Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.4Z: On the Hanning Window"

From LNTwww
m (Text replacement - "Signaldarstellung/Spektralanalyse" to "Signal_Representation/Spectrum_Analysis")
 
(9 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1168__Sig_Z_5_4.png|250px|right|frame|Charakterisierung des Hanning-Fensters]]
+
[[File:P_ID1168__Sig_Z_5_4.png|250px|right|frame|Characterisation of the Hanning window]]
  
In dieser Aufgabe sollen wichtige Eigenschaften des häufig verwendeten Hanning–Fensters hergeleitet werden. Die zeitkontinuierliche Darstellung im Intervall von  TP/2  bis  +TP/2  lautet hier wie folgt:
+
In this task, important properties of the frequently used Hanning window are to be derived.  The continuous-time representation in the interval from  TP/2  to  +TP/2  is here as follows:
 
:$$w(t)= {\rm cos}^2(\pi \cdot
 
:$$w(t)= {\rm cos}^2(\pi \cdot
 
{t}/{T_{\rm P}})=  0.5\cdot \big(1 + {\rm cos}(2\pi \cdot
 
{t}/{T_{\rm P}})=  0.5\cdot \big(1 + {\rm cos}(2\pi \cdot
 
{t}/{T_{\rm P}}) \big )
 
{t}/{T_{\rm P}}) \big )
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Außerhalb des symmetrischen Zeitbereichs der Dauer  TP  ist $w (t) \equiv 0$.
+
Outside the symmetric time domain of duration  TP:    $w(t) \equiv 0$.
  
Die obere Grafik zeigt die zeitdiskrete Darstellung  w(ν)=w(νTA), wobei  TA  um den Faktor  N=32  kleiner ist als  TP. Der Definitionsbereich der diskreten Zeitvariablen  ν  reicht von  -16  bis  +15.
+
The upper graph shows the discrete-time representation  w(\nu) = w({\nu}  \cdot T_{\rm A}), where  T_{\rm A}  is smaller than   $T_{\rm P} by a factor  N = 32$.  The definition range of the discrete time variable  ν  extends from  -16  to  +15.
  
In der unteren Grafik ist die Fouriertransformierte  W(f)  der zeitkontinuierlichen Fensterfunktion  w(t)  logarithmisch dargestellt. Die Abszisse ist hierbei auf  f_{\rm A} = 1/T_{\rm P}  normiert ist. Man erkennt:
+
In the lower graph, the Fourier transform  W(f)  of the continuous-time window function  w(t)  is shown logarithmically.  The abscissa is normalised to  f_{\rm A} = 1/T_{\rm P}.  One can see:
*Die äquidistanten Werte  W({\mu}  \cdot f_{\rm A})  sind Null mit Ausnahme von  μ = 0  und  μ = ±1.  
+
*The equidistant values  W({\mu}  \cdot f_{\rm A})  are zero except for  μ = 0  and  μ = ±1.  
*Die Hauptkeule erstreckt sich somit auf den Frequenzbereich  |f| ≤ 2 · f_{\rm A}.  
+
*The main lobe thus extends to the frequency range  |f| ≤ 2 · f_{\rm A}.  
*W(f)  ist außerhalb der Hauptkeule betragsmäßig für  f = ±2.5 · f_{\rm A}  am größten.  
+
*W(f)  is largest in magnitude outside the main lobe for  f = ±2.5 · f_{\rm A}.  
*Somit gilt hier für den minimalen Abstand zwischen Haupt– und Seitenkeulen:
+
*Thus, the minimum distance between the main and the side lobes applies here:
  
:$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm}
+
:$$D_{\text{min (main lobe / side lobes) } } = 20 \cdot {\rm lg}\hspace{0.15cm}
 
  \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.$$  
 
  \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.$$  
  
Line 30: Line 30:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Spectrum_Analysis|Spektralanalyse]].
+
*This task belongs to the chapter  [[Signal_Representation/Spectrum_Analysis|Spectral Analysis]].
*Beachten Sie, dass die Frequenzauflösung  f_{\rm A}  gleich dem Kehrwert des einstellbaren Parameters  T_{\rm P}  ist.  
+
*Note that the frequency resolution f_{\rm A}  is equal to the reciprocal of the adjustable parameter  $T_{\rm P}$.
 +
*In this exercise we use the  ${\rm si}$–function:   {\rm si}(x) = \sin(x)/x.  
 
   
 
   
  
Line 38: Line 39:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Geben Sie die zeitdiskreten Koeffizienten&nbsp; w(ν)&nbsp; des Hanning–Fensters analytisch an. <br>Welche Zahlenwerte ergeben sich für&nbsp; ν = 0,&nbsp; ν = 1&nbsp; und&nbsp; ν =  -\hspace{0.05cm}8?
+
{Give the discrete-time coefficients&nbsp; w(ν)&nbsp; of the Hanning window analytically.&nbsp; What are the numerical values for&nbsp; ν = 0,&nbsp; ν = 1&nbsp; and&nbsp; ν =  -\hspace{0.05cm}8?
 
|type="{}"}
 
|type="{}"}
 
w(ν = 0) \hspace{0.37cm} = \ { 1 1% }  
 
w(ν = 0) \hspace{0.37cm} = \ { 1 1% }  
Line 48: Line 49:
 
w(ν =  -8) \hspace{0.03cm} = \ { 0.5 1% }  
 
w(ν =  -8) \hspace{0.03cm} = \ { 0.5 1% }  
  
{Berechnen Sie die Spektralfunktion&nbsp; W(f)&nbsp; allgemein. Welche der folgenden Aussagen sind zutreffend??
+
{Calculate the spectral function&nbsp; W(f)&nbsp; in general.&nbsp; Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- W(f)&nbsp; liefert für spezielle Frequenzwerte komplexe Ergebnisse.
+
- W(f)&nbsp; yields complex results for special frequency values.
+ W(f)&nbsp; ist bezüglich&nbsp; f&nbsp; gerade, das heißt, es gilt stets&nbsp; W(-f) = W(+f).
+
+ W(f)&nbsp; is even with respect to&nbsp; f&nbsp;, i.e.&nbsp; W(-f) = W(+f).
+ Der Spektralwert&nbsp; $W(f = 0)&nbsp; ist gleich&nbsp; 0.5/f_{\rm A}$&nbsp; und somit reell.
+
+ The spectral value&nbsp; $W(f = 0)=0.5/f_{\rm A}$&nbsp; and thus real.
  
{Wie groß sind&nbsp; W(f = ±f_{\rm A})&nbsp; und die auf&nbsp; $f_{\rm A}$&nbsp; normierte $\text{6 dB}$–Bandbreite?
+
{What are&nbsp; W(f = ±f_{\rm A})&nbsp; and the&nbsp; $\text{6dB}$&nbsp; bandwidth normalised to &nbsp; $f_{\rm A}$?
 
|type="{}"}
 
|type="{}"}
 
W(±f_{\rm A})  \hspace{0.15cm} = \ { 0.25 1% } \ \cdot \ 1/f_{\rm A}
 
W(±f_{\rm A})  \hspace{0.15cm} = \ { 0.25 1% } \ \cdot \ 1/f_{\rm A}
 
B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A}  \hspace{0.2cm} = \ { 2 1% }  
 
B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A}  \hspace{0.2cm} = \ { 2 1% }  
 
 
{Wie groß ist der minimale Abstand zwischen Hauptkeule und Seitenkeule.
+
{What is the minimum distance between the main lobe and the side lobes.
 
|type="{}"}
 
|type="{}"}
$A_{\rm H/S} \ = \ { 32.3 1% } \ \rm dB$
+
$D_{\text{min (main lobe / side lobes) } } \ = \ { 32.3 1% } \ \rm dB$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Nach trigonometrischer Umformung ergibt sich für die zeitkontinuierliche Fensterfunktion:
+
'''(1)'''&nbsp; After trigonometric transformation, the result for the continuous-time window function is:
 
:$$w(t) = {\rm cos}^2(\pi \cdot
 
:$$w(t) = {\rm cos}^2(\pi \cdot
 
{t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm
 
{t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm
 
cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.$$
 
cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.$$
*Nach Zeitdiskretisierung mit&nbsp; ν = t/T_{\rm A}&nbsp; und&nbsp; T_{\rm P}/T_{\rm A} = N = 32&nbsp; erhält man für das zeitdiskrete Fenster:
+
*After time discretisation with&nbsp; ν = t/T_{\rm A}&nbsp; and&nbsp; T_{\rm P}/T_{\rm A} = N = 32, one obtains for the discrete-time window:
 
:$$w(\nu)  =  w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm
 
:$$w(\nu)  =  w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm
 
cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm}
 
cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm}
Line 83: Line 84:
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(2)'''&nbsp; The correct <u>solutions are 2 and 3:</u>:
*Die periodische Fortsetzung von&nbsp; w(t)&nbsp; entsprechend der Periodendauer&nbsp; T_{\rm P}&nbsp; liefert ein (periodisches) Signal mit einem Gleich– und einem Cosinusanteil.  
+
*The periodic continuation of&nbsp; w(t)&nbsp; corresponding to the period&nbsp; T_{\rm P}&nbsp; yields a (periodic) signal with a DC and a cosine component.
*Daraus folgt mit&nbsp; f_{\rm A} = 1/T_{\rm P}:
+
*From this follows with &nbsp; f_{\rm A} = 1/T_{\rm P}:
 
:$${\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm
 
:$${\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm
 
cos}(2\pi \cdot f_{\rm A} \cdot t)
 
cos}(2\pi \cdot f_{\rm A} \cdot t)
Line 91: Line 92:
 
\hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm
 
\hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm
 
\delta}(f \pm f_{\rm A}))\hspace{0.05cm}.$$
 
\delta}(f \pm f_{\rm A}))\hspace{0.05cm}.$$
*Das zeitbegrenzte Signal&nbsp; w(t)&nbsp; ergibt sich aus&nbsp; {\rm P}\{w(t)\}&nbsp; durch Multiplikation mit einem Rechteck der Amplitude&nbsp; 1&nbsp; und der Dauer&nbsp; T_{\rm P}.  
+
*The time-limited signal&nbsp; w(t)&nbsp; is obtained from&nbsp; {\rm P}\{w(t)\}&nbsp; by multiplication with a rectangle of amplitude&nbsp; 1&nbsp; and duration&nbsp; T_{\rm P}.  
*Dessen Spektrum&nbsp; W(f)&nbsp; erhält man somit aus der Faltung der obigen Spektralfunktion mit der Funktion&nbsp; T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A}):
+
*Its spectrum&nbsp; W(f)&nbsp; is thus obtained from the convolution of the above spectral function with the function&nbsp; T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A}):
 
:$$w(t)
 
:$$w(t)
 
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,
 
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,
Line 99: Line 100:
 
\frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm
 
\frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm
 
si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$
 
si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$
*Diese Spektralfunktion ist gerade und für alle Frequenzen&nbsp; f&nbsp; auch reell. Der Spektralwert bei der Frequenz&nbsp; f = 0&nbsp; ergibt die Fensterfläche:
+
*This spectral function is even and also real for all frequencies&nbsp; f&nbsp;. The spectral value at frequency&nbsp; f = 0&nbsp; gives the window area:
 
:$$W(f=0) =
 
:$$W(f=0) =
 
\frac{0.5}{f_{\rm A}}=
 
\frac{0.5}{f_{\rm A}}=
Line 107: Line 108:
  
  
'''(3)'''&nbsp; Aus dem Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; folgt auch:
+
'''(3)'''&nbsp; From the result of sub-task&nbsp; '''(2)'''&nbsp; it also follows:
 
:W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.  
 
:W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.  
*Aufgrund des monotonen Verlaufs im Bereich&nbsp; |f| < f_{\rm A}&nbsp; ist die Betragsfunktion&nbsp; |W(f)|&nbsp; genau bei&nbsp; ± f_{\rm A}&nbsp; zum ersten Mal auf die Hälfte des Maximums abgefallen.  
+
*Due to the monotonic course in the range&nbsp; |f| < f_{\rm A}&nbsp;, the magnitude function&nbsp; |W(f)|&nbsp; has dropped to half of the maximum for the first time exactly at&nbsp; ± f_{\rm A}&nbsp;.
*Damit gilt&nbsp; B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}.
+
*Thus,&nbsp; B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}.
  
  
  
'''(4)'''&nbsp; Der größte Spektralbetrag außerhalb der Hauptkeule tritt bei&nbsp; f = ±2.5 f_{\rm A}&nbsp; auf. Mit dem Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; gilt:
+
'''(4)'''&nbsp; The largest spectral magnitude outside the main lobe occurs at&nbsp; f = ±2.5 f_{\rm A}.&nbsp; With the result of subtask&nbsp; '''(2)'''&nbsp; holds:
 
:$$W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi )
 
:$$W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi )
 
  +\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )=  \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.$$
 
  +\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )=  \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.$$
*Damit erhält man für den minimalen Abstand zwischen Hauptkeule und Seitenkeulen:
+
*This gives the minimum distance between the main lobe and the side lobes:
:$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm}
+
:$$D_{\text{min (main lobe / side lobes) } } = 20 \cdot {\rm lg}\hspace{0.15cm}
 
  \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm}
 
  \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm}
 
  \frac{0.5}{0.0121}\hspace{0.15 cm}\underline{\approx 32.3\,\,{\rm dB}}\hspace{0.05cm}.$$
 
  \frac{0.5}{0.0121}\hspace{0.15 cm}\underline{\approx 32.3\,\,{\rm dB}}\hspace{0.05cm}.$$
Line 125: Line 126:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^5. Zeit- und frequenzdiskrete Signaldarstellung^]]
+
[[Category:Signal Representation: Exercises|^5.4 Spectrum Analysis^]]

Latest revision as of 05:18, 18 September 2022

Characterisation of the Hanning window

In this task, important properties of the frequently used Hanning window are to be derived.  The continuous-time representation in the interval from  -T_{\rm P}/2  to  +T_{\rm P}/2  is here as follows:

w(t)= {\rm cos}^2(\pi \cdot {t}/{T_{\rm P}})= 0.5\cdot \big(1 + {\rm cos}(2\pi \cdot {t}/{T_{\rm P}}) \big ) \hspace{0.05cm}.

Outside the symmetric time domain of duration  T_{\rm P}:    w(t) \equiv 0.

The upper graph shows the discrete-time representation  w(\nu) = w({\nu} \cdot T_{\rm A}), where  T_{\rm A}  is smaller than   T_{\rm P} by a factor  N = 32.  The definition range of the discrete time variable  ν  extends from  -16  to  +15.

In the lower graph, the Fourier transform  W(f)  of the continuous-time window function  w(t)  is shown logarithmically.  The abscissa is normalised to  f_{\rm A} = 1/T_{\rm P}.  One can see:

  • The equidistant values  W({\mu} \cdot f_{\rm A})  are zero except for  μ = 0  and  μ = ±1.
  • The main lobe thus extends to the frequency range  |f| ≤ 2 · f_{\rm A}.
  • W(f)  is largest in magnitude outside the main lobe for  f = ±2.5 · f_{\rm A}.
  • Thus, the minimum distance between the main and the side lobes applies here:
D_{\text{min (main lobe / side lobes) } } = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.





Hints:

  • This task belongs to the chapter  Spectral Analysis.
  • Note that the frequency resolution f_{\rm A}  is equal to the reciprocal of the adjustable parameter  T_{\rm P}.
  • In this exercise we use the  {\rm si}–function:   {\rm si}(x) = \sin(x)/x.



Questions

1

Give the discrete-time coefficients  w(ν)  of the Hanning window analytically.  What are the numerical values for  ν = 0ν = 1  and  ν = -\hspace{0.05cm}8?

w(ν = 0) \hspace{0.37cm} = \

w(ν = 1) \hspace{0.37cm} = \

w(ν = -8) \hspace{0.03cm} = \

2

Calculate the spectral function  W(f)  in general.  Which of the following statements are correct?

W(f)  yields complex results for special frequency values.
W(f)  is even with respect to  f , i.e.  W(-f) = W(+f).
The spectral value  W(f = 0)=0.5/f_{\rm A}  and thus real.

3

What are  W(f = ±f_{\rm A})  and the  \text{6dB}  bandwidth normalised to   f_{\rm A}?

W(±f_{\rm A}) \hspace{0.15cm} = \

\ \cdot \ 1/f_{\rm A}
B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \hspace{0.2cm} = \

4

What is the minimum distance between the main lobe and the side lobes.

D_{\text{min (main lobe / side lobes) } } \ = \

\ \rm dB


Solution

(1)  After trigonometric transformation, the result for the continuous-time window function is:

w(t) = {\rm cos}^2(\pi \cdot {t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.
  • After time discretisation with  ν = t/T_{\rm A}  and  T_{\rm P}/T_{\rm A} = N = 32, one obtains for the discrete-time window:
w(\nu) = w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm} \Rightarrow \hspace{0.3cm}w(\nu = 0) \hspace{0.15 cm}\underline{= 1},
w(\nu = 1) = 0.5+ 0.5\cdot {\rm cos}( \frac{\pi}{16})\hspace{0.15 cm}\underline{ = 0.99},
w(\nu = -8)=0.5+ 0.5\cdot {\rm cos}( \frac{-\pi}{2}) \hspace{0.15 cm}\underline{= 0.5}\hspace{0.05cm}.


(2)  The correct solutions are 2 and 3::

  • The periodic continuation of  w(t)  corresponding to the period  T_{\rm P}  yields a (periodic) signal with a DC and a cosine component.
  • From this follows with   f_{\rm A} = 1/T_{\rm P}:
{\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm cos}(2\pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f \pm f_{\rm A}))\hspace{0.05cm}.
  • The time-limited signal  w(t)  is obtained from  {\rm P}\{w(t)\}  by multiplication with a rectangle of amplitude  1  and duration  T_{\rm P}.
  • Its spectrum  W(f)  is thus obtained from the convolution of the above spectral function with the function  T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A}):
w(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, W(f) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}( \frac{\pi f}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.
  • This spectral function is even and also real for all frequencies  f . The spectral value at frequency  f = 0  gives the window area:
W(f=0) = \frac{0.5}{f_{\rm A}}= \int_{-\infty}^{+\infty}w(t)\hspace{0.05cm}{\rm d}t\hspace{0.05cm}.


(3)  From the result of sub-task  (2)  it also follows:

W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.
  • Due to the monotonic course in the range  |f| < f_{\rm A} , the magnitude function  |W(f)|  has dropped to half of the maximum for the first time exactly at  ± f_{\rm A} .
  • Thus,  B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}.


(4)  The largest spectral magnitude outside the main lobe occurs at  f = ±2.5 f_{\rm A}.  With the result of subtask  (2)  holds:

W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi ) +\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )= \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.
  • This gives the minimum distance between the main lobe and the side lobes:
D_{\text{min (main lobe / side lobes) } } = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{0.5}{0.0121}\hspace{0.15 cm}\underline{\approx 32.3\,\,{\rm dB}}\hspace{0.05cm}.