag</u>:  
+
'''(1)'''&nbsp; <u>Only the last solution</u>&nbsp; is correct:  
*Die Aufgabenstellung  &nbsp; &rArr; &nbsp; &bdquo;Minimierung des mittleren quadratischen Fehlers&rdquo; weist bereits auf das Filter nach Wiener&ndash;Kolmogorow hin.  
+
*The task&nbsp; "Minimization of the mean square error"&nbsp; already points to the Wiener&ndash;Kolmogorow filter.
*Das Matched&ndash;Filter verwendet man dagegen, um die Signalenergie zu bündeln und dadurch für einen vorgegebenen Zeitpunkt das S/N&ndash;Verhältnis zu maximieren.
+
*The matched filter,&nbsp; on the other hand,&nbsp; is used to concentrate the signal energy and thereby maximize the S/N ratio for a given time.
  
  
  
'''(2)'''&nbsp; Für den optimalen Frequenzgang gilt nach Wiener und Kolmogorow allgemein:
+
'''(2)'''&nbsp; For the optimal frequency response,&nbsp; according to Wiener and Kolmogorov,&nbsp; the following applies in general:
 
:$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
 
:$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  
*Mit den gegebenen Leistungsdichtespektren kann hierfür auch geschrieben werden:
+
*With the given power-spectral density,&nbsp; it is also possible to write for this:
 
:$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
 
:$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
  
*Mit&nbsp;  $Q = 3$&nbsp; folgt daraus:
+
*With&nbsp;  $Q = 3$&nbsp; it follows:
 
:$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1}  \hspace{0.15cm}\underline {= 0.75},$$
 
:$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1}  \hspace{0.15cm}\underline {= 0.75},$$
 
:$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5}  \hspace{0.15cm}\underline {= 0.375}.$$
 
:$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5}  \hspace{0.15cm}\underline {= 0.375}.$$
Line 88: Line 86:
  
  
'''(3)'''&nbsp; Für das in der Teilaufgabe&nbsp; '''(2)'''&nbsp; berechnete Filter gilt unter Berücksichtigung der Symmetrie:
+
'''(3)'''&nbsp; For the filter calculated in subtask&nbsp; '''(2)''',&nbsp; taking symmetry into account,&nbsp; the following holds:
:$${\rm{MQF = }}\int_{-\infty}^{+\infty}  H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty}  \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
+
:$${\rm{MSE = }}\int_{-\infty}^{+\infty}  H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty}  \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
 +
 
 +
*For this,&nbsp; with &nbsp;$Q = 2 \cdot {\it \Phi}_0/N_0$&nbsp; and &nbsp;$a^2 = Q + 1$,&nbsp; we can also write:<br />
 +
:$${\rm{MSE = }}\int_0^\infty  {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0  \cdot f_0 \int_0^\infty  {\frac{1}{a^2  + x^2 }}\,\, {\rm{d}}x.$$
  
*Hierfür kann mit &nbsp;$Q = 2 \cdot {\it \Phi}_0/N_0$&nbsp; und &nbsp;$a^2 = Q + 1$&nbsp; auch geschrieben werden:<br />
+
*This leads to the result with the integral given:
:$${\rm{MQF = }}\int_0^\infty  {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty  {\frac{1}{a^2  + x^2 }}\,\, {\rm{d}}x.$$
+
:$${\rm{MSE}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty  ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
  
*Mit dem angegebenen Integral führt dies zum Ergebnis:
+
*Normalizing MSE to the power&nbsp; $P_s$&nbsp; of the&nbsp; signal $s(t)$,&nbsp; we obtain for&nbsp; $Q=3$:
:$${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty  ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
+
:$$\frac{\rm{MSE}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$
  
*Normiert man MQF auf die Nutzleistung&nbsp; $P_s$, so erhält man für&nbsp; $Q=3$:
 
:$$\frac{\rm{MQF}}{P_s}  = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$
 
  
  
 +
'''(4)'''&nbsp; From the calculation in subtask&nbsp; '''(3)''',&nbsp; the condition&nbsp; $Q \ge 99$ &nbsp; &#8658; &nbsp; $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$ follows directly for&nbsp; ${\rm MSE}/P_s \ge 0.1.$
 +
*The larger&nbsp; $Q$,&nbsp;  the smaller the mean square error  becomes.
  
'''(4)'''&nbsp; Aus der Berechnung in der Teilaufgabe&nbsp; '''(3)'''&nbsp; folgt für&nbsp; ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung&nbsp; $Q \ge 99$ &nbsp; &#8658; &nbsp; $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$.
 
*Je größer&nbsp; $Q$&nbsp; ist, desto kleiner wird der mittlere quadratische Fehler.
 
  
  
  
 +
'''(5)'''&nbsp; <u>Only the second solution</u>&nbsp; is correct:
 +
*A frequency response of the same shape as the Wiener&ndash;Kolmogorov filter &nbsp; &#8658; &nbsp; $H(f) = K \cdot H_{\rm WF}(f)$&nbsp; with&nbsp; $K \ne 1$&nbsp; always leads to large distortions.
 +
*This can be illustrated by the noise-free case&nbsp; $(Q \to \infty)$:&nbsp; $d(t) = K \cdot s(t)$&nbsp; and the optimization task would be extremely poorly solved despite good conditions.
 +
*One might incorrectly conclude from the equation
 +
[[File:P_ID651__Sto_A_5_9_e.png|right|frame|Power-spectral density with the <br>Wiener&ndash;Kolmogorov filter]]
  
'''(5)'''&nbsp; Richtig ist <u>nur der zweite Lösungsvorschlag</u>:
+
:$${\rm{MSE}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)}  \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
*Ein zum Wiener&ndash;Kolmogorow&ndash;Filter formgleicher Frequenzgang &nbsp; &#8658; &nbsp; $H(f) = K \cdot H_{\rm WF}(f)$&nbsp; mit&nbsp; $K \ne 1$&nbsp; führt stets zu großen Verfälschungen.
+
:that a filter&nbsp; $H(f) = 2 \cdot H_{\rm WF}(f)$&nbsp; only doubles the mean squared error.
*Dies kann man sich zum Beispiel am rauschfreien Fall&nbsp; $(Q \to \infty)$&nbsp; verdeutlichen.&nbsp; In diesem Fall wäre&nbsp; $d(t) = K \cdot s(t)$&nbsp; und die Optimierungsaufgabe trotz guter Bedingungen extrem schlecht gelöst.
+
*However,&nbsp;  this is not the case,&nbsp; since&nbsp; $H(f)$&nbsp; is then no longer a Wiener filter and the above equation is no longer applicable.
*Aus der Gleichung
 
:$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)}  \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
 
:könnte man fälschlicherweise schließen, dass durch ein Filter&nbsp; $H(f) = 2 \cdot H_{\rm WF}(f)$&nbsp; der mittlere quadratische Fehler nur verdoppelt wird.  
 
*Dem ist jedoch nicht so, da&nbsp; $H(f)$&nbsp; dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar.
 
  
  
[[File:P_ID651__Sto_A_5_9_e.png|right|frame|Leistungsdichtespektren beim Wiener-Filter]]
+
The second statement is true,&nbsp; as can be seen from the accompanying diagram.  
Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze  hervorgeht.  
+
*The dots mark the frequency response&nbsp; $H_{\rm WF}(f)$&nbsp; of the filter for&nbsp; $Q = 3$&nbsp; and for&nbsp; $Q = 10$, resp.  
*Die Punkte markieren den Frequenzgang&nbsp; $H_{\rm WF}(f))$&nbsp; des Wiener&ndash;Kolmogorow&ndash;Filters für&nbsp; $Q = 3$&nbsp; bzw. für&nbsp; $Q = 10$.  
+
*For larger&nbsp; $Q (= 10)$,&nbsp; high components are attenuated less than for lower&nbsp; $Q (= 3)$.  
*Bei größerem&nbsp; $Q (= 10)$&nbsp; werden hohe Anteile weniger gedämpft als bei niedrigerem&nbsp; $Q (= 3)$.  
+
*Therefore,&nbsp; in the case of&nbsp; $Q = 10$,&nbsp; the filter output signal contains more higher frequency components,&nbsp; which are due to the noise&nbsp;  $n(t)$.&nbsp;  
*Deshalb beinhaltet das  Filterausgangssignal im Fall&nbsp; $Q = 10$&nbsp; auch  mehr höherfrequente Anteile, die auf das Rauschen&nbsp;  $n(t)$&nbsp; zurückgehen.
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 127: Line 126:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^5.5 Wiener–Kolmogorow–Filter^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^5.5 Wiener-Kolmogorov Filter^]]

Latest revision as of 15:35, 23 February 2022

Power-spectral densities
with the Wiener filter

Given a stochastic signal  $s(t)$ of which only the power-spectral density  $\rm (PSD)$  is known:

$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$

This power-spectral density  ${\it \Phi} _s (f)$  is shown in blue in the accompanying diagram.

  • The average power of  $s(t)$  is obtained by integration over the power-spectral density:
$$P_s = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0 \cdot f_0 \cdot {\rm{\pi }}.$$
  • Additively superimposed on this signal  $s(t)$  is white noise  $n(t)$  with noise power density  ${\it \Phi}_n(f) = N_0/2.$
  • As an abbreviation,  we use  $Q = 2 \cdot {\it \Phi}_0/N_0$,  where  $Q$  could be interpreted as  "quality".
  • Note that  $Q$  does not represent a signal–to–noise power ratio.


In this exercise,  we want to determine the frequency response  $H(f)$  of a filter that minimizes the mean square error  $\rm (MSE)$  between the useful signal  $s(t)$  and the filter output signal  $d(t)$: 

$${\rm{MSE}} = \mathop {\lim }\limits_{T_{\rm M} \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$



Notes:

  • The exercise belongs to the chapter  Wiener–Kolmogorow Filter.
  • For the optimal frequency response,  according to Wiener and Kolmogorov,  the following applies in general:
$$H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  • The following indefinite integral is given for solving:
$$\int {\frac{1}{a^2 + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$



Questions

1

Which of the following statements are true?

$H(f)$  is a Gaussian low-pass.
$H(f)$  represents a matched filter.
$H(f)$  represents a Wiener–Kolmogorov filter.

2

Determine the frequency response  $H(f)=H_{\rm WF} (f)$  of the optimum filter for this purpose. 
What values result with  $Q = 3$  at  $f = 0$  and  $f = 2f_0$?

$H(f = 0) \ = \ $

$H(f = 2f_0)\ = \ $

3

Let  $Q = 3$.  Calculate the mean square error  $(\rm MSE)$  with respect to  $P_s$  of the best possible filter.

${\rm MSE}/P_s \ = \ $

4

How must the  "quality factor"  $Q$  be chosen at least,  so that for the quotient the value  ${\rm MSE}/P_s = 0.1$  can be reached?

$Q_\text{min} \ = \ $

5

Which of the following statements are true?

A filter of the same shape  $H(f) = K \cdot H_{\rm WF}(f)$  leads to the same result.
The output signal  $d(t)$  contains more higher frequency components when  $Q$  is larger.


Solution

(1)  Only the last solution  is correct:

  • The task  "Minimization of the mean square error"  already points to the Wiener–Kolmogorow filter.
  • The matched filter,  on the other hand,  is used to concentrate the signal energy and thereby maximize the S/N ratio for a given time.


(2)  For the optimal frequency response,  according to Wiener and Kolmogorov,  the following applies in general:

$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  • With the given power-spectral density,  it is also possible to write for this:
$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
  • With  $Q = 3$  it follows:
$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1} \hspace{0.15cm}\underline {= 0.75},$$
$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5} \hspace{0.15cm}\underline {= 0.375}.$$


(3)  For the filter calculated in subtask  (2),  taking symmetry into account,  the following holds:

$${\rm{MSE = }}\int_{-\infty}^{+\infty} H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty} \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
  • For this,  with  $Q = 2 \cdot {\it \Phi}_0/N_0$  and  $a^2 = Q + 1$,  we can also write:
$${\rm{MSE = }}\int_0^\infty {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty {\frac{1}{a^2 + x^2 }}\,\, {\rm{d}}x.$$
  • This leads to the result with the integral given:
$${\rm{MSE}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
  • Normalizing MSE to the power  $P_s$  of the  signal $s(t)$,  we obtain for  $Q=3$:
$$\frac{\rm{MSE}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$


(4)  From the calculation in subtask  (3),  the condition  $Q \ge 99$   ⇒   $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$ follows directly for  ${\rm MSE}/P_s \ge 0.1.$

  • The larger  $Q$,  the smaller the mean square error becomes.



(5)  Only the second solution  is correct:

  • A frequency response of the same shape as the Wiener–Kolmogorov filter   ⇒   $H(f) = K \cdot H_{\rm WF}(f)$  with  $K \ne 1$  always leads to large distortions.
  • This can be illustrated by the noise-free case  $(Q \to \infty)$:  $d(t) = K \cdot s(t)$  and the optimization task would be extremely poorly solved despite good conditions.
  • One might incorrectly conclude from the equation
Power-spectral density with the
Wiener–Kolmogorov filter
$${\rm{MSE}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)} \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
that a filter  $H(f) = 2 \cdot H_{\rm WF}(f)$  only doubles the mean squared error.
  • However,  this is not the case,  since  $H(f)$  is then no longer a Wiener filter and the above equation is no longer applicable.


The second statement is true,  as can be seen from the accompanying diagram.

  • The dots mark the frequency response  $H_{\rm WF}(f)$  of the filter for  $Q = 3$  and for  $Q = 10$, resp.
  • For larger  $Q (= 10)$,  high components are attenuated less than for lower  $Q (= 3)$.
  • Therefore,  in the case of  $Q = 10$,  the filter output signal contains more higher frequency components,  which are due to the noise  $n(t)$.