Difference between revisions of "Aufgaben:Exercise 5.5Z: Complexity of the FFT"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Signaldarstellung" to "Category:Exercises for Signal Representation")
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fast-Fouriertransformation (FFT)
+
{{quiz-Header|Buchseite=Signal_Representation/Fast_Fourier_Transform_(FFT)
 
}}
 
}}
  
[[File:P_ID1179__Sig_Z_5_5.png|right|frame|Letzte Stufe der FFT für $N=8$]]
+
[[File:P_ID1179__Sig_Z_5_5.png|right|frame|Final step of the FFT for $N=8$]]
Der FFT–Algorithmus  (''Fast Fourier Transform'')  realisiert eine  ''Diskrete Fouriertransformation''  mit dem kleinstmöglichen Rechenaufwand, wenn der Parameter  $N$  eine Zweierpotenz ist. Im Einzelnen sind zur Durchführung einer FFT folgende Rechenschritte notwendig:
+
The  $\rm FFT$  algorithm  ("Fast Fourier Transform")  realises a  "Discrete Fourier Transform"  $\rm (DFT)$  with the smallest possible computational effort if the parameter  $N$  is a power of two.  In detail, the following calculation steps are necessary to carry out an FFT:
*Die FFT geschieht in  ${\rm log_2} \ N$  Stufen, wobei in jeder Stufe die genau gleiche Anzahl an Rechenoperationen durchzuführen ist.  
+
*The FFT occurs in  ${\rm log_2} \ N$  stages, whereby the exact same number of arithmetic operations must be carried out in each stage.  
*Die Grafik zeigt die dritte und letzte Stufe für das Beispiel  $N = 8$. Man erkennt, dass in dieser und auch den anderen Stufen jeweils  $N/2$  Basisoperationen durchzuführen sind.
+
*The diagram shows the third and last stage for the example  $N = 8$.  It can be seen that  $N/2$  basic operations have to be carried out in this and the other stages.
*In jeder Basisoperation, die man häufig auch als  '''Butterfly'''  bezeichnet, werden aus den beiden komplexen Eingangsgrößen  $E_1$  und  $E_2$  zwei komplexe Ausgänge berechnet:
+
*In each basic operation called  '''butterfly''',  two complex outputs are calculated from the two complex input variables  $E_1$  and  $E_2$ :
 
:$$ A_1  = E_1 + E_2 \cdot w^{\hspace{0.04cm}\mu}, $$
 
:$$ A_1  = E_1 + E_2 \cdot w^{\hspace{0.04cm}\mu}, $$
 
:$$ A_2 = E_1 - E_2 \cdot w^{\hspace{0.04cm} \mu}\hspace{0.05cm}.$$
 
:$$ A_2 = E_1 - E_2 \cdot w^{\hspace{0.04cm} \mu}\hspace{0.05cm}.$$
*Hierbei bezeichnet  $w =  {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi/N}$  den komplexen Drehfaktor. Für   $N = 8$  ergibt sich der Wert  $w =  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/4} = \cos(45^\circ) - {\rm j} \cdot \sin(45^\circ)\hspace{0.05cm}.$
+
*Here  $w =  {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi/N}$  denotes the complex rotation factor.  For   $N = 8$  the value  $w =  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/4} = \cos(45^\circ) - {\rm j} \cdot \sin(45^\circ)\hspace{0.05cm}$ is obtained.
*Der Exponent  $\mu$  für diesen komplexen Drehfaktor kann alle ganzzahligen Werte zwischen  $0$  und  $N/2-1$  annehmen. Für  $N = 8$  gilt:
+
*The exponent  $\mu$  for this complex rotation factor can take all integer values between  $0$  and  $N/2-1$.  For  $N = 8$  it is:
 
:$$w^0 = 1,\hspace{0.2cm}w^1 = {1}/{\sqrt{2}}- {\rm j}
 
:$$w^0 = 1,\hspace{0.2cm}w^1 = {1}/{\sqrt{2}}- {\rm j}
 
\cdot{1}/{\sqrt{2}},\hspace{0.2cm}w^2 = - {\rm
 
\cdot{1}/{\sqrt{2}},\hspace{0.2cm}w^2 = - {\rm
Line 17: Line 17:
 
\cdot{1}/{\sqrt{2}} \hspace{0.05cm}.$$
 
\cdot{1}/{\sqrt{2}} \hspace{0.05cm}.$$
  
Mit dieser Aufgabe sollen die für die FFT erforderliche Anzahl von Rechenoperationen  $(\mathcal{O}_{\rm FFT})$  ermittelt und mit dem für die DFT angebbaren Wert  $\mathcal{O}_{\rm DFT} ≈ 8\cdot N^2$  verglichen werden.
+
The purpose of this task is to determine the number of arithmetic operations  $(\mathcal{O}_{\rm FFT})$  required for the FFT and compare it with the value  $\mathcal{O}_{\rm DFT} ≈ 8\cdot N^2$  that can be specified for the DFT.
  
Zu beachten ist:
 
*Sinnvollerweise werden die Potenzen von  $w$  vor dem eigentlichen Algorithmus berechnet und in einer Lookup–Tabelle abgelegt.
 
*Die hierfür notwendigen Operationen sollen deshalb unberücksichtigt bleiben.
 
*Die Bitumkehroperation – eine Umsortierung, die vor der ersten Stufe durchzuführen ist – soll bei dieser Abschätzung ebenfalls nicht berücksichtigt werden.
 
  
  
  
  
 
+
''Hints:''  
 
+
*This task belongs to the chapter  [[Signal_Representation/Fast_Fourier_Transform_(FFT)|Fast Fourier Transform (FFT)]].
 
+
*It makes sense to calculate the powers of  $w$  before the actual algorithm and store them in a lookup table.  The operations necessary for this are to be disregarded.
''Hinweis:''  
+
*The  "bit reversal operation"  – a rearrangement that has to be carried out before the first stage – is also not to be taken into account in this estimation.
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Fast-Fouriertransformation_(FFT)|Fast-Fouriertransformation (FFT)]].
 
 
   
 
   
  
Line 37: Line 32:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele reelle Additionen&nbsp; $(A_{\rm A})$&nbsp; erfordert eine komplexe Addition?
+
{How many real additions&nbsp; $(A_{\rm A})$&nbsp; does a complex addition require?
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm A} \hspace{0.3cm} = \ $ { 2 }
 
$A_{\rm A} \hspace{0.3cm} = \ $ { 2 }
  
{Wieviele reelle Additionen&nbsp; $(A_{\rm M})$&nbsp; und Multiplikationen&nbsp; $(M_{\rm M})$&nbsp; sind für eine komplexe Multiplikation erforderlich?
+
{How many real additions&nbsp; $(A_{\rm M})$&nbsp; and multiplications&nbsp; $(M_{\rm M})$&nbsp; are required for a complex multiplication?
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm M} \hspace{0.3cm} = \  $ { 2 }
 
$A_{\rm M} \hspace{0.3cm} = \  $ { 2 }
 
$M_{\rm M} \hspace{0.2cm} = \  $ { 4 }
 
$M_{\rm M} \hspace{0.2cm} = \  $ { 4 }
  
{Wieviele komplexe Additionen/Subtraktionen&nbsp; $(a_{\rm B})$&nbsp; erfordert eine einzige Basisoperation (&bdquo;Butterfly&rdquo;)?
+
{How many complex additions/subtractions&nbsp; $(a_{\rm B})$&nbsp; does a single basic operationn&nbsp; ("butterfly")&nbsp; require?
<br>Wieviele komplexe Multiplikationen&nbsp; $(m_{\rm B})$&nbsp; sind pro Basisoperation notwendig?
+
<br>How many complex multiplications&nbsp; $(m_{\rm B})$&nbsp; are required per basic operation?
 
|type="{}"}
 
|type="{}"}
 
$a_{\rm B} \hspace{0.32cm} = \ $  { 2 }
 
$a_{\rm B} \hspace{0.32cm} = \ $  { 2 }
 
$m_{\rm B} \hspace{0.2cm} = \ $  { 1 }
 
$m_{\rm B} \hspace{0.2cm} = \ $  { 1 }
  
{Wieviele Rechenoperationen&nbsp; (Additionen, Subtraktionen, Multiplikationen gleichermaßen)&nbsp; erfordert eine Basisoperation?
+
{How many arithmetic operations&nbsp; (additions, subtractions, multiplications alike)&nbsp; does a basic operation require?
 
|type="{}"}
 
|type="{}"}
 
$\mathcal{O}_{\rm B} \ = \ $  { 10 }
 
$\mathcal{O}_{\rm B} \ = \ $  { 10 }
  
{Wieviele reelle Operationen&nbsp; $(\mathcal{O}_{\rm FFT})$&nbsp; erfordert der gesamte FFT&ndash;Algorithmus? Welche Werte ergeben sich für&nbsp; $N = 16$&nbsp; und&nbsp; $N = 1024$?
+
{How many real operations&nbsp; $(\mathcal{O}_{\rm FFT})$&nbsp; does the entire FFT&ndash;algorithm require?&nbsp; What are the values for&nbsp; $N = 16$&nbsp; und&nbsp; $N = 1024$?
 
|type="{}"}
 
|type="{}"}
 
$N = 16\text{:} \hspace{0.65cm} \mathcal{O}_{\rm FFT} \ = \ $ { 320 3% }
 
$N = 16\text{:} \hspace{0.65cm} \mathcal{O}_{\rm FFT} \ = \ $ { 320 3% }
 
$N = 1024\text{:} \hspace{0.2cm} \mathcal{O}_{\rm FFT} \ = \ $ { 51200 3% }
 
$N = 1024\text{:} \hspace{0.2cm} \mathcal{O}_{\rm FFT} \ = \ $ { 51200 3% }
  
{Wie groß ist der Zeitgewinn&nbsp; $G_{\rm FFT} = \mathcal{O}_{\rm DFT} - \mathcal{O}_{\rm FFT}$&nbsp; für&nbsp; $N = 16$&nbsp; und&nbsp; $N = 1024$?
+
{What is the time gain&nbsp; $G_{\rm FFT} = \mathcal{O}_{\rm DFT} - \mathcal{O}_{\rm FFT}$&nbsp; for&nbsp; $N = 16$&nbsp; and&nbsp; $N = 1024$?
 
|type="{}"}
 
|type="{}"}
 
$N = 16\text{:} \hspace{0.65cm} G_{\rm FFT} \ = \ $ { 6.4 3% }
 
$N = 16\text{:} \hspace{0.65cm} G_{\rm FFT} \ = \ $ { 6.4 3% }
Line 71: Line 66:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Jede komplexe Addition erfordert zwei reelle Additionen:
+
'''(1)'''&nbsp; Each complex addition requires two real additions:
 
:$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 +
 
:$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 +
 
R_2) + {\rm j} \cdot (I_1 + I_2)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
R_2) + {\rm j} \cdot (I_1 + I_2)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Line 80: Line 75:
  
  
'''(2)'''&nbsp; Eine jede komplexe Multiplikation benötigt vier reelle Multiplikationen und zwei reelle Additionen:
+
'''(2)'''&nbsp; Any complex multiplication requires four real multiplications and two real additions:
 
:$$(R_1 + {\rm j} \cdot I_1)  (R_2 + {\rm j} \cdot I_2) = (R_1 \cdot
 
:$$(R_1 + {\rm j} \cdot I_1)  (R_2 + {\rm j} \cdot I_2) = (R_1 \cdot
 
R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot
 
R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot
Line 88: Line 83:
  
  
'''(3)'''&nbsp; Die Basisoperationen lauten mit den komplexen Eingangsgrößen&nbsp; $E_1$,&nbsp; $E_2$&nbsp; und&nbsp; $w^{\hspace{0.04cm}\mu}$:
+
'''(3)'''&nbsp; The basic operations with complex inputs&nbsp; $E_1$,&nbsp; $E_2$&nbsp; and&nbsp; $w^{\hspace{0.04cm}\mu}$ are:
 
:$$ A_1  = E_1 + E_2 \cdot w^{\hspace{0.04cm}\mu},\hspace{0.5cm}  A_2 = E_1 - E_2 \cdot w^{\hspace{0.04cm} \mu}\hspace{0.05cm}.$$
 
:$$ A_1  = E_1 + E_2 \cdot w^{\hspace{0.04cm}\mu},\hspace{0.5cm}  A_2 = E_1 - E_2 \cdot w^{\hspace{0.04cm} \mu}\hspace{0.05cm}.$$
*Dies bedeutet eine komplexe Multiplikation und zwei komplexe Additionen: &nbsp; $\hspace{0.15 cm}\underline{a_{\rm B} = 2, \hspace{0.2cm}m_{\rm B} = 1}
+
*This means one complex multiplication and two complex additions: &nbsp; $\hspace{0.15 cm}\underline{a_{\rm B} = 2, \hspace{0.2cm}m_{\rm B} = 1}
 
  \hspace{0.05cm}.$
 
  \hspace{0.05cm}.$
  
  
'''(4)'''&nbsp; Im Gegensatz zu den ersten Computern nimmt heute eine Multiplikation keine wesentlich größere Rechenzeit in Anspruch als eine Addition bzw. Subtraktion.  
+
'''(4)'''&nbsp; In contrast to the first computers, a multiplication today does not take much more computing time than an addition or subtraction.
  
*Mit den Ergebnissen der Teilaufgaben&nbsp; '''(1)''',&nbsp; '''(2)'''&nbsp; und&nbsp; '''(3)'''&nbsp; erhält man für die Gesamtzahl der Rechenoperationen:
+
*Using the results of subtasks&nbsp; '''(1)''',&nbsp; '''(2)'''&nbsp; and&nbsp; '''(3)'''&nbsp; we obtain for the total number of arithmetic operations:
 
:$$ \mathcal{O}_{\rm B} = a_{\rm B}\cdot A_{\rm A} + a_{\rm B}\cdot (A_{\rm M}
 
:$$ \mathcal{O}_{\rm B} = a_{\rm B}\cdot A_{\rm A} + a_{\rm B}\cdot (A_{\rm M}
 
+M_{\rm M} ) = 2 \cdot 2 + 1 \cdot 6\hspace{0.15 cm}\underline{ = 10}
 
+M_{\rm M} ) = 2 \cdot 2 + 1 \cdot 6\hspace{0.15 cm}\underline{ = 10}
Line 102: Line 97:
  
  
'''(5)'''&nbsp; Insgesamt gibt es&nbsp; ${\rm log_2} \ N$ Stufen, in denen jeweils&nbsp; $N/2$&nbsp; Basisoperationen auszuführen sind:
+
'''(5)'''&nbsp; There are&nbsp; ${\rm log_2} \ N$ stages in total, each of which requires&nbsp; $N/2$&nbsp; basic operations to be performed:
 
:$$\mathcal{O}_{\rm FFT} = {\rm log_2}\hspace{0.1cm}N \cdot \frac{N}{2}\cdot
 
:$$\mathcal{O}_{\rm FFT} = {\rm log_2}\hspace{0.1cm}N \cdot \frac{N}{2}\cdot
 
\mathcal{O}_{\rm B} = 5 \cdot N \cdot {\rm log_2}\hspace{0.1cm}N$$
 
\mathcal{O}_{\rm B} = 5 \cdot N \cdot {\rm log_2}\hspace{0.1cm}N$$
Line 111: Line 106:
  
  
'''(6)'''&nbsp; Der Rechenzeitgewinn der FFT gegenüber der herkömmlichen DFT ergibt sich zu:
+
'''(6)'''&nbsp; The computational time gain of the FFT over the conventional DFT is given by:
 
:$$G_{\rm FFT} = \frac{\mathcal{O}_{\rm DFT}}{\mathcal{O}_{\rm FFT}} = \frac{8 \cdot N^2} {5 \cdot
 
:$$G_{\rm FFT} = \frac{\mathcal{O}_{\rm DFT}}{\mathcal{O}_{\rm FFT}} = \frac{8 \cdot N^2} {5 \cdot
 
N \cdot {\rm log_2}\hspace{0.1cm}N }= 1.6 \cdot \frac{N}{ {\rm
 
N \cdot {\rm log_2}\hspace{0.1cm}N }= 1.6 \cdot \frac{N}{ {\rm
Line 124: Line 119:
  
  
[[Category:Exercises for Signal Representation|^5. Zeit- und frequenzdiskrete Signaldarstellung^]]
+
[[Category:Signal Representation: Exercises|^5.5 Fast Fourier Transform ^]]

Latest revision as of 15:48, 24 May 2021

Final step of the FFT for $N=8$

The  $\rm FFT$  algorithm  ("Fast Fourier Transform")  realises a  "Discrete Fourier Transform"  $\rm (DFT)$  with the smallest possible computational effort if the parameter  $N$  is a power of two.  In detail, the following calculation steps are necessary to carry out an FFT:

  • The FFT occurs in  ${\rm log_2} \ N$  stages, whereby the exact same number of arithmetic operations must be carried out in each stage.
  • The diagram shows the third and last stage for the example  $N = 8$.  It can be seen that  $N/2$  basic operations have to be carried out in this and the other stages.
  • In each basic operation called  butterfly,  two complex outputs are calculated from the two complex input variables  $E_1$  and  $E_2$ :
$$ A_1 = E_1 + E_2 \cdot w^{\hspace{0.04cm}\mu}, $$
$$ A_2 = E_1 - E_2 \cdot w^{\hspace{0.04cm} \mu}\hspace{0.05cm}.$$
  • Here  $w = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi/N}$  denotes the complex rotation factor.  For  $N = 8$  the value  $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/4} = \cos(45^\circ) - {\rm j} \cdot \sin(45^\circ)\hspace{0.05cm}$ is obtained.
  • The exponent  $\mu$  for this complex rotation factor can take all integer values between  $0$  and  $N/2-1$.  For  $N = 8$  it is:
$$w^0 = 1,\hspace{0.2cm}w^1 = {1}/{\sqrt{2}}- {\rm j} \cdot{1}/{\sqrt{2}},\hspace{0.2cm}w^2 = - {\rm j},\hspace{0.2cm}w^3 = -{1}/{\sqrt{2}}- {\rm j} \cdot{1}/{\sqrt{2}} \hspace{0.05cm}.$$

The purpose of this task is to determine the number of arithmetic operations  $(\mathcal{O}_{\rm FFT})$  required for the FFT and compare it with the value  $\mathcal{O}_{\rm DFT} ≈ 8\cdot N^2$  that can be specified for the DFT.



Hints:

  • This task belongs to the chapter  Fast Fourier Transform (FFT).
  • It makes sense to calculate the powers of  $w$  before the actual algorithm and store them in a lookup table.  The operations necessary for this are to be disregarded.
  • The  "bit reversal operation"  – a rearrangement that has to be carried out before the first stage – is also not to be taken into account in this estimation.



Questions

1

How many real additions  $(A_{\rm A})$  does a complex addition require?

$A_{\rm A} \hspace{0.3cm} = \ $

2

How many real additions  $(A_{\rm M})$  and multiplications  $(M_{\rm M})$  are required for a complex multiplication?

$A_{\rm M} \hspace{0.3cm} = \ $

$M_{\rm M} \hspace{0.2cm} = \ $

3

How many complex additions/subtractions  $(a_{\rm B})$  does a single basic operationn  ("butterfly")  require?
How many complex multiplications  $(m_{\rm B})$  are required per basic operation?

$a_{\rm B} \hspace{0.32cm} = \ $

$m_{\rm B} \hspace{0.2cm} = \ $

4

How many arithmetic operations  (additions, subtractions, multiplications alike)  does a basic operation require?

$\mathcal{O}_{\rm B} \ = \ $

5

How many real operations  $(\mathcal{O}_{\rm FFT})$  does the entire FFT–algorithm require?  What are the values for  $N = 16$  und  $N = 1024$?

$N = 16\text{:} \hspace{0.65cm} \mathcal{O}_{\rm FFT} \ = \ $

$N = 1024\text{:} \hspace{0.2cm} \mathcal{O}_{\rm FFT} \ = \ $

6

What is the time gain  $G_{\rm FFT} = \mathcal{O}_{\rm DFT} - \mathcal{O}_{\rm FFT}$  for  $N = 16$  and  $N = 1024$?

$N = 16\text{:} \hspace{0.65cm} G_{\rm FFT} \ = \ $

$N = 1024\text{:} \hspace{0.2cm} G_{\rm FFT} \ = \ $


Solution

(1)  Each complex addition requires two real additions:

$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 + R_2) + {\rm j} \cdot (I_1 + I_2)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.15 cm}\underline{ A_{\rm A} = 2}\hspace{0.05cm}.$$


(2)  Any complex multiplication requires four real multiplications and two real additions:

$$(R_1 + {\rm j} \cdot I_1) (R_2 + {\rm j} \cdot I_2) = (R_1 \cdot R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot I_1)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{A_{\rm M} = 2,\hspace{0.3cm}M_{\rm M} = 4} \hspace{0.05cm}.$$


(3)  The basic operations with complex inputs  $E_1$,  $E_2$  and  $w^{\hspace{0.04cm}\mu}$ are:

$$ A_1 = E_1 + E_2 \cdot w^{\hspace{0.04cm}\mu},\hspace{0.5cm} A_2 = E_1 - E_2 \cdot w^{\hspace{0.04cm} \mu}\hspace{0.05cm}.$$
  • This means one complex multiplication and two complex additions:   $\hspace{0.15 cm}\underline{a_{\rm B} = 2, \hspace{0.2cm}m_{\rm B} = 1} \hspace{0.05cm}.$


(4)  In contrast to the first computers, a multiplication today does not take much more computing time than an addition or subtraction.

  • Using the results of subtasks  (1)(2)  and  (3)  we obtain for the total number of arithmetic operations:
$$ \mathcal{O}_{\rm B} = a_{\rm B}\cdot A_{\rm A} + a_{\rm B}\cdot (A_{\rm M} +M_{\rm M} ) = 2 \cdot 2 + 1 \cdot 6\hspace{0.15 cm}\underline{ = 10} \hspace{0.05cm}.$$


(5)  There are  ${\rm log_2} \ N$ stages in total, each of which requires  $N/2$  basic operations to be performed:

$$\mathcal{O}_{\rm FFT} = {\rm log_2}\hspace{0.1cm}N \cdot \frac{N}{2}\cdot \mathcal{O}_{\rm B} = 5 \cdot N \cdot {\rm log_2}\hspace{0.1cm}N$$
$$\Rightarrow \hspace{0.3cm}\mathcal{O}_{\rm FFT}\hspace{0.1cm}(N=16) = 5\cdot 16 \cdot 4 \hspace{0.15 cm}\underline{= 320}, \hspace{0.5cm}\mathcal{O}_{\rm FFT}\hspace{0.1cm}(N=1024) = 5\cdot 1024 \cdot 10 \hspace{0.15 cm}\underline{= 51200} \hspace{0.05cm}.$$


(6)  The computational time gain of the FFT over the conventional DFT is given by:

$$G_{\rm FFT} = \frac{\mathcal{O}_{\rm DFT}}{\mathcal{O}_{\rm FFT}} = \frac{8 \cdot N^2} {5 \cdot N \cdot {\rm log_2}\hspace{0.1cm}N }= 1.6 \cdot \frac{N}{ {\rm log_2}\hspace{0.1cm}N}$$
$$\Rightarrow \hspace{0.3cm}G_{\rm FFT} \hspace{0.1cm}(N=16) = 1.6 \cdot \frac{16}{ 4} \hspace{0.15 cm}\underline{= 6.4}, \hspace{0.5cm}G_{\rm FFT} \hspace{0.1cm}(N=1024) = 1.6 \cdot\frac{1024}{ 10}\hspace{0.15 cm}\underline{ \approx 164} \hspace{0.05cm}.$$