Processing math: 28%

Difference between revisions of "Aufgaben:Exercise 1.5Z: Sinc-shaped Impulse Response"

From LNTwww
m (Text replacement - "Signal_Representation/Fouriertransformation_und_-rücktransformation" to "Signal_Representation/Fourier_Transform_and_Its_Inverse")
 
(25 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID857__LZI_Z_1_5.png|right|frame|$\rm si$–förmige Impulsantwort]]
+
[[File:P_ID857__LZI_Z_1_5.png|right|frame|$\rm sinc$–shaped impulse response]]
Die Impulsantwort eines linearen zeitinvarianten (und akausalen) Systems wurde wie folgt ermittelt (siehe Grafik):
+
The impulse response of a linear time-invariant (and non-causal) system was determined as follows (see graph):
:$$h(t) = 500\hspace{0.1cm}{ {\rm s}}^{-1}\cdot{\rm si}\big[\pi
+
:$$h(t) = 500\hspace{0.1cm}{ {\rm s}}^{-1}\cdot{\rm sinc}\big[{t}/({ 1\hspace{0.1cm}{\rm ms}})\big] .$$
\cdot {t}/({ 1\hspace{0.1cm}{\rm ms}})\big] .$$
+
The output signals  y(t) should be computed if various cosine oscillations of different frequency  f0  are applied to the input:
Berechnet werden sollen die Ausgangssignale  y(t), wenn am Eingang verschiedene Cosinusschwingungen unterschiedlicher Frequenz  f0  angelegt werden:
 
 
:$$x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot  f_0
 
:$$x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot  f_0
 
\cdot t ) .$$
 
\cdot t ) .$$
Line 18: Line 17:
  
  
''Hinweise:''  
+
''Please note:''  
*Die Aufgabe gehört zum  Kapitel  [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen|Einige systemtheoretische Tiefpassfunktionen]].
+
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].
*Die Lösung kann im Zeitbereich oder im Frequenzbereich gefunden werden. In der Musterlösung finden Sie beide Lösungswege.  
+
*The solution can be found in the time domain or in the frequency domain. In the sample solution you will find both approaches.  
*Gegeben ist das folgende bestimmte Integral:
+
*The following definite integral is given:
 
:$$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm
 
:$$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm
 
  d}u = \left\{ π/2π/40 \right.\quad \quad
 
  d}u = \left\{ π/2π/40 \right.\quad \quad
Line 31: Line 30:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Frequenzgang&nbsp; H(f)&nbsp; des LZI-Systems. Wie groß sind die äquivalente Bandbreite und der Gleichsignalübertragungsfaktor?
+
{Compute the frequency response&nbsp; H(f)&nbsp; of the LTI system. What is the equivalent bandwidth and the direct signal (DC) transmission factor?
 
|type="{}"}
 
|type="{}"}
 
Δf =  { 1 3% }  kHz
 
Δf =  { 1 3% }  kHz
Line 40: Line 39:
  
  
{Welchen Signalwert besitzt das  Ausgangssignal&nbsp; y(t)&nbsp; zur Zeit&nbsp; t=0&nbsp; bei cosinusförmigem Eingang mit der Frequenz&nbsp; f0=1 kHz_?
+
{What is the signal value of the output signal&nbsp; y(t)&nbsp; at time&nbsp; t=0&nbsp; if the input is cosine-shaped and of frequency&nbsp; f0=1 kHz_?
 
|type="{}"}
 
|type="{}"}
 
y(t=0) =  { 0. }  V
 
y(t=0) =  { 0. }  V
  
  
{Welchen Signalwert besitzt das  Ausgangssignal&nbsp; y(t)&nbsp; zur Zeit&nbsp; t=0&nbsp; bei cosinusförmigem Eingang mit  der Frequenz&nbsp; f0=0.1 kHz_?
+
{What is the signal value of the output signal&nbsp; y(t)&nbsp; at time&nbsp; t=0&nbsp; if the input is cosine-shaped and of frequency&nbsp; f0=0.1 kHz_?
 
|type="{}"}
 
|type="{}"}
 
y(t=0) =  { 2 3% }  V
 
y(t=0) =  { 2 3% }  V
  
  
{Welchen Signalwert besitzt das  Ausgangssignal&nbsp; y(t)&nbsp; zur Zeit&nbsp; t=0&nbsp; bei cosinusförmigem Eingang mit  der Frequenz&nbsp; f0=0.5 kHz_?
+
{What is the signal value of the output signal&nbsp; y(t)&nbsp; at timee&nbsp; t=0&nbsp; if the input is cosine-shaped and of frequency&nbsp; f0=0.5 kHz_?
 
|type="{}"}
 
|type="{}"}
 
y(t=0) =  { 1 3% }  V
 
y(t=0) =  { 1 3% }  V
Line 56: Line 55:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Ein Vergleich mit den Gleichungen auf der Seite&nbsp; [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Idealer_Tiefpass_.E2.80.93_K.C3.BCpfm.C3.BCller.E2.80.93Tiefpass|Idealer Tiefpass]], oder die Anwendung der&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|Fourierrücktransformation]]&nbsp; zeigt, dass&nbsp; H(f)&nbsp; ein idealer Tiefpass ist:
+
'''(1)'''&nbsp; A comparison with the equations on the page&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Ideal_low-pass_filter_–_Rectangular-in-frequency|Ideal low-pass filter]] or applying the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_second_Fourier_integral |inverse Fourier transformation]]&nbsp; shows that&nbsp; H(f)&nbsp; is an ideal low-pass filter:
 
:$$H(f) = \left\{ KK/20 \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
 
:$$H(f) = \left\{ KK/20 \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
 
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
 
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
Line 65: Line 64:
 
{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.}  \\
 
{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.}  \\
 
\end{array}$$
 
\end{array}$$
*Die äquidistanten Nulldurchgänge der Impulsantwort treten im Abstand&nbsp; Δt = 1 \ \rm ms&nbsp; auf.  
+
*The equidistant zero-crossings of the impulse response occur at an interval of&nbsp; Δt = 1 \ \rm ms&nbsp;.  
*Daraus folgt die äquivalente Bandbreite&nbsp; Δf \rm \underline{ = 1 \ \rm kHz}.&nbsp;  
+
*From this it follows that the equivalent bandwidth is&nbsp; Δf \rm \underline{ = 1 \ \rm kHz}.&nbsp;  
*Wäre&nbsp; K = 1, so müsste&nbsp; h(0) = Δf = 1000 \cdot \rm 1/s&nbsp; gelten.  
+
*If&nbsp; K = 1 was true, then&nbsp; h(0) = Δf = 1000 \cdot \rm 1/s&nbsp; should hold.  
*Wegen der Angabe&nbsp; h(0) = 500 \cdot{\rm 1/s} = Δf/2&nbsp; ist somit der Gleichsignalübertragungsfaktor&nbsp; K = H(f = 0) \; \rm \underline{= 0.5}.
+
*Because of the given&nbsp; h(0) = 500 \cdot{\rm 1/s} = Δf/2&nbsp; the direct signal (DC) transmission factor thus is&nbsp; K = H(f = 0) \; \rm \underline{= 0.5}.
  
  
  
'''(2)'''&nbsp; Diese Aufgabe lässt sich am einfachsten im Spektralbereich lösen.  
+
'''(2)'''&nbsp; This problem is most easily solved in the spectral domain.  
*Für das Ausgangsspektrum gilt: &nbsp; Y(f) =  X(f)\cdot H(f) .
+
*For the output spectrum the following holds: &nbsp; Y(f) =  X(f)\cdot H(f) .
*X(f)&nbsp; besteht aus zwei Diracfunktionen bei&nbsp; ± f_0, jeweils mit Gewicht&nbsp; A_x/2 =2 \hspace{0.08cm}\rm V.  
+
*X(f)&nbsp; consists of two Dirac functions at&nbsp; ± f_0 each with weight&nbsp; A_x/2 =2 \hspace{0.08cm}\rm V.  
*Bei&nbsp; f = f_0 = 1 \ {\rm kHz} > Δf/2&nbsp; ist aber&nbsp; H(f) = 0, so dass&nbsp; Y(f) = 0&nbsp; und damit auch&nbsp; y(t) = 0&nbsp; ist  &nbsp;  ⇒  &nbsp;  \underline{y(t = 0) = 0}.
+
*For&nbsp; f = f_0 = 1 \ {\rm kHz} > Δf/2&nbsp;, however&nbsp; H(f) = 0 holds, such that&nbsp; Y(f) = 0&nbsp; and hence also &nbsp; y(t) = 0&nbsp; &nbsp;  ⇒  &nbsp;  \underline{y(t = 0) = 0}.
  
  
Die Lösung im Zeitbereich basiert auf der Faltung:
+
The solution in the time domain is based on convolution:
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau  )}  \cdot
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau  )}  \cdot
 
  x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
  x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
*Zum Zeitpunkt&nbsp; t = 0&nbsp; erhält man unter Berücksichtigung der Symmetrie der Cosinusfunktion:
+
*At time&nbsp; t = 0&nbsp; the following is obtained considering the symmetry of the cosine function:
 
:$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau  )  \cdot
 
:$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau  )  \cdot
 
  {\rm cos}(2\pi \cdot  f_0
 
  {\rm cos}(2\pi \cdot  f_0
 
\cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
 
\cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
*Mit der Substitution&nbsp; u = π · Δf · τ&nbsp; kann hierfür auch geschrieben werden:
+
*With the substitution&nbsp; u = π · Δf · τ&nbsp;, this can also be formulated as follows:
 
:y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm d}u .
 
:y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm d}u .
*Hierbei ist die Konstante&nbsp; a = 2f_0/Δf = 2. Mit diesem Wert liefert das angegebene Integral den Wert Null: &nbsp; y(t = 0 ) = {A_y } = 0.
+
*Here, the constant is&nbsp; a = 2f_0/Δf = 2. With this value, the given integral yields zero: &nbsp; y(t = 0 ) = {A_y } = 0.
  
  
  
'''(3)'''&nbsp; Der Frequenzgang hat bei&nbsp; f = f_0 = 100 \ \rm Hz&nbsp; nach den Berechnungen zur Teilaufgabe&nbsp; '''(1)'''&nbsp; den Wert&nbsp; $K = 0.5$. Deshalb ergibt sich
+
'''(3)'''&nbsp; The frequency response has the value&nbsp; K = 0.5 at&nbsp; f = f_0 = 100 \ \rm Hz&nbsp; according to the calculations for subtask&nbsp; '''(1)'''&nbsp;. Therefore,
:$$A_y = A_x/2 = 2\ \rm  V.$$  
+
:A_y = A_x/2 = 2\ \rm  V is obtained.
*Zum gleichen Ergebnis kommt man über die Faltung nach obiger Gleichung.  
+
*The same result is obtained by convolution according to the above equation.  
*Für&nbsp; a = 2f_0/Δf = 0.2&nbsp; ist das Integral gleich&nbsp; π/2&nbsp; und man erhält
+
*For&nbsp; a = 2f_0/Δf = 0.2&nbsp; the integral is equal to&nbsp; π/2&nbsp; and one obtains
 
:y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.
 
:y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.
  
  
'''(4)'''&nbsp; Genau bei&nbsp; f = 0.5  \ \rm kHz&nbsp; liegt der Übergang vom Durchlass– zum Sperrbereich und es gilt für diese singuläre Stelle:  
+
'''(4)'''&nbsp; The transition from the band-pass to the band-stop is exactly at&nbsp; f = 0.5  \ \rm kHz&nbsp; and for this singular location the following holds:  
 
:H(f = f_0) = K/2.  
 
:H(f = f_0) = K/2.  
*Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe&nbsp; '''(3)'''&nbsp; berechnet, nämlich&nbsp; A_y \;  \underline{= 1  \, \rm V}.  
+
*Thus, the amplitude of the output signal is only half as large as calculated in subtask&nbsp; '''(3)'''&nbsp;, namely&nbsp; A_y \;  \underline{= 1  \, \rm V}.  
*Zum gleichen Ergebnis kommt man mit &nbsp;a = 2f_0/Δf = 1&nbsp; über die Faltung.
+
*The same result is obtained with&nbsp;a = 2f_0/Δf = 1&nbsp; by convolution.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.3 Einige systemtheoretische Tiefpassfunktionen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.3 Some Low-Pass Functions in Systems Theory^]]

Latest revision as of 14:54, 7 September 2021

\rm sinc–shaped impulse response

The impulse response of a linear time-invariant (and non-causal) system was determined as follows (see graph):

h(t) = 500\hspace{0.1cm}{ {\rm s}}^{-1}\cdot{\rm sinc}\big[{t}/({ 1\hspace{0.1cm}{\rm ms}})\big] .

The output signals  y(t) should be computed if various cosine oscillations of different frequency  f_0  are applied to the input:

x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot f_0 \cdot t ) .





Please note:

  • The exercise belongs to the chapter  Some Low-Pass Functions in Systems Theory.
  • The solution can be found in the time domain or in the frequency domain. In the sample solution you will find both approaches.
  • The following definite integral is given:
\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u = \left\{ \begin{array}{c} \pi/2 \\ \pi/4 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ |a| < 1,} \\{ |a| = 1,} \\ { |a| > 1.} \\ \end{array}



Questions

1

Compute the frequency response  H(f)  of the LTI system. What is the equivalent bandwidth and the direct signal (DC) transmission factor?

\Delta f \ =\

\ \rm kHz
H(f = 0) \ =\

2

What is the signal value of the output signal  y(t)  at time  t = 0  if the input is cosine-shaped and of frequency  \underline{f_0 = 1\ \rm kHz}?

y(t = 0) \ = \

\ \rm V

3

What is the signal value of the output signal  y(t)  at time  t = 0  if the input is cosine-shaped and of frequency  \underline{f_0 = 0.1\ \rm kHz}?

y(t = 0) \ =\

\ \rm V

4

What is the signal value of the output signal  y(t)  at timee  t = 0  if the input is cosine-shaped and of frequency  \underline{f_0 = 0.5\ \rm kHz}?

y(t = 0) \ = \

\ \rm V


Solution

(1)  A comparison with the equations on the page  Ideal low-pass filter or applying the  inverse Fourier transformation  shows that  H(f)  is an ideal low-pass filter:

H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K \\ K/2 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}
  • The equidistant zero-crossings of the impulse response occur at an interval of  Δt = 1 \ \rm ms .
  • From this it follows that the equivalent bandwidth is  Δf \rm \underline{ = 1 \ \rm kHz}
  • If  K = 1 was true, then  h(0) = Δf = 1000 \cdot \rm 1/s  should hold.
  • Because of the given  h(0) = 500 \cdot{\rm 1/s} = Δf/2  the direct signal (DC) transmission factor thus is  K = H(f = 0) \; \rm \underline{= 0.5}.


(2)  This problem is most easily solved in the spectral domain.

  • For the output spectrum the following holds:   Y(f) = X(f)\cdot H(f) .
  • X(f)  consists of two Dirac functions at  ± f_0 each with weight  A_x/2 =2 \hspace{0.08cm}\rm V.
  • For  f = f_0 = 1 \ {\rm kHz} > Δf/2 , however  H(f) = 0 holds, such that  Y(f) = 0  and hence also   y(t) = 0    ⇒   \underline{y(t = 0) = 0}.


The solution in the time domain is based on convolution:

y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau )} \cdot x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.
  • At time  t = 0  the following is obtained considering the symmetry of the cosine function:
y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot {\rm cos}(2\pi \cdot f_0 \cdot \tau ) \hspace{0.1cm}{\rm d}\tau.
  • With the substitution  u = π · Δf · τ , this can also be formulated as follows:
y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u .
  • Here, the constant is  a = 2f_0/Δf = 2. With this value, the given integral yields zero:   y(t = 0 ) = {A_y } = 0.


(3)  The frequency response has the value  K = 0.5 at  f = f_0 = 100 \ \rm Hz  according to the calculations for subtask  (1) . Therefore,

A_y = A_x/2 = 2\ \rm V is obtained.
  • The same result is obtained by convolution according to the above equation.
  • For  a = 2f_0/Δf = 0.2  the integral is equal to  π/2  and one obtains
y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.


(4)  The transition from the band-pass to the band-stop is exactly at  f = 0.5 \ \rm kHz  and for this singular location the following holds:

H(f = f_0) = K/2.
  • Thus, the amplitude of the output signal is only half as large as calculated in subtask  (3) , namely  A_y \; \underline{= 1 \, \rm V}.
  • The same result is obtained with a = 2f_0/Δf = 1  by convolution.