Difference between revisions of "Information Theory/Discrete Memoryless Sources"

From LNTwww
 
(39 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
{{FirstPage}}
 
{{FirstPage}}
 
{{Header
 
{{Header
|Untermenü=Entropie wertdiskreter Nachrichtenquellen
+
|Untermenü=Entropy of Discrete Sources
 
|Vorherige Seite=
 
|Vorherige Seite=
|Nächste Seite=Nachrichtenquellen mit Gedächtnis
+
|Nächste Seite=Discrete Sources with Memory
 
}}
 
}}
  
 
== # OVERVIEW OF THE FIRST MAIN CHAPTER # ==
 
== # OVERVIEW OF THE FIRST MAIN CHAPTER # ==
 
<br>
 
<br>
This first chapter describes the calculation and the meaning of entropy.&nbsp; According to the Shannonian information definition, entropy is a measure of the mean uncertainty about the outcome of a statistical event or the uncertainty in the measurement of a stochastic quantity.&nbsp; Somewhat casually expressed, the entropy of a random quantity quantifies its "randomness".  
+
This first chapter describes the calculation and the meaning of entropy.&nbsp; According to the Shannonian information definition,&nbsp; entropy is a measure of the mean uncertainty about the outcome of a statistical event or the uncertainty in the measurement of a stochastic quantity.&nbsp; Somewhat casually expressed,&nbsp; the entropy of a random quantity quantifies its&nbsp; &raquo;randomness&laquo;.  
  
 
In detail are discussed:
 
In detail are discussed:
  
*the ''decision content''&nbsp; and the ''entropy''&nbsp; of a memoryless news source,
+
#The &nbsp;&raquo;information content&laquo;&nbsp; of a symbol and the &nbsp;&raquo;entropy&laquo;&nbsp; of a discrete memoryless source,
*the ''binary entropy function''&nbsp; and its application to ''non-binary sources'',
+
#the &nbsp;&raquo;binary entropy function&laquo;&nbsp; and its application to non-binary sources,
*the entropy calculation for ''memory sources''&nbsp; and suitable approximations,
+
#the entropy calculation for&nbsp; &raquo;sources with memory&laquo;&nbsp; and suitable approximations,
*the peculiarities of ''Markov sources''&nbsp; regarding the entropy calculation,
+
#the special features of&nbsp; &raquo;Markov sources&laquo;&nbsp; regarding the entropy calculation,
*the procedure for sources with a large number of symbols, for example ''natural texts'',
+
#the procedure for sources with a large number of symbols, for example&nbsp; &raquo;natural texts&laquo;,
*the ''entropy estimates''&nbsp; according to Shannon and Küpfmüller.
+
#the&nbsp; &raquo;entropy estimates&laquo;&nbsp; according to Shannon and Küpfmüller.
  
 
 
Further information on the topic as well as Exercises, simulations and programming exercises can be found in the experiment "Value Discrete Information Theory" of the practical course "Simulation Digitaler Übertragungssysteme" (english: Simulation of Digital Transmission Systems).&nbsp; This (former) LNT course at the TU Munich is based on
 
 
*the Windows program&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/WDIT.zip WDIT] &nbsp; &rArr; &nbsp; the link points to the ZIP version of the program and
 
*the associated&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Wertdiskrete_Informationstheorie.pdf Internship guide]  &nbsp; &rArr; &nbsp; the link refers to the PDF version.
 
  
  
 
== Model and requirements ==  
 
== Model and requirements ==  
 
<br>
 
<br>
We consider a value discrete message source&nbsp; $\rm Q$, which gives a sequence&nbsp; $ \langle q_ν \rangle$&nbsp; of symbols.  
+
We consider a discrete message source&nbsp; $\rm Q$, which gives a sequence&nbsp; $ \langle q_ν \rangle$&nbsp; of symbols.  
*For the run variable &nbsp;$ν = 1$, ... , $N$, where&nbsp; $N$&nbsp; should be "sufficiently large".  
+
*For the variable &nbsp;$ν = 1$, ... , $N$, where&nbsp; $N$&nbsp; should be sufficiently large.
*Each individual source symbol &nbsp;$q_ν$&nbsp; comes from a symbol set&nbsp; $\{q_μ \}$&nbsp; where&nbsp; $μ = 1$, ... , $M$, where&nbsp; $M$&nbsp; denotes the symbol range:
+
 +
*Each individual source symbol &nbsp;$q_ν$&nbsp; comes from a symbol set&nbsp; $\{q_μ \}$&nbsp; where&nbsp; $μ = 1$, ... , $M$.&nbsp; $M$&nbsp; denotes the symbol set size:
 
   
 
   
 
:$$q_{\nu} \in \left \{ q_{\mu}  \right \}, \hspace{0.25cm}{\rm with}\hspace{0.25cm} \nu = 1, \hspace{0.05cm} \text{ ...}\hspace{0.05cm} , N\hspace{0.25cm}{\rm and}\hspace{0.25cm}\mu = 1,\hspace{0.05cm} \text{ ...}\hspace{0.05cm} , M \hspace{0.05cm}.$$
 
:$$q_{\nu} \in \left \{ q_{\mu}  \right \}, \hspace{0.25cm}{\rm with}\hspace{0.25cm} \nu = 1, \hspace{0.05cm} \text{ ...}\hspace{0.05cm} , N\hspace{0.25cm}{\rm and}\hspace{0.25cm}\mu = 1,\hspace{0.05cm} \text{ ...}\hspace{0.05cm} , M \hspace{0.05cm}.$$
  
The figure shows a quaternary message source&nbsp; $(M = 4)$&nbsp; with the alphabet&nbsp; $\rm \{A, \ B, \ C, \ D\}$&nbsp; and an exemplary sequence of length&nbsp; $N = 100$.
+
The figure shows a quaternary message source&nbsp; $(M = 4)$&nbsp; with alphabet&nbsp; $\rm \{A, \ B, \ C, \ D\}$&nbsp; and an exemplary sequence of length&nbsp; $N = 100$.
  
[[File:P_ID2227_Inf_T_1_1_S1a_neu.png|frame|Memoryless Quaternary Message Source]]
+
[[File:EN_Inf_T_1_1_S1a.png|frame|Quaternary source]]
  
 
The following requirements apply:
 
The following requirements apply:
*The quaternary news source is fully described by&nbsp; $M = 4$&nbsp; symbol probabilities&nbsp; $p_μ$.&nbsp; In general it applies:
+
*The quaternary source is fully described by&nbsp; $M = 4$&nbsp; symbol probabilities&nbsp; $p_μ$.&nbsp; In general it applies:
 
:$$\sum_{\mu = 1}^M \hspace{0.1cm}p_{\mu} = 1 \hspace{0.05cm}.$$
 
:$$\sum_{\mu = 1}^M \hspace{0.1cm}p_{\mu} = 1 \hspace{0.05cm}.$$
*The message source is memoryless, i.e., the individual sequence elements are&nbsp; [[Theory_of_Stochastic_Signals/Statistical Dependence and Independence#General_definition_of_statistical_dependence|statistically independent of each other]]:
+
*The message source is memoryless, i.e., the individual sequence elements are&nbsp; [[Theory_of_Stochastic_Signals/Statistical Dependence and Independence#General_definition_of_statistical_dependence|&raquo;statistically independent of each other&laquo;]]:
 
:$${\rm Pr} \left (q_{\nu} = q_{\mu} \right ) = {\rm Pr} \left (q_{\nu} = q_{\mu} \hspace{0.03cm} | \hspace{0.03cm} q_{\nu -1}, q_{\nu -2}, \hspace{0.05cm} \text{ ...}\hspace{0.05cm}\right ) \hspace{0.05cm}.$$
 
:$${\rm Pr} \left (q_{\nu} = q_{\mu} \right ) = {\rm Pr} \left (q_{\nu} = q_{\mu} \hspace{0.03cm} | \hspace{0.03cm} q_{\nu -1}, q_{\nu -2}, \hspace{0.05cm} \text{ ...}\hspace{0.05cm}\right ) \hspace{0.05cm}.$$
*Since the alphabet consists of symbols&nbsp; (and not of random variables)&nbsp;, the specification of&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|expected values]]&nbsp; (linear mean, quadratic mean, dispersion, etc.) is not possible here, but also not necessary from an information-theoretical point of view.
+
*Since the alphabet consists of symbols&nbsp; $($and not of random variables$)$,&nbsp; the specification of&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|&raquo;expected values&laquo;]]&nbsp; $($linear mean, second moment, standard deviation, etc.$)$&nbsp; is not possible here,&nbsp; but also not necessary from an information-theoretical point of view.
  
  
 
These properties will now be illustrated with an example.
 
These properties will now be illustrated with an example.
  
[[File:Inf_T_1_1_S1b_vers2.png|right|frame|Relative frequencies as a function of&nbsp; $N$]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT=  
+
[[File:Inf_T_1_1_S1b_vers2.png|right|frame|Relative frequencies as a function of&nbsp; $N$]]   
 
$\text{Example 1:}$&nbsp;
 
$\text{Example 1:}$&nbsp;
 
For the symbol probabilities of a quaternary source applies:  
 
For the symbol probabilities of a quaternary source applies:  
Line 56: Line 51:
 
p_{\rm D} = 0.1\hspace{0.05cm}.$$
 
p_{\rm D} = 0.1\hspace{0.05cm}.$$
 
For an infinitely long sequence&nbsp; $(N \to \infty)$  
 
For an infinitely long sequence&nbsp; $(N \to \infty)$  
*the&nbsp; [[Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable#Bernoulli's_Law_of_Large_Numbers|relative frequencies]]&nbsp; $h_{\rm A}$,&nbsp; $h_{\rm B}$,&nbsp; $h_{\rm C}$,&nbsp; $h_{\rm D}$ &nbsp; &rArr; &nbsp; a-posteriori parameters  
+
*the&nbsp; [[Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable#Bernoulli.27s_law_of_large_numbers|&raquo;relative frequencies&laquo;]]&nbsp; $h_{\rm A}$,&nbsp; $h_{\rm B}$,&nbsp; $h_{\rm C}$,&nbsp; $h_{\rm D}$ &nbsp; &rArr; &nbsp; a-posteriori parameters
*were identical to the&nbsp; [[Theory_of_Stochastic_Signals/Some_Basic_Definitions#Event_and_Event_set|probabilities]]&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$,&nbsp; $p_{\rm C}$,&nbsp; $p_{\rm D}$ &nbsp; &rArr; &nbsp; a-priori parameters.  
+
 +
*were identical to the&nbsp; [[Theory_of_Stochastic_Signals/Some_Basic_Definitions#Event_and_event_probability|&raquo;probabilities&laquo;]]&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$,&nbsp; $p_{\rm C}$,&nbsp; $p_{\rm D}$ &nbsp; &rArr; &nbsp; a-priori parameters.  
  
  
With smaller&nbsp; $N$&nbsp; deviations may occur, as the adjacent table (result of a simulation) shows.  
+
With smaller&nbsp; $N$&nbsp; deviations may occur, as the adjacent table&nbsp; $($result of a simulation$)$&nbsp; shows.  
  
*In the graphic above an exemplary sequence is shown with&nbsp; $N = 100$&nbsp; symbols.  
+
*In the graphic above an exemplary sequence is shown with&nbsp; $N = 100$&nbsp; symbols.
 +
 
*Due to the set elements&nbsp; $\rm A$,&nbsp; $\rm B$,&nbsp; $\rm C$&nbsp; and&nbsp; $\rm D$&nbsp; no mean values can be given.  
 
*Due to the set elements&nbsp; $\rm A$,&nbsp; $\rm B$,&nbsp; $\rm C$&nbsp; and&nbsp; $\rm D$&nbsp; no mean values can be given.  
  
  
However, if you replace the symbols with numerical values, for example&nbsp; $\rm A \Rightarrow 1$, &nbsp; $\rm B \Rightarrow 2$, &nbsp; $\rm C \Rightarrow 3$, &nbsp; $\rm D \Rightarrow 4$, then you will get <br> &nbsp; &nbsp; time averaging &nbsp; &rArr; &nbsp; crossing line &nbsp; &nbsp; or &nbsp; &nbsp; ensemble averaging &nbsp; &rArr; &nbsp; expected value formation
+
However,&nbsp; if you replace the symbols with numerical values,&nbsp; for example&nbsp; $\rm A \Rightarrow 1$, &nbsp; $\rm B \Rightarrow 2$, &nbsp; $\rm C \Rightarrow 3$, &nbsp; $\rm D \Rightarrow 4$, then you will get after <br> &nbsp; &nbsp; &raquo;time averaging&laquo; &nbsp; &rArr; &nbsp; crossing line &nbsp; &nbsp; or &nbsp; &nbsp; &raquo;ensemble averaging&laquo; &nbsp; &rArr; &nbsp; expected value formation
*for the [[Theory_of_Stochastic_Signals/Moments of a Discrete Random Variable#Linear_Average_-_Direct_Component|linear average]] :
+
*for the&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#First_order_moment_.E2.80.93_linear_mean_.E2.80.93_DC_component|&raquo;linear mean&laquo;]] &nbsp; &rArr; &nbsp; &raquo;first order moment&laquo;:
 
:$$m_1 = \overline { q_{\nu} } = {\rm E} \big [ q_{\mu} \big ] = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4
 
:$$m_1 = \overline { q_{\nu} } = {\rm E} \big [ q_{\mu} \big ] = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4
 
= 2 \hspace{0.05cm},$$  
 
= 2 \hspace{0.05cm},$$  
*for the [[Theory_of_Stochastic_Signals/Moments of a Discrete Random Variable#Square_mean_.E2.80.93_Variance_.E2.80.93_Scattering |square mean]]:
+
*for the&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable#Second_order_moment_.E2.80.93_power_.E2.80.93_variance_.E2.80.93_standard_deviation |&raquo;second order moment&laquo;]]:
 
:$$m_2 = \overline { q_{\nu}^{\hspace{0.05cm}2}  } = {\rm E} \big [ q_{\mu}^{\hspace{0.05cm}2} \big ] = 0.4 \cdot 1^2 + 0.3 \cdot 2^2 + 0.2 \cdot 3^2 + 0.1 \cdot 4^2
 
:$$m_2 = \overline { q_{\nu}^{\hspace{0.05cm}2}  } = {\rm E} \big [ q_{\mu}^{\hspace{0.05cm}2} \big ] = 0.4 \cdot 1^2 + 0.3 \cdot 2^2 + 0.2 \cdot 3^2 + 0.1 \cdot 4^2
 
= 5 \hspace{0.05cm},$$
 
= 5 \hspace{0.05cm},$$
*for the [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_often_used_Central_Moments|standard deviation]] (scattering) according to the "Theorem of Steiner":
+
*for the&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|&raquo;standard deviation&laquo;]]&nbsp;  according to the&nbsp; &raquo;Theorem of Steiner&laquo;:
 
:$$\sigma = \sqrt {m_2 - m_1^2} = \sqrt {5 - 2^2} = 1 \hspace{0.05cm}.$$}}
 
:$$\sigma = \sqrt {m_2 - m_1^2} = \sqrt {5 - 2^2} = 1 \hspace{0.05cm}.$$}}
  
 
 
 
 
  
==Decision content - Message content==
+
==Maximum entropy of a discrete source==
 
<br>
 
<br>
[https://de.wikipedia.org/wiki/Claude_Shannon Claude Elwood Shannon]&nbsp; defined in 1948 in the standard work of information theory&nbsp; [Sha48]<ref name='Sha48'>Shannon, C.E.: A Mathematical Theory of Communication. In: Bell Syst. Techn. J. 27 (1948), pp. 379-423 and pp. 623-656.</ref>&nbsp; the concept of information as "decrease of uncertainty about the occurrence of a statistical event".  
+
[https://en.wikipedia.org/wiki/Claude_Shannon $\text{Claude Elwood Shannon}$]&nbsp; defined in 1948 in the standard work of information theory&nbsp; [Sha48]<ref name='Sha48'>Shannon, C.E.: A Mathematical Theory of Communication. In: Bell Syst. Techn. J. 27 (1948), pp. 379-423 and pp. 623-656.</ref>&nbsp; the concept of information as&nbsp; "decrease of uncertainty about the occurrence of a statistical event".  
  
 
Let us make a mental experiment with&nbsp; $M$&nbsp; possible results, which are all equally probable: &nbsp; $p_1 = p_2 = \hspace{0.05cm} \text{ ...}\hspace{0.05cm} = p_M = 1/M \hspace{0.05cm}.$  
 
Let us make a mental experiment with&nbsp; $M$&nbsp; possible results, which are all equally probable: &nbsp; $p_1 = p_2 = \hspace{0.05cm} \text{ ...}\hspace{0.05cm} = p_M = 1/M \hspace{0.05cm}.$  
Line 86: Line 83:
 
Under this assumption applies:
 
Under this assumption applies:
 
*Is&nbsp; $M = 1$, then each individual attempt will yield the same result and therefore there is no uncertainty about the output.
 
*Is&nbsp; $M = 1$, then each individual attempt will yield the same result and therefore there is no uncertainty about the output.
*On the other hand, an observer learns about an experiment with&nbsp; $M = 2$, for example the "coin toss" with the set of events&nbsp; $\big \{\rm \boldsymbol{\rm Z}, \rm \boldsymbol{\rm W} \big \}$&nbsp; and the probabilities&nbsp; $p_{\rm Z} = p_{\rm W} = 0. 5$, a gain in information; The uncertainty regarding&nbsp; $\rm Z$ &nbsp;resp.&nbsp; $\rm W$&nbsp; is resolved.
 
*In the experiment "dice"&nbsp; $(M = 6)$&nbsp; and even more in roulette&nbsp; $(M = 37)$&nbsp; the gained information is even more significant for the observer than in the "coin toss" when he learns which number was thrown or which ball fell.
 
*Finally it should be considered that the experiment&nbsp; "triple coin toss"&nbsp; with the&nbsp; $M = 8$&nbsp; possible results&nbsp; $\rm ZZZ$,&nbsp; $\rm ZZW$,&nbsp; $\rm ZWZ$,&nbsp; $\rm ZWW$,&nbsp; $\rm WZZ$,&nbsp; $\rm WZW$,&nbsp; $\rm WWZ$,&nbsp; $\rm WWW$&nbsp; provides three times the information as the single coin toss&nbsp; $(M = 2)$.
 
  
 +
*On the other hand, an observer learns about an experiment with&nbsp; $M = 2$, for example the&nbsp; &raquo;coin toss&laquo;&nbsp; with the set of events&nbsp; $\big \{\rm \boldsymbol{\rm  Z}(ahl), \rm \boldsymbol{\rm  W}(app) \big \}$&nbsp; and the probabilities&nbsp; $p_{\rm Z} = p_{\rm W} = 0. 5$, a gain in information.&nbsp; The uncertainty regarding&nbsp; $\rm Z$ &nbsp;resp.&nbsp; $\rm W$&nbsp; is resolved.
  
The following definition fulfills all the requirements listed here for a quantitative information measure for equally probable events, indicated only by the symbol range&nbsp; $M$.
+
*In the experiment&nbsp; &raquo;dice&laquo;&nbsp; $(M = 6)$&nbsp; and even more in&nbsp; &raquo;roulette&laquo;&nbsp;  $(M = 37)$&nbsp; the gained information is even more significant for the observer than in the&nbsp; &raquo;coin toss&laquo;&nbsp; when he learns which number was thrown or which ball fell.
 +
 
 +
*Finally it should be considered that the experiment&nbsp; &raquo;triple coin toss&laquo;&nbsp; with&nbsp; $M = 8$&nbsp; possible results&nbsp; $\rm ZZZ$,&nbsp; $\rm ZZW$,&nbsp; $\rm ZWZ$,&nbsp; $\rm ZWW$,&nbsp; $\rm WZZ$,&nbsp; $\rm WZW$,&nbsp; $\rm WWZ$,&nbsp; $\rm WWW$&nbsp; provides three times the information as the single coin toss&nbsp; $(M = 2)$.
 +
 
 +
 
 +
The following definition fulfills all the requirements listed here for a quantitative information measure for equally probable events, indicated only by the symbol set size&nbsp; $M$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The&nbsp; '''decision content''' &nbsp; of a message source depends only on the symbol range&nbsp; $M$&nbsp; and results in
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''maximum average information content'''&laquo; &nbsp; of a message source depends only on the symbol set size&nbsp; $M$&nbsp; and results in
 
   
 
   
 
:$$H_0 = {\rm log}\hspace{0.1cm}M = {\rm log}_2\hspace{0.1cm}M \hspace{0.15cm} {\rm (in \ &#8220;bit")}
 
:$$H_0 = {\rm log}\hspace{0.1cm}M = {\rm log}_2\hspace{0.1cm}M \hspace{0.15cm} {\rm (in \ &#8220;bit")}
Line 100: Line 100:
 
= {\rm lg}\hspace{0.1cm}M \hspace{0.15cm}\text {(in &#8220;Hartley")}\hspace{0.05cm}.$$
 
= {\rm lg}\hspace{0.1cm}M \hspace{0.15cm}\text {(in &#8220;Hartley")}\hspace{0.05cm}.$$
  
*The term&nbsp; ''message content'' is also commonly used for this.
+
*Since&nbsp; $H_0$&nbsp; indicates the maximum value of the&nbsp; [[Information_Theory/Discrete_Memoryless_Sources#Information_content_and_entropy|$\text{entropy}$]]&nbsp; $H$,&nbsp; $H_\text{max}=H_0$&nbsp; is also used in our tutorial as short notation. }}
*Since&nbsp; $H_0$&nbsp; indicates the maximum value of the&nbsp; [[Information_Theory/Sources with Memory#Information_Content_and_Entropy|Entropy]]&nbsp; $H$&nbsp;, $H_\text{max}$&nbsp; is also used in our tutorial as short notation&nbsp;. }}
 
  
  
 
Please note our nomenclature:
 
Please note our nomenclature:
*The logarithm will be called "log" in the following, independent of the base.  
+
*The logarithm will be called&nbsp; &raquo;log&laquo;&nbsp; in the following, independent of the base.
 +
 
*The relations mentioned above are fulfilled due to the following properties:
 
*The relations mentioned above are fulfilled due to the following properties:
 
   
 
   
Line 112: Line 112:
 
{\rm log}\hspace{0.1cm}M^k = k \cdot {\rm log}\hspace{0.1cm}M \hspace{0.05cm}.$$
 
{\rm log}\hspace{0.1cm}M^k = k \cdot {\rm log}\hspace{0.1cm}M \hspace{0.05cm}.$$
  
* Usually we use the logarithm to the base&nbsp; $2$ &nbsp; ⇒ &nbsp; ''Logarithm dualis''&nbsp; $\rm (ld)$, where the pseudo unit "bit", more precisely:&nbsp; "bit/symbol", is then added:
+
* Usually we use the logarithm to the base&nbsp; $2$ &nbsp; ⇒ &nbsp; &raquo;logarithm dualis&laquo;&nbsp; &nbsp; $\rm (ld)$,&nbsp; where the pseudo unit&nbsp; "bit"&nbsp; $($more precisely:&nbsp; "bit/symbol"$)$&nbsp; is then added:
 
   
 
   
 
:$${\rm ld}\hspace{0.1cm}M = {\rm log_2}\hspace{0.1cm}M = \frac{{\rm lg}\hspace{0.1cm}M}{{\rm lg}\hspace{0.1cm}2}
 
:$${\rm ld}\hspace{0.1cm}M = {\rm log_2}\hspace{0.1cm}M = \frac{{\rm lg}\hspace{0.1cm}M}{{\rm lg}\hspace{0.1cm}2}
Line 118: Line 118:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*In addition, you can find in the literature some additional definitions, which are based on the natural logarithm&nbsp; $\rm (ln)$&nbsp; or the logarithm&nbsp; $\rm (lg)$&nbsp;.
+
*In addition, you can find in the literature some additional definitions, which are based on the natural logarithm&nbsp; $\rm (ln)$&nbsp; or the logarithm of the tens&nbsp; $\rm (lg)$.
 
   
 
   
==Informationsgehalt und Entropie ==
+
==Information content and entropy ==
 
<br>
 
<br>
Wir verzichten nun auf die bisherige Voraussetzung, dass alle&nbsp; $M$&nbsp; möglichen Ergebnisse eines Versuchs gleichwahrscheinlich seien.&nbsp; Im Hinblick auf eine möglichst kompakte Schreibweise legen wir für diese Seite lediglich fest:
+
We now waive the previous requirement that all&nbsp; $M$&nbsp; possible results of an experiment are equally probable.&nbsp; In order to keep the spelling as compact as possible, we define for this section only:
 
   
 
   
:$$p_1 > p_2 > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_\mu > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_{M-1} > p_M\hspace{0.05cm},\hspace{0.4cm}\sum_{\mu = 1}^M p_{\mu} = 1 \hspace{0.05cm}.$$
+
:$$p_1 > p_2 > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_\mu > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_{M-1} > p_M\hspace{0.05cm},\hspace{0.4cm}\sum_{\mu = 1}^M p_{\mu} = 1 \hspace{0.05cm}.$$
  
Wir betrachten nun den ''Informationsgehalt''&nbsp; der einzelnen Symbole, wobei wir den &bdquo;Logarithmus dualis&rdquo; mit $\log_2$ bezeichnen:
+
We now consider the &raquo;'''information content'''&laquo;&nbsp; of the individual symbols, where we denote the&nbsp; "logarithm dualis"&nbsp; with&nbsp; $\log_2$:
 
   
 
   
 
:$$I_\mu = {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\hspace{0.05cm}{\rm log_2}\hspace{0.1cm}{p_\mu}
 
:$$I_\mu = {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\hspace{0.05cm}{\rm log_2}\hspace{0.1cm}{p_\mu}
\hspace{0.5cm}{\rm (Einheit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}oder\hspace{0.15cm}bit/Symbol)}
+
\hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/Symbol)}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Man erkennt:
+
You can see:
*Wegen&nbsp; $p_μ ≤ 1$&nbsp; ist der Informationsgehalt nie negativ.&nbsp; Im Grenzfall&nbsp; $p_μ \to 1$&nbsp; geht&nbsp; $I_μ \to 0$.  
+
*Because of&nbsp; $p_μ ≤ 1$&nbsp; the information content is never negative.&nbsp; In the borderline case&nbsp; $p_μ \to 1$&nbsp; goes&nbsp; $I_μ \to 0$.
*Allerdings ist für&nbsp; $I_μ = 0$ &nbsp; &rArr; &nbsp; $p_μ = 1$ &nbsp; &rArr; &nbsp; $M = 1$&nbsp; auch der Entscheidungsgehalt&nbsp; $H_0 = 0$.
+
*Bei abfallenden Wahrscheinlichkeiten&nbsp; $p_μ$&nbsp; nimmt der Informationsgehalt kontinuierlich zu:
+
*However, for&nbsp; $I_μ = 0$ &nbsp; &rArr; &nbsp; $p_μ = 1$ &nbsp; &rArr; &nbsp; $M = 1$&nbsp; the information content is also&nbsp; $H_0 = 0$.
 +
 
 +
*For decreasing probabilities&nbsp; $p_μ$&nbsp; the information content increases continuously:
 
   
 
   
 
:$$I_1 < I_2 < \hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_\mu <\hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_{M-1} < I_M \hspace{0.05cm}.$$
 
:$$I_1 < I_2 < \hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_\mu <\hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_{M-1} < I_M \hspace{0.05cm}.$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; '''Je unwahrscheinlicher ein Ereignis ist, desto größer ist sein Informationsgehalt'''.&nbsp; Diesen Sachverhalt stellt man auch im täglichen Leben fest:
+
$\text{Conclusion:}$&nbsp; '''The more improbable an event is, the greater is its information content'''.&nbsp; This fact is also found in daily life:
*„6 Richtige” im Lotto nimmt man sicher eher wahr als „3 Richtige” oder gar keinen Gewinn.
+
#"6 right ones" in the lottery are more likely to be noticed than "3 right ones" or no win at all.
*Ein Tsunami in Asien dominiert auch die Nachrichten in Deutschland über Wochen im Gegensatz zu den fast standardmäßigen Verspätungen der Deutschen Bahn.
+
#A tsunami in Asia also dominates the news in Germany for weeks as opposed to the almost standard Deutsche Bahn delays.
*Eine Niederlagenserie von Bayern München führt zu Riesen–Schlagzeilen im Gegensatz zu einer Siegesserie.&nbsp; Bei 1860 München ist genau das Gegenteil der Fall.}}
+
#A series of defeats of Bayern Munich leads to huge headlines in contrast to a winning series.&nbsp; With 1860 Munich exactly the opposite is the case.}}
  
  
Der Informationsgehalt eines einzelnen Symbols (oder Ereignisses) ist allerdings nicht sehr interessant.&nbsp; Dagegen erhält man
+
However, the information content of a single symbol (or event) is not very interesting.&nbsp; On the other hand one of the central quantities of information theory is obtained,
*durch Scharmittelung über alle möglichen Symbole&nbsp; $q_μ$ &nbsp;bzw.&nbsp;  
+
*by ensemble averaging over all possible symbols&nbsp; $q_μ$ &nbsp;bzw.&nbsp;
*durch Zeitmittelung über alle Elemente der Folge&nbsp; $\langle q_ν \rangle$
+
 
+
*by time averaging over all elements of the sequence&nbsp; $\langle q_ν \rangle$.
  
eine der zentralen Größen der Informationstheorie.
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die&nbsp; '''Entropie'''&nbsp; $H$&nbsp; einer Quelle gibt den ''mittleren Informationsgehalt aller Symbole''&nbsp; an:
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''entropy'''&laquo;&nbsp; $H$&nbsp; of a discrete source indicates the&nbsp; &raquo;'''mean information content of all symbols'''&laquo;:
 
   
 
   
 
:$$H = \overline{I_\nu} = {\rm E}\hspace{0.01cm}[I_\mu] = \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}=
 
:$$H = \overline{I_\nu} = {\rm E}\hspace{0.01cm}[I_\mu] = \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}=
  -\sum_{\mu = 1}^M p_{\mu} \cdot{\rm log_2}\hspace{0.1cm}{p_\mu} \hspace{0.5cm}\text{(Einheit:   bit, genauer:   bit/Symbol)}  
+
  -\sum_{\mu = 1}^M p_{\mu} \cdot{\rm log_2}\hspace{0.1cm}{p_\mu} \hspace{0.5cm}\text{(unit: bit, more precisely: bit/symbol)}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die überstreichende Linie kennzeichnet wieder eine Zeitmittelung und&nbsp; $\rm E[\text{...}]$&nbsp; eine Scharmittelung.}}
+
The overline marks again a time averaging and&nbsp; $\rm E[\text{...}]$&nbsp; an ensemble averaging.}}
 +
 
  
 +
Entropy is among other things a measure for
 +
*the mean uncertainty about the outcome of a statistical event,
  
Die Entropie ist unter anderem ein Maß für
+
*the&nbsp; "randomness"&nbsp; of this event,&nbsp; and
*die mittlere Unsicherheit über den Ausgang eines statistischen Ereignisses,
 
*die „Zufälligkeit” dieses Ereignisses,&nbsp; sowie
 
*den mittleren Informationsgehalt einer Zufallsgröße.
 
  
==Binäre Entropiefunktion  ==
+
*the average information content of a random variable.
 +
 +
 
 +
==Binary entropy function ==
 
<br>
 
<br>
Wir beschränken uns zunächst auf den Sonderfall&nbsp; $M = 2$&nbsp; und betrachten eine binäre Quelle, die die beiden Symbole&nbsp; $\rm A$&nbsp; und&nbsp; $\rm B$&nbsp; abgibt.&nbsp; Die Auftrittwahrscheinlichkeiten seien &nbsp; $p_{\rm A} = p$&nbsp; und&nbsp; $p_{\rm B} = 1 p$.
+
At first we will restrict ourselves to the special case&nbsp; $M = 2$&nbsp; and consider a binary source, which returns the two symbols&nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$.&nbsp; The symbol probabilities are &nbsp; $p_{\rm A} = p$&nbsp; and &nbsp; $p_{\rm B} = 1 - p$.
  
Für die Entropie dieser Binärquelle gilt:
+
For the entropy of this binary source applies:  
 
   
 
   
:$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1-p} \hspace{0.5cm}{\rm (Einheit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}oder\hspace{0.15cm}bit/Symbol)}
+
:$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1-p} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/symbol)}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Man nennt die Funktion&nbsp; $H_\text{bin}(p)$&nbsp; die&nbsp; '''binäre Entropiefunktion'''.&nbsp; Die Entropie einer Quelle mit größerem Symbolumfang&nbsp; $M$&nbsp; lässt sich häufig unter Verwendung von&nbsp; $H_\text{bin}(p)$&nbsp; ausdrücken.
+
This function is called&nbsp; $H_\text{bin}(p)$&nbsp; the&nbsp; &raquo;'''binary entropy function'''&laquo;.&nbsp; The entropy of a source with a larger symbol set size&nbsp; $M$&nbsp; can often be expressed using&nbsp; $H_\text{bin}(p)$&nbsp;.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
Die Grafik zeigt die binäre Entropiefunktion für die Werte&nbsp; $0 ≤ p ≤ 1$&nbsp; der Symbolwahrscheinlichkeit von&nbsp; $\rm A$&nbsp; $($oder auch von&nbsp; $\rm B)$.&nbsp; Man erkennt:
+
The figure shows the binary entropy function for the values&nbsp; $0 ≤ p ≤ 1$&nbsp; of the symbol probability of&nbsp; $\rm A$&nbsp; $($or also of&nbsp; $\rm B)$.&nbsp; You can see:
  
[[File:Inf_T_1_1_S4_vers2.png|frame|Binäre Entropiefunktion als Funktion von&nbsp; $p$|right]]
+
[[File:EN_Inf_T_1_1_S5_v2.png|frame|Binary entropy function as a function of&nbsp; $p$ |right]]
*Der Maximalwert&nbsp; $H_\text{max} = 1\; \rm bit$&nbsp; ergibt sich für&nbsp; $p = 0.5$, also für gleichwahrscheinliche Binärsymbole.&nbsp; Dann liefern&nbsp; $\rm A$&nbsp; und&nbsp; $\rm B$&nbsp; jeweils den gleichen Beitrag zur Entropie.
+
*The maximum value&nbsp; $H_\text{max} = 1\; \rm bit$&nbsp; results for&nbsp; $p = 0.5$, thus for equally probable binary symbols.&nbsp; Then &nbsp; $\rm A$&nbsp; and&nbsp; $\rm B$&nbsp; contribute the same amount to the entropy.
* $H_\text{bin}(p)$&nbsp; ist symmetrisch um&nbsp; $p = 0.5$.&nbsp; Eine Quelle mit&nbsp; $p_{\rm A} = 0.1$&nbsp; und&nbsp; $p_{\rm B} = 0.9$&nbsp; hat die gleiche Entropie&nbsp; $H = 0.469 \; \rm   bit$&nbsp; wie eine Quelle mit&nbsp; $p_{\rm A} = 0.9$&nbsp; und&nbsp; $p_{\rm B} = 0.1$.
+
 
*Die Differenz&nbsp; $ΔH = H_\text{max} - H$ gibt&nbsp; die&nbsp; ''Redundanz''&nbsp; der Quelle an und&nbsp; $r = ΔH/H_\text{max}$&nbsp; die&nbsp; ''relative Redundanz''.&nbsp; Im Beispiel ergeben sich&nbsp; $ΔH = 0.531\; \rm bit$&nbsp; bzw.&nbsp; $r = 53.1 \rm \%$.
+
* $H_\text{bin}(p)$&nbsp; is symmetrical around&nbsp; $p = 0.5$.&nbsp; A source with&nbsp; $p_{\rm A} = 0.1$&nbsp; and&nbsp; $p_{\rm B} = 0. 9$&nbsp; has the same entropy&nbsp; $H = 0.469 \; \rm bit$&nbsp; as a source with&nbsp; $p_{\rm A} = 0.9$&nbsp; and&nbsp; $p_{\rm B} = 0.1$.
*Für&nbsp; $p = 0$&nbsp; ergibt sich&nbsp; $H = 0$, da hier die Symbolfolge &nbsp;$\rm B \ B \ B \text{...}$&nbsp; mit Sicherheit vorhergesagt werden kann.&nbsp; Eigentlich ist nun der Symbolumfang nur noch&nbsp; $M = 1$.&nbsp; Gleiches gilt für&nbsp; $p = 1$ &nbsp; &rArr; &nbsp; Symbolfolge &nbsp;$\rm A \ A \ A \text{...}$.
+
 
*$H_\text{bin}(p)$&nbsp; ist stets eine&nbsp; ''konkave Funktion'', da die zweite Ableitung nach dem Parameter&nbsp; $p$&nbsp; für alle Werte von&nbsp; $p$&nbsp; negativ ist:  
+
*The difference&nbsp; $ΔH = H_\text{max} - H$ gives&nbsp; the&nbsp; &raquo;redundancy&laquo;&nbsp; of the source and&nbsp; $r = ΔH/H_\text{max}$&nbsp; the&nbsp; &raquo;relative redundancy&laquo;. &nbsp; In the example,&nbsp; $ΔH = 0.531\; \rm bit$&nbsp; and&nbsp; $r = 53.1 \rm \%$.
:$$\frac{ {\rm d}^2H_{\rm bin} (p)}{ {\rm d}\,p^2} = \frac{- 1}{ {\rm ln}(2) \cdot p \cdot (1-p)}< 0
+
 
 +
*For&nbsp; $p = 0$&nbsp; this results in&nbsp; $H = 0$, since the symbol sequence &nbsp;$\rm B \ B \ B \text{...}$&nbsp; can be predicted with certainty &nbsp; &rArr; &nbsp; symbol set size only&nbsp; $M = 1$.&nbsp; The same applies to&nbsp; $p = 1$ &nbsp; &rArr; &nbsp; symbol sequence &nbsp;$\rm A \ A \ A \text{...}$.
 +
 
 +
*$H_\text{bin}(p)$&nbsp; is always a&nbsp; &raquo;concave function&laquo;,&nbsp; since the second derivative after the parameter&nbsp; $p$&nbsp; is negative for all values of&nbsp; $p$&nbsp;:  
 +
:$$\frac{ {\rm d}^2H_{\rm bin} (p)}{ {\rm d}\,p^2} = \frac{- 1}{ {\rm ln}(2) \cdot p \cdot (1-p)}< 0
 
\hspace{0.05cm}.$$}}
 
\hspace{0.05cm}.$$}}
  
==Nachrichtenquellen mit größerem Symbolumfang==   
+
==Non-binary sources==   
 
<br>
 
<br>
Im&nbsp; [[Information_Theory/Gedächtnislose_Nachrichtenquellen#Modell_und_Voraussetzungen|ersten Abschnitt]]&nbsp; dieses Kapitels haben wir eine quaternäre Nachrichtenquelle&nbsp; $(M = 4)$&nbsp; mit den Symbolwahrscheinlichkeiten&nbsp; $p_{\rm A} = 0.4$, &nbsp; $p_{\rm B} = 0.3$, &nbsp; $p_{\rm C} = 0.2$ &nbsp; und&nbsp; $ p_{\rm D} = 0.1$&nbsp; betrachtet.&nbsp; Diese Quelle besitzt die folgende Entropie:
+
In the&nbsp; [[Information_Theory/Discrete_Memoryless_Sources#Model_and_requirements|"first section"]]&nbsp; of this chapter we  considered a quaternary message source&nbsp; $(M = 4)$&nbsp; with the symbol probabilities&nbsp; $p_{\rm A} = 0. 4$, &nbsp; $p_{\rm B} = 0.3$, &nbsp; $p_{\rm C} = 0.2$&nbsp; and&nbsp; $ p_{\rm D} = 0.1$.&nbsp; This source has the following entropy:
 
   
 
   
:$$H_{\rm quat} = 0.4 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.3} + 0.2 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.1}.$$
+
:$$H_{\rm quat} = 0.4 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.1}.$$
  
Oft ist zur zahlenmäßigen Berechnung der Umweg über den Zehnerlogarithmus&nbsp; $\lg \ x = {\rm log}_{10} \ x$&nbsp; sinnvoll, da der ''Logarithmus dualis''&nbsp; $ {\rm log}_2 \ x$&nbsp; meist auf Taschenrechnern nicht zu finden ist.
+
For numerical calculation, the detour via the decimal logarithm&nbsp; $\lg \ x = {\rm log}_{10} \ x$&nbsp; is often necessary, since the&nbsp; "logarithm dualis"&nbsp; $ {\rm log}_2 \ x$&nbsp; is mostly not found on pocket calculators.
  
:$$H_{\rm quat}=\frac{1}{{\rm lg}\hspace{0.1cm}2} \cdot \left [ 0.4 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.3} + 0.2 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.1} \right ] = 1.845\,{\rm bit}
+
:$$H_{\rm quat}=\frac{1}{{\rm lg}\hspace{0.1cm}2} \cdot \left [ 0.4 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.2} + 0.1 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.1} \right ] = 1.845\,{\rm bit}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;
+
$\text{Example 3:}$&nbsp;
Nun bestehen zwischen den einzelnen Symbolwahrscheinlichkeiten gewisse Symmetrien:  
+
Now there are certain symmetries between the symbol probabilities:  
[[File:Inf_T_1_1_S5_vers2.png|frame|Entropie von Binärquelle und Quaternärquelle]]
+
[[File:EN_Inf_T_1_1_S5_v3.png|frame|Entropy of binary source and quaternary source]]
 
   
 
   
:$$p_{\rm A} = p_{\rm D} = p \hspace{0.05cm},\hspace{0.4cm}p_{\rm B} = p_{\rm C} = 0.5 - p \hspace{0.05cm},\hspace{0.3cm}{\rm mit} \hspace{0.15cm}0 \le p \le 0.5 \hspace{0.05cm}.$$
+
:$$p_{\rm A} = p_{\rm D} = p \hspace{0.05cm},\hspace{0.4cm}p_{\rm B} = p_{\rm C} = 0.5 - p \hspace{0.05cm},\hspace{0.3cm}{\rm with} \hspace{0.15cm}0 \le p \le 0.5 \hspace{0.05cm}.$$
  
In diesem Fall kann zur Entropieberechnung auf die binäre Entropiefunktion zurückgegriffen werden:
+
In this case, the binary entropy function can be used to calculate the entropy:
 
   
 
   
:$$H_{\rm quat} = 2 \cdot p \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + 2 \cdot (0.5-p) \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.5-p}$$
+
:$$H_{\rm quat} = 2 \cdot p \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + 2 \cdot (0.5-p) \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.5-p}$$
:$$\Rightarrow \hspace{0.3cm} H_{\rm quat} =   1 + H_{\rm bin}(2p) \hspace{0.05cm}.$$
+
$$\Rightarrow \hspace{0.3cm} H_{\rm quat} = 1 + H_{\rm bin}(2p) \hspace{0.05cm}.$$
 +
 
 +
The graphic shows as a function of&nbsp; $p$
 +
*the entropy of the quaternary source (blue)
 +
 
 +
*in comparison to the entropy course of the binary source (red).
  
Die Grafik zeigt  abhängig von&nbsp; $p$
 
*den Entropieverlauf der Quaternärquelle (blau)
 
*im Vergleich zum Entropieverlauf der Binärquelle (rot).
 
  
 +
For the quaternary source only the abscissa&nbsp; $0 ≤ p ≤ 0.5$&nbsp; is allowed.
  
Für die Quaternärquelle ist nur der Abszissen&nbsp; $0 ≤ p ≤ 0.5$&nbsp; zulässig.
+
&rArr; &nbsp; You can see from the blue curve for the quaternary source:
<br clear=all>
+
*The maximum entropy&nbsp; $H_\text{max} = 2 \; \rm bit/symbol$&nbsp; results for&nbsp; $p = 0.25$ &nbsp; &rArr; &nbsp; equally probable symbols: &nbsp; $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm A} = 0.25$.
Man erkennt aus der blauen Kurve für die Quaternärquelle:
+
 
*Die maximale Entropie&nbsp; $H_\text{max} = 2 \; \rm bit/Symbol$&nbsp; ergibt sich für&nbsp; $p = 0.25$ &nbsp; &rArr; &nbsp; gleichwahrscheinliche Symbole: &nbsp; $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm A} = 0.25$.
+
*With&nbsp; $p = 0$&nbsp; the quaternary source degenerates to a binary source with&nbsp; $p_{\rm B} = p_{\rm C} = 0. 5$, &nbsp; $p_{\rm A} = p_{\rm D} = 0$ &nbsp; &rArr; &nbsp; $H = 1 \; \rm bit/symbol$.&nbsp; Similar applies to $p = 0.5$.
*Mit&nbsp; $p = 0$&nbsp; bzw.&nbsp; $p = 0.5$&nbsp; entartet die Quaternärquelle zu einer Binärquelle mit&nbsp; $p_{\rm B} = p_{\rm C} = 0.5$&nbsp; und&nbsp; $p_{\rm A} = p_{\rm D} = 0$ &nbsp; &rArr; &nbsp; Entropie&nbsp; $H = 1 \; \rm bit/Symbol$.
+
*Die Quelle mit&nbsp; $p_{\rm A} = p_{\rm D} = 0.1$&nbsp; und&nbsp; $p_{\rm B} = p_{\rm C} = 0.4$&nbsp; weist folgende Kennwerte auf (jeweils mit der Pseudoeinheit „bit/Symbol”):
+
*The source with&nbsp; $p_{\rm A} = p_{\rm D} = 0.1$&nbsp; and&nbsp; $p_{\rm B} = p_{\rm C} = 0.4$&nbsp; has the following characteristics (each with the pseudo unit "bit/symbol"):
  
: &nbsp;   &nbsp; '''(1)''' &nbsp; Entropie: &nbsp; $H = 1 + H_{\rm bin} (2p) =1 + H_{\rm bin} (0.2) = 1.722,$
+
: &nbsp; &nbsp; '''(1)''' &nbsp; entropy: &nbsp; $H = 1 + H_{\rm bin} (2p) =1 + H_{\rm bin} (0.2) = 1.722,$
  
: &nbsp;   &nbsp; '''(2)''' &nbsp; Redundanz: &nbsp; ${\rm \Delta }H = {\rm log_2}\hspace{0.1cm} M - H =2- 1.722= 0.278,$
+
: &nbsp; &nbsp; '''(2)''' &nbsp; Redundancy: &nbsp; ${\rm \Delta }H = {\rm log_2}\hspace{0.1cm} M - H =2- 1.722= 0.278,$
  
: &nbsp;   &nbsp; '''(3)''' &nbsp; relative Redundanz: &nbsp; $r ={\rm \Delta }H/({\rm log_2}\hspace{0.1cm} M) = 0.139\hspace{0.05cm}.$
+
: &nbsp; &nbsp; '''(3)''' &nbsp; relative redundancy: &nbsp; $r ={\rm \Delta }H/({\rm log_2}\hspace{0.1cm} M) = 0.139\hspace{0.05cm}.$
  
*Die Redundanz  der Quaternärquelle mit&nbsp; $p = 0.1$&nbsp; ist gleich&nbsp; $ΔH = 0.278 \; \rm bit/Symbol$&nbsp; und damit genau so groß wie die Redundanz der Binärquelle mit&nbsp; $p = 0.2$.}}
+
*The redundancy of the quaternary source with&nbsp; $p = 0.1$&nbsp; is&nbsp; $ΔH = 0.278 \; \rm bit/symbol$ &nbsp; &rArr; &nbsp; exactly the same as the redundancy of the binary source with&nbsp; $p = 0.2$.}}
  
  
  
==Aufgaben zum Kapitel==
+
== Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.1 Wetterentropie|Aufgabe 1.1: Wetterentropie]]
+
[[Aufgaben:Exercise_1.1:_Entropy_of_the_Weather|Exercise 1.1: Entropy of the Weather]]
  
[[Aufgaben:1.1Z Binäre Entropiefunktion|Aufgabe 1.1Z: Binäre Entropiefunktion]]
+
[[Aufgaben:Exercise_1.1Z:_Binary_Entropy_Function|Exercise 1.1Z: Binary Entropy Function]]
  
[[Aufgaben:1.2 Entropie von Ternärquellen|Aufgabe 1.2: Entropie von Ternärquellen]]
+
[[Aufgaben:Exercise_1.2:_Entropy_of_Ternary_Sources|Exercise 1.2: Entropy of Ternary Sources]]
  
  
==Quellenverzeichnis==
+
==References==
 
<references />
 
<references />
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:52, 9 January 2024

# OVERVIEW OF THE FIRST MAIN CHAPTER #


This first chapter describes the calculation and the meaning of entropy.  According to the Shannonian information definition,  entropy is a measure of the mean uncertainty about the outcome of a statistical event or the uncertainty in the measurement of a stochastic quantity.  Somewhat casually expressed,  the entropy of a random quantity quantifies its  »randomness«.

In detail are discussed:

  1. The  »information content«  of a symbol and the  »entropy«  of a discrete memoryless source,
  2. the  »binary entropy function«  and its application to non-binary sources,
  3. the entropy calculation for  »sources with memory«  and suitable approximations,
  4. the special features of  »Markov sources«  regarding the entropy calculation,
  5. the procedure for sources with a large number of symbols, for example  »natural texts«,
  6. the  »entropy estimates«  according to Shannon and Küpfmüller.


Model and requirements


We consider a discrete message source  $\rm Q$, which gives a sequence  $ \langle q_ν \rangle$  of symbols.

  • For the variable  $ν = 1$, ... , $N$, where  $N$  should be sufficiently large.
  • Each individual source symbol  $q_ν$  comes from a symbol set  $\{q_μ \}$  where  $μ = 1$, ... , $M$.  $M$  denotes the symbol set size:
$$q_{\nu} \in \left \{ q_{\mu} \right \}, \hspace{0.25cm}{\rm with}\hspace{0.25cm} \nu = 1, \hspace{0.05cm} \text{ ...}\hspace{0.05cm} , N\hspace{0.25cm}{\rm and}\hspace{0.25cm}\mu = 1,\hspace{0.05cm} \text{ ...}\hspace{0.05cm} , M \hspace{0.05cm}.$$

The figure shows a quaternary message source  $(M = 4)$  with alphabet  $\rm \{A, \ B, \ C, \ D\}$  and an exemplary sequence of length  $N = 100$.

Quaternary source

The following requirements apply:

  • The quaternary source is fully described by  $M = 4$  symbol probabilities  $p_μ$.  In general it applies:
$$\sum_{\mu = 1}^M \hspace{0.1cm}p_{\mu} = 1 \hspace{0.05cm}.$$
$${\rm Pr} \left (q_{\nu} = q_{\mu} \right ) = {\rm Pr} \left (q_{\nu} = q_{\mu} \hspace{0.03cm} | \hspace{0.03cm} q_{\nu -1}, q_{\nu -2}, \hspace{0.05cm} \text{ ...}\hspace{0.05cm}\right ) \hspace{0.05cm}.$$
  • Since the alphabet consists of symbols  $($and not of random variables$)$,  the specification of  »expected values«  $($linear mean, second moment, standard deviation, etc.$)$  is not possible here,  but also not necessary from an information-theoretical point of view.


These properties will now be illustrated with an example.

Relative frequencies as a function of  $N$

$\text{Example 1:}$  For the symbol probabilities of a quaternary source applies:

$$p_{\rm A} = 0.4 \hspace{0.05cm},\hspace{0.2cm}p_{\rm B} = 0.3 \hspace{0.05cm},\hspace{0.2cm}p_{\rm C} = 0.2 \hspace{0.05cm},\hspace{0.2cm} p_{\rm D} = 0.1\hspace{0.05cm}.$$

For an infinitely long sequence  $(N \to \infty)$

  • the  »relative frequencies«  $h_{\rm A}$,  $h_{\rm B}$,  $h_{\rm C}$,  $h_{\rm D}$   ⇒   a-posteriori parameters
  • were identical to the  »probabilities«  $p_{\rm A}$,  $p_{\rm B}$,  $p_{\rm C}$,  $p_{\rm D}$   ⇒   a-priori parameters.


With smaller  $N$  deviations may occur, as the adjacent table  $($result of a simulation$)$  shows.

  • In the graphic above an exemplary sequence is shown with  $N = 100$  symbols.
  • Due to the set elements  $\rm A$,  $\rm B$,  $\rm C$  and  $\rm D$  no mean values can be given.


However,  if you replace the symbols with numerical values,  for example  $\rm A \Rightarrow 1$,   $\rm B \Rightarrow 2$,   $\rm C \Rightarrow 3$,   $\rm D \Rightarrow 4$, then you will get after
    »time averaging«   ⇒   crossing line     or     »ensemble averaging«   ⇒   expected value formation

$$m_1 = \overline { q_{\nu} } = {\rm E} \big [ q_{\mu} \big ] = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4 = 2 \hspace{0.05cm},$$
$$m_2 = \overline { q_{\nu}^{\hspace{0.05cm}2} } = {\rm E} \big [ q_{\mu}^{\hspace{0.05cm}2} \big ] = 0.4 \cdot 1^2 + 0.3 \cdot 2^2 + 0.2 \cdot 3^2 + 0.1 \cdot 4^2 = 5 \hspace{0.05cm},$$
$$\sigma = \sqrt {m_2 - m_1^2} = \sqrt {5 - 2^2} = 1 \hspace{0.05cm}.$$


Maximum entropy of a discrete source


$\text{Claude Elwood Shannon}$  defined in 1948 in the standard work of information theory  [Sha48][1]  the concept of information as  "decrease of uncertainty about the occurrence of a statistical event".

Let us make a mental experiment with  $M$  possible results, which are all equally probable:   $p_1 = p_2 = \hspace{0.05cm} \text{ ...}\hspace{0.05cm} = p_M = 1/M \hspace{0.05cm}.$

Under this assumption applies:

  • Is  $M = 1$, then each individual attempt will yield the same result and therefore there is no uncertainty about the output.
  • On the other hand, an observer learns about an experiment with  $M = 2$, for example the  »coin toss«  with the set of events  $\big \{\rm \boldsymbol{\rm Z}(ahl), \rm \boldsymbol{\rm W}(app) \big \}$  and the probabilities  $p_{\rm Z} = p_{\rm W} = 0. 5$, a gain in information.  The uncertainty regarding  $\rm Z$  resp.  $\rm W$  is resolved.
  • In the experiment  »dice«  $(M = 6)$  and even more in  »roulette«  $(M = 37)$  the gained information is even more significant for the observer than in the  »coin toss«  when he learns which number was thrown or which ball fell.
  • Finally it should be considered that the experiment  »triple coin toss«  with  $M = 8$  possible results  $\rm ZZZ$,  $\rm ZZW$,  $\rm ZWZ$,  $\rm ZWW$,  $\rm WZZ$,  $\rm WZW$,  $\rm WWZ$,  $\rm WWW$  provides three times the information as the single coin toss  $(M = 2)$.


The following definition fulfills all the requirements listed here for a quantitative information measure for equally probable events, indicated only by the symbol set size  $M$.

$\text{Definition:}$  The  »maximum average information content«   of a message source depends only on the symbol set size  $M$  and results in

$$H_0 = {\rm log}\hspace{0.1cm}M = {\rm log}_2\hspace{0.1cm}M \hspace{0.15cm} {\rm (in \ “bit")} = {\rm ln}\hspace{0.1cm}M \hspace{0.15cm}\text {(in “nat")} = {\rm lg}\hspace{0.1cm}M \hspace{0.15cm}\text {(in “Hartley")}\hspace{0.05cm}.$$
  • Since  $H_0$  indicates the maximum value of the  $\text{entropy}$  $H$,  $H_\text{max}=H_0$  is also used in our tutorial as short notation.


Please note our nomenclature:

  • The logarithm will be called  »log«  in the following, independent of the base.
  • The relations mentioned above are fulfilled due to the following properties:
$${\rm log}\hspace{0.1cm}1 = 0 \hspace{0.05cm},\hspace{0.2cm} {\rm log}\hspace{0.1cm}37 > {\rm log}\hspace{0.1cm}6 > {\rm log}\hspace{0.1cm}2\hspace{0.05cm},\hspace{0.2cm} {\rm log}\hspace{0.1cm}M^k = k \cdot {\rm log}\hspace{0.1cm}M \hspace{0.05cm}.$$
  • Usually we use the logarithm to the base  $2$   ⇒   »logarithm dualis«    $\rm (ld)$,  where the pseudo unit  "bit"  $($more precisely:  "bit/symbol"$)$  is then added:
$${\rm ld}\hspace{0.1cm}M = {\rm log_2}\hspace{0.1cm}M = \frac{{\rm lg}\hspace{0.1cm}M}{{\rm lg}\hspace{0.1cm}2} = \frac{{\rm ln}\hspace{0.1cm}M}{{\rm ln}\hspace{0.1cm}2} \hspace{0.05cm}.$$
  • In addition, you can find in the literature some additional definitions, which are based on the natural logarithm  $\rm (ln)$  or the logarithm of the tens  $\rm (lg)$.

Information content and entropy


We now waive the previous requirement that all  $M$  possible results of an experiment are equally probable.  In order to keep the spelling as compact as possible, we define for this section only:

$$p_1 > p_2 > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_\mu > \hspace{0.05cm} \text{ ...}\hspace{0.05cm} > p_{M-1} > p_M\hspace{0.05cm},\hspace{0.4cm}\sum_{\mu = 1}^M p_{\mu} = 1 \hspace{0.05cm}.$$

We now consider the »information content«  of the individual symbols, where we denote the  "logarithm dualis"  with  $\log_2$:

$$I_\mu = {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\hspace{0.05cm}{\rm log_2}\hspace{0.1cm}{p_\mu} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/Symbol)} \hspace{0.05cm}.$$

You can see:

  • Because of  $p_μ ≤ 1$  the information content is never negative.  In the borderline case  $p_μ \to 1$  goes  $I_μ \to 0$.
  • However, for  $I_μ = 0$   ⇒   $p_μ = 1$   ⇒   $M = 1$  the information content is also  $H_0 = 0$.
  • For decreasing probabilities  $p_μ$  the information content increases continuously:
$$I_1 < I_2 < \hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_\mu <\hspace{0.05cm} \text{ ...}\hspace{0.05cm} < I_{M-1} < I_M \hspace{0.05cm}.$$

$\text{Conclusion:}$  The more improbable an event is, the greater is its information content.  This fact is also found in daily life:

  1. "6 right ones" in the lottery are more likely to be noticed than "3 right ones" or no win at all.
  2. A tsunami in Asia also dominates the news in Germany for weeks as opposed to the almost standard Deutsche Bahn delays.
  3. A series of defeats of Bayern Munich leads to huge headlines in contrast to a winning series.  With 1860 Munich exactly the opposite is the case.


However, the information content of a single symbol (or event) is not very interesting.  On the other hand one of the central quantities of information theory is obtained,

  • by ensemble averaging over all possible symbols  $q_μ$  bzw. 
  • by time averaging over all elements of the sequence  $\langle q_ν \rangle$.


$\text{Definition:}$  The  »entropy«  $H$  of a discrete source indicates the  »mean information content of all symbols«:

$$H = \overline{I_\nu} = {\rm E}\hspace{0.01cm}[I_\mu] = \sum_{\mu = 1}^M p_{\mu} \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{p_\mu}= -\sum_{\mu = 1}^M p_{\mu} \cdot{\rm log_2}\hspace{0.1cm}{p_\mu} \hspace{0.5cm}\text{(unit: bit, more precisely: bit/symbol)} \hspace{0.05cm}.$$

The overline marks again a time averaging and  $\rm E[\text{...}]$  an ensemble averaging.


Entropy is among other things a measure for

  • the mean uncertainty about the outcome of a statistical event,
  • the  "randomness"  of this event,  and
  • the average information content of a random variable.


Binary entropy function


At first we will restrict ourselves to the special case  $M = 2$  and consider a binary source, which returns the two symbols  $\rm A$  and  $\rm B$.  The symbol probabilities are   $p_{\rm A} = p$  and   $p_{\rm B} = 1 - p$.

For the entropy of this binary source applies:

$$H_{\rm bin} (p) = p \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm log_2}\hspace{0.1cm}\frac{1}{1-p} \hspace{0.5cm}{\rm (unit\hspace{-0.15cm}: \hspace{0.15cm}bit\hspace{0.15cm}or\hspace{0.15cm}bit/symbol)} \hspace{0.05cm}.$$

This function is called  $H_\text{bin}(p)$  the  »binary entropy function«.  The entropy of a source with a larger symbol set size  $M$  can often be expressed using  $H_\text{bin}(p)$ .

$\text{Example 2:}$  The figure shows the binary entropy function for the values  $0 ≤ p ≤ 1$  of the symbol probability of  $\rm A$  $($or also of  $\rm B)$.  You can see:

Binary entropy function as a function of  $p$
  • The maximum value  $H_\text{max} = 1\; \rm bit$  results for  $p = 0.5$, thus for equally probable binary symbols.  Then   $\rm A$  and  $\rm B$  contribute the same amount to the entropy.
  • $H_\text{bin}(p)$  is symmetrical around  $p = 0.5$.  A source with  $p_{\rm A} = 0.1$  and  $p_{\rm B} = 0. 9$  has the same entropy  $H = 0.469 \; \rm bit$  as a source with  $p_{\rm A} = 0.9$  and  $p_{\rm B} = 0.1$.
  • The difference  $ΔH = H_\text{max} - H$ gives  the  »redundancy«  of the source and  $r = ΔH/H_\text{max}$  the  »relative redundancy«.   In the example,  $ΔH = 0.531\; \rm bit$  and  $r = 53.1 \rm \%$.
  • For  $p = 0$  this results in  $H = 0$, since the symbol sequence  $\rm B \ B \ B \text{...}$  can be predicted with certainty   ⇒   symbol set size only  $M = 1$.  The same applies to  $p = 1$   ⇒   symbol sequence  $\rm A \ A \ A \text{...}$.
  • $H_\text{bin}(p)$  is always a  »concave function«,  since the second derivative after the parameter  $p$  is negative for all values of  $p$ :
$$\frac{ {\rm d}^2H_{\rm bin} (p)}{ {\rm d}\,p^2} = \frac{- 1}{ {\rm ln}(2) \cdot p \cdot (1-p)}< 0 \hspace{0.05cm}.$$

Non-binary sources


In the  "first section"  of this chapter we considered a quaternary message source  $(M = 4)$  with the symbol probabilities  $p_{\rm A} = 0. 4$,   $p_{\rm B} = 0.3$,   $p_{\rm C} = 0.2$  and  $ p_{\rm D} = 0.1$.  This source has the following entropy:

$$H_{\rm quat} = 0.4 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.2}+ 0.1 \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.1}.$$

For numerical calculation, the detour via the decimal logarithm  $\lg \ x = {\rm log}_{10} \ x$  is often necessary, since the  "logarithm dualis"  $ {\rm log}_2 \ x$  is mostly not found on pocket calculators.

$$H_{\rm quat}=\frac{1}{{\rm lg}\hspace{0.1cm}2} \cdot \left [ 0.4 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.4} + 0.3 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0. 3} + 0.2 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.2} + 0.1 \cdot {\rm lg}\hspace{0.1cm}\frac{1}{0.1} \right ] = 1.845\,{\rm bit} \hspace{0.05cm}.$$

$\text{Example 3:}$  Now there are certain symmetries between the symbol probabilities:

Entropy of binary source and quaternary source
$$p_{\rm A} = p_{\rm D} = p \hspace{0.05cm},\hspace{0.4cm}p_{\rm B} = p_{\rm C} = 0.5 - p \hspace{0.05cm},\hspace{0.3cm}{\rm with} \hspace{0.15cm}0 \le p \le 0.5 \hspace{0.05cm}.$$

In this case, the binary entropy function can be used to calculate the entropy:

$$H_{\rm quat} = 2 \cdot p \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm} } + 2 \cdot (0.5-p) \cdot {\rm log}_2\hspace{0.1cm}\frac{1}{0.5-p}$$

$$\Rightarrow \hspace{0.3cm} H_{\rm quat} = 1 + H_{\rm bin}(2p) \hspace{0.05cm}.$$

The graphic shows as a function of  $p$

  • the entropy of the quaternary source (blue)
  • in comparison to the entropy course of the binary source (red).


For the quaternary source only the abscissa  $0 ≤ p ≤ 0.5$  is allowed.

⇒   You can see from the blue curve for the quaternary source:

  • The maximum entropy  $H_\text{max} = 2 \; \rm bit/symbol$  results for  $p = 0.25$   ⇒   equally probable symbols:   $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm A} = 0.25$.
  • With  $p = 0$  the quaternary source degenerates to a binary source with  $p_{\rm B} = p_{\rm C} = 0. 5$,   $p_{\rm A} = p_{\rm D} = 0$   ⇒   $H = 1 \; \rm bit/symbol$.  Similar applies to $p = 0.5$.
  • The source with  $p_{\rm A} = p_{\rm D} = 0.1$  and  $p_{\rm B} = p_{\rm C} = 0.4$  has the following characteristics (each with the pseudo unit "bit/symbol"):
    (1)   entropy:   $H = 1 + H_{\rm bin} (2p) =1 + H_{\rm bin} (0.2) = 1.722,$
    (2)   Redundancy:   ${\rm \Delta }H = {\rm log_2}\hspace{0.1cm} M - H =2- 1.722= 0.278,$
    (3)   relative redundancy:   $r ={\rm \Delta }H/({\rm log_2}\hspace{0.1cm} M) = 0.139\hspace{0.05cm}.$
  • The redundancy of the quaternary source with  $p = 0.1$  is  $ΔH = 0.278 \; \rm bit/symbol$   ⇒   exactly the same as the redundancy of the binary source with  $p = 0.2$.


Exercises for the chapter


Exercise 1.1: Entropy of the Weather

Exercise 1.1Z: Binary Entropy Function

Exercise 1.2: Entropy of Ternary Sources


References

  1. Shannon, C.E.: A Mathematical Theory of Communication. In: Bell Syst. Techn. J. 27 (1948), pp. 379-423 and pp. 623-656.